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Structured illumination combined with a monocular 3D camera leveraging on the estimation of the defocus blur has been proposed in the literature for industrial surface inspection. The accuracy of such active depth from defocus (ADFD) system depends on the camera/projector and processing parameters. Here, we propose to optimize the settings of an ADFD system, using a performance model that can predict the theoretical depth estimation accuracy for a given set of optical/projector/processing parameters. The accuracy of the optimized system is then experimentally evaluated. Moreover, we provide experimental results on real objects, including metallic parts, compared to a reference depth map obtained with an active stereoscopic camera.

INTRODUCTION

Surface dimensional inspection is a major issue in industrial manufacturing such as aeronautic and automotive. In this context, 3D sensors have to be cheap, compact and to be usable at few centimeters from the surface of the object. Depth from Defocus (DFD) approach, where depth is estimated from a local measure of the defocus blur 1 is a promising technique for this task as it provides depth estimation with a single lens. In this paper, we focus on the case of single image DFD (SIDFD), more simple to conduct experimentally than DFD with multiple images, since it does not require to dynamically control optical parameters during acquisition. To deal with SIDFD, unconventional optics have been proposed in the literature to improve the depth estimation accuracy, such as coded aperture, 2 chromatic aperture 3 or chromatic lens. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] Regarding the processing, one has to estimate, on a single image, an amount of defocus blur, while the scene is unknown. To solve this problem, depth estimation methods have been proposed, either based on statistical scene model and blur calibration, [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF] or on direct depth estimation from a blurred patch using deep learning. [START_REF] Leroy | Learning local depth regression from defocus blur by soft-assignment encoding[END_REF] However, passive DFD methods rely on a large amount of texture on the scene, which is not the case of industrial metallic parts. Hence, active DFD estimation techniques, based on the projection of patterns on the object have been proposed in the literature. [START_REF] Girod | Depth from defocus of structured light[END_REF][START_REF] Masuyama | Depth from projector's defocus based on multiple focus pattern projection[END_REF][START_REF] Ma | Computational Depth from Defocus via Active Quasi-random Pattern Projections[END_REF][START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] Most of methods use evenly spaced vertical lines [START_REF] Girod | Depth from defocus of structured light[END_REF][START_REF] Ghita | Computational approach for depth from defocus[END_REF] or evenly spaced dots [START_REF] Ma | Computational Depth from Defocus via Active Quasi-random Pattern Projections[END_REF] and thus only produce sparse depth map at the position of each dots/lines, which can not be too close to avoid overlapping. In contrast, Buat et al. [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] have developed an ADFD system using the projection of a binary random pattern on the scene. Compared to sparse pattern, this dense pattern provides a dense depth map, and outperforms in SIDFD other dense projected patterns such as Gaussian random pattern. [START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF] In the ADFD system proposed by Buat et al., defocused images are acquired with a lens specifically designed to have chromatic aberration. Depth is estimated on image patches, using a maximum likelihood approach to select of depth among a set of potential depths. The likelihood is computed using image covariance matrices learned off-line for each depth from a set of representative image patches. This approach hence provides dense depth maps.

The accuracy of an ADFD system depends on the defocus blur of the camera, on the projected pattern and on the processing parameters. Hence only a co-design approach, which considers jointly both the projector, sensor and the processing parameters, can be used to optimize the whole system. This requires the definition of a joint performance model, that takes into account all the parameters of the acquisition system and processing, and can predict the theoretical accuracy of the depth estimation. Such model has been developed for ADFD in our previous work, [START_REF] Buat | Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design[END_REF] relying on the derivation of the Cramér Rao Lower bound for the depth estimation, computed with learned scene covariance matrices. However this model is used only to compare the theoretical and experimental performances of a given ADFD system.

In this paper, we propose to use a performance model to optimize the parameters of an ADFD system. Here the optical system is made of a conventional lens with an additional optical doublet that adds chromatic aberration. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] A single parameter of this doublet, its radius of curvature, directly tunes the amount of chromatic aberration. This technique hence limits the amount of optical parameters to optimize in the co-design. Starting from experimental requirements, we optimize degrees of freedom of the ADFD system such as the camera in-focus plane position, its aperture number, the amount of chromatic aberration and the scale of the projected pattern. Finally, we test the optimized ADFD system on real objects, including a metallic part, and provide quantitative analysis of the results, in comparison with an active stereoscopic system commercially available.

RELATED WORKS AND CONTRIBUTION 2.1 SIDFD with a chromatic add-on

SIDFD suffers firstly from depth ambiguity. Indeed an object placed in front of the camera in-focus plane or behind it can be seen with the same blur amount. Beside, due to the camera depth of field, there is a "dead zone" where no blur variation measurement is possible. Chromatic aberration has been proposed to overcome these issues. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] Indeed, longitudinal chromatic aberration leads to a spectral variation of the in-focus plane. Thus an object captured by a RGB color camera coupled to a lens with chromatic aberration produces R,G,B channel images with only one triplet of blurs for each depth value (see Figure 4(b)). Moreover, for each depth at least one image channel is blurred, so blur can be measured. Hence chromatic aberration removes both ambiguity and dead zone issues of DFD. In particular, Trouvé et al. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] have proposed to use of a chromatic add-on, put in front of an existing conventional lens. This component is made of a doublet of glasses chosen to have an identical refractive index at a nominal wavelength in the visible, but various refractive index at other wavelengths. Thus the add-on acts as a plane-parallel plate for the nominal wavelength, and has a non zero power for the other wavelengths in the visible spectrum, which causes the chromatic aberration. The parameter of the add-on is the radius of curvature R of the doublet, which directly tunes the amount of chromatic aberration. Therefore this simple component is attractive for a co-design application.

Performance model for SIDFD and ADFD

Trouve et al. [START_REF] Trouvé-Peloux | Performance model of depth from defocus with an unconventional camera[END_REF] have proposed a performance model for the DFD technique based on the derivation of a Cramér Rao Lower Bound (CRB). Given the Point Spread Function (PSF) of a camera at a given depth, the noise level and the patch size, this model determines the theoretical accuracy of depth estimation. This model is thus suitable for conventional and unconventional cameras and has been used for the co-design of a chromatic lens dedicated to SIDFD. [START_REF] Trouvé-Peloux | Performance model of depth from defocus with an unconventional camera[END_REF] However, the derivation of the likelihood function from which the CRB is computed is based on a generic scene prior which is not always realistic depending on the observed scene. An adaptation of this model in the case of ADFD has been proposed in Buat et al. [START_REF] Buat | Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design[END_REF] The CRB is calculated using learned covariance matrix from the known projected pattern. It has been used to compare theoretical and experimental accuracy of an existing ADFD system, but no optimization of the system settings have been conducted.

Contributions and paper organization

In this paper, we propose to use a performance model to optimize the settings of an ADFD camera. We first present the proposed model to predict the theoretical depth estimation accuracy of a given system (section 3). As in Buat et al. [START_REF] Buat | Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design[END_REF] we compute a CRB obtained from the scene covariance, a noise level and the PSF at a given depth. However here, as the projected pattern is a binary random pattern, we use a direct calculation of the scene covariance matrix that avoids the learning step of the scene covariance. Then this model is used to optimize the parameters of a new ADFD starting from a given experimental settings (section 4). Following the work of Trouve et al., [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] the proposed system is made-up of a camera equipped with a chromatic add-on for which the amount of chromatic aberration can be tuned with a single parameter. The optimized system has been realized and its experimental performance is evaluated in section 5. Finally, we present results on real objects, in comparison with an industrial active 3D camera using stereoscopy.

PERFORMANCE MODEL

Image and Scene models

Defocus blur is a spatially varying blur, so an image patch is usually modeled with the local convolution of a scene patch with the PSF and addition of random acquisition noise. Using the vector representation on image and scene patches we have:

Y = H(d)X + N, (1) 
where Y (respectively X) collects k pixels of the image (resp. scene) patch in the lexicographical order. It is assumed that X is a zero mean random Gaussian vector with covariance R X . N stands for the noise process which is modeled as a zero mean white Gaussian noise (WGN) with variance σ 2 N . H(d) is a convolution matrix which depends on the defocus PSF at each depth d.

Image prior

The relation between X and Y being linear, Y is also a zero mean random Gaussian vector with covariance R Y and we have:

R Y (d) = H(d)R X H(d) T + σ 2 N I. (2) 
The marginal probability density of the data is expressed as:

p(Y; d) = 1 |2πR Y (d)| 1/2 exp - Y t R -1 Y (d)Y 2 , ( 3 
)
where |R| is the determinant of matrix R.

Scene covariance matrix

We consider here that the projected pattern is a binary random pattern. Such a signal can be written as :

X(n) = k∈Z B k β(n -ks -U ). ( 4 
)
Where β is equal to 1 between 0 et s -1 and zero elsewhere. B k in a binary random variable, the family {B k } k∈Z is independent and identically distributed. To simplify, B k has values in the range [-0.5, 0.5] with a probability of 1/2 so as to be zero mean. The term -ks applies a shift of s pixels in 1D when k goes from k to k + 1. The notation U stands for a random phase equidistributed over {0, 1, • • • , s -1}. Figure 1(b) illustrates such signal for two values of U . One can show that in 1D, the correlation matrix of such a signal writes :

E(X(m)X(m -k)) = 1 4s 2 (s -|k|) + . (5) 
where + refers to the Relu function, i.e x + = max(0, x) . This relation generalises in 2D to :

E(X(m, n)X(m -k, n -l)) = 1 4s 2 (s -|k|) + (s -|l|) + . (6) 
In contrast with Buat et al., [START_REF] Buat | Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design[END_REF] where the scene covariance is learned on a set of representative patches, we propose here to use equation ( 6) to directly compute a covariance matrix of the scene given a patch size and a scale s.

PSF model

Following the work of Trouvé et al., [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] we propose here to use a simple model of the system made of an add-on fixed in front of a conventional lens, based on thin lens approximation and a Gaussian PSF model. Both the add-on and the conventional lens are considered as perfect thin lens of focal length respectively f ′ a and f ′ , separated by the distance e. The aperture of the system is still on the conventional lens of diameter Φ. Figure 1 scheme of both lenses and presents the main notations. Using the thin lens law, the size of the defocus blur ϵ def can be derived from the following equations :

ϵ def = Φ p -O 2 A ′ O 2 A ′ , O 2 A ′ = f ′ (f ′ a d -e 2 + de) f ′ (f ′ a -e + d) + (f ′ a d -e 2 + de) . ( 7 
)
The PSF is modeled using a Gaussian model parameterized by the standard deviation given by σ = ρϵ def where ρ is a factor empirically fixed at 0.3. For a lens with the chromatic add-on, each color channel has isotropic Gaussian PSF parameterized by a standard deviation σ c with f ′ a defined for each color channel. Let n 1 (λ) (resp. n 2 (λ)) be the refractive index of the first (resp. second) glass at the wavelength λ. Using a thin lens approximation, the focal length of the add-on writes:

f ′ a = R/(n 2 (λ) -n 1 (λ)).
Note that in order to take into account the intra-channel chromatic aberration, a weighted average of the σ is calculated with weights corresponding to the spectrum of each color channel. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] 

Cramér Rao Bound derivation from the covariance matrix

As in previous works [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF][START_REF] Buat | Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design[END_REF][START_REF] Trouvé-Peloux | Theoretical performance model for single image depth from defocus[END_REF] we propose to use the Cramér Rao Bound in order to predict the best performance of depth estimation accuracy attainable for a given system using an unbiased estimator. For the estimation of a parameter θ from a data vector y, the CRB is expressed as:

var( θ) ≥ σ 2 CRB = F I(θ) -1 = -E ∂ 2 p(Y|θ) ∂ 2 θ -1 , (8) 
where FI is the Fisher Information, p(Y|θ) the likelihood of the data Y and E the expectation function. For a Gaussian vector Y of density expressed such as in equation 3, one can show that:

F I(θ) = 1 2 tr R Y (θ) -1 ∂R Y (θ) ∂θ R Y (θ) -1 ∂R Y (θ) ∂θ t . (9) 
Hence, the CRB can be evaluated directly from the image covariance matrix R Y (θ).

Computation of the CRB

We simplify the calculation of the CRB and assume that the noise parameter σ 2 N is known, reducing the problem to the depth estimation such as θ = {d}. According to equation ( 8) and ( 9), the CRB depends only on the covariance matrix R Y that can be obtained using equation (2). We then need to be able to compute at each depth d respectively H(d), the convolution matrix containing the blur information, and R X the covariance matrix of the scene. H(d) is computed using the method described in section 3.4, and R X is computed for a given patch size and scale using the methodology described in section 3.3. To compute the derivative of R Y , we use numerical differentiation. Thus for a given depth d, we choose a small depth variation δ, we deduced R Y (d), R Y (d -δ) and R Y (d + δ) from Equation (2) by computing R X using 6 and H at {d, d -δ, d + δ}. We also set the variance of the acquisition process noise σ 2 N . Finally, according to equation ( 8) we take the inverse square root of the Fisher Information to obtain the minimum standard deviation σ CRB (d) of depth estimation at the depth d. Table 1 (a) presents the corresponding requirements for the ADFD system. We first chose a large sensor size to get a maximum of field of view. Hence we use the 1" 20 MP U3-3800 by IDS-Imaging, with a pixel size of 2.4 µm. Given the sensor size, to reach the required field of view presented in 1, the focal length of the conventional camera is set to 16 mm, corresponding to standard focal length of off-the shelf commercial lenses. The processed raw patch size is set to 20 × 20 pixels as in previous work Buat et al., [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] and the noise level is arbitrarily fixed at 10 -4 . The Bayer pattern on the sensor is accounted for by removing adequate lines of the convolution matrix H(d) which models the convolution of the scene patch with the three PSF corresponding to the three color channels. [START_REF] Trouvé-Peloux | Turning a conventional camera into a 3d camera with an add-on[END_REF] Parameter e is simply set to 0. The remaining parameters of the ADFD system to be optimized are then : the F-number of the lens (F#), the radius of curvature of the add-on (R), the in-focus plane position (Focus p) and the scale s of the projected pattern. Table 1 (b) presents the potential values of these parameters considered during optimization.

OPTIMIZATION OF AN ADFD SYSTEM

Settings and degrees of freedom of the ADFD system

Optimization results

(a) (b) Figure 2: (a) Performance of depth estimation of a set of simulated potential ADFD systems : (a) For the whole combinations of the parameters in Table 1(b), the colors separate the values of F#. (b) For a lens opened at F/1.8, the colors enhance the choice of the radius of curvature of the chromatic add-on. Black square is on the selected optimal system. To optimize the ADFD parameters, we conduct a grid search over the whole set of parameters of Table 1

(b).

For each simulated ADFD system, i.e a given parameters combination, we evaluate σ CRB over the depth range of interest using the performance model described in section 3. Then the mean value and the standard deviation of σ CRB are computed over the depth range of interest defined in Table 1. Minimisation of these two criteria favors a system having high and stable accuracy of depth estimation in the depth range. Figure 2 shows the performances obtained according to these two criteria for the whole set of potential systems, each mark of the figures corresponding to a given set of parameters. Figure 2 (a) highlights the variation of the performance with respect to the value of the lens F#. The value 1.8 appears to reach the systems having the lowest mean and standard deviation for σ CRB . Figure 2 (b) shows the performances of the potential systems, but restricted to a lens opened at F/1.8. It highlights the variation of the performance with respect to the value of the radius of curvature of the chromatic add-on. A value of R around 25-30 mm generally obtains the best results. Finally, we chose a specific system inside of the black square in Figure 2(b). It corresponds to the following settings : a lens opened at F/1.8, the focus position of the green channel at 315 mm, a scale of the pattern of 5 and R=25 mm. Figure 3 (a) and (b) show respectively the variation of the defocus blur of the three color channels and the variation of σ CRB with respect to depth, for the optimized system. Experimental evaluation of the defocus blur standard deviation of each color channel using Knife Edge approach relying on a Gaussian PSF model. [START_REF] Reichenbach | Characterizing digital image acquisition devices[END_REF] Depth estimation results using the optimized ADFD system on a flat target put in front of the camera. Mean RMSE is of 0.72 mm.

We have built an optimized ADFD system, according to the parameters obtained in section 4. It is made of a 16mm lens opened at F/1.8 coupled to a chromatic add-on having a radius of curvature of 25 mm. We use, as in Buatet al , 10 the EFFI-Lase V2 pattern projector from the company Effilux, 17 with a binary random projected pattern, and with a zoom lens whose focal length is tuned to 20 mm in order to obtain a scale of the projected pattern around 5. Its f-number is set at F/4, so that the observed blur in the images only comes from the defocus blur of the camera with chromatic aberration and not from a blur from the projected pattern. Figure 4 (a) shows the experimental ADFD set-up. Linear polarizers are put in front of the projector and the camera to reduce specular reflections. Figure 4 (b) shows, for each color channel, a measure of the blur size using a Knife-Edge method, [START_REF] Reichenbach | Characterizing digital image acquisition devices[END_REF] relying on a Gaussian PSF model. The red and green channel follow the theoretical variation of the blur shown in the section 4 in Figure 2(a). The blue channel appears more blur in practice that in theory. This could come from a different spectrum of the blue color channel compared to the simulation, or coating that has degraded the image quality of this wavelength. This effect will have to be investigated in further works.

Depth estimation processing for ADFD

To experimentally estimate the depth, we use the processing proposed in reference. [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] An off-line calibration step is conducted using the ADFD system, to first learn an image covariance R Y (d) per depth. A second online step makes use of a maximum likelihood criterion to evaluate the consistency of a given patch Y with the learned covariance R Y (d) in order to estimate the depth d and the noise parameter. More details about the implementation can be found in reference. [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] Here, calibration images are acquired with a step of 0.1 mm with a fronto-parallel white target moved using an ESP300 motion controller from Newport.

Quantitative depth estimation performance evaluation

A fronto-parallel white target in moved with a step of 0.5 mm within the range 300 to 325 mm in front of the ADFD system. Figure 4(c) presents depth estimation results in terms of bias and standard deviation with respect to the true depth. The depth is estimated in a centred region of the image, covering 1/9 of the field of view. The mean RMSE is of 0.72 mm, which is still above the requirements of Table 1 in terms of accuracy. However note that an equivalent stereoscopic camera having the same focal length and sensor and working at the same distance would have a baseline around 200 mm to produce similar accuracy. Figure 5 presents the depth maps obtained using the proposed system on real objects. As in Buat et al., [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] in order to overcome the variation of the PSF with field angle, the calibration of the image covariance matrix is conducted on separated image zones, with an overlapping of 50%. Depth is estimated on each zone, and the mean value of the depth from two overlapping zone is taken. Here we chose to separate the image within two 9× 9 and 10×10 overlapping grids. We also provide here a reference depth map from an active stereoscopic camera from the IDS company Ensenso X36-5CP. 18 This camera is made of two passive 12 mm camera with a baseline of 40 cm, and a texture projector in the blue color. The objects are put at approximately 70 cm away from this camera, according to its working range, to produce the reference depth map. At this range, the specified depth estimation accuracy is of 0.03 mm. Depth maps produced by the proposed ADFD system are consistent with the reference depth maps provided by the active stereoscopic camera. Note that the stereoscopic depth map shows an aberrated zone on the left part of the objects due to occlusion, that is not visible with the proposed method. Further works will include the modification of the working range of the stereoscopic camera, to reproject the reference depth map on the ADFD depth map.

Qualitative evaluation on real objects

CONCLUSION

In this paper, we have presented a method for the optimization of an ADFD system. We applied it on the specific optimization of an ADFD system made of a chromatic add-on, a conventional lens and a projector with binary random pattern projected on the scene. The accuracy of the optimized system is around 0.7mm on a depth range of 25cm, which is still higher than one could require for such a system. Experimental validations have been conducted on real objects, including metallic parts, with a reference depth map from an active stereoscopic camera. Improvement of the accuracy of our ADFD system could be obtained using a different image processing for the depth estimation such as the work of Leroy et al., [START_REF] Leroy | Learning local depth regression from defocus blur by soft-assignment encoding[END_REF] using deep learning for depth regression from a blurred patch. Further works will concern application of this technique to data provided by our optimized system.
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 1 (a) Geometrical model of system combining a conventional lens and an add-on. (b) Examples of 1D binary random signal from equation (4) with s = 10 and two values of U that shifts the random signal.
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 34 Figure 3: For the optimized ADFD system : (a) Variation of the defocus blur of the RGB channels with depths. (b) Variation of σ CRB with depths.
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 5 Figure 5: From left to right : Picture of the observed objects, acquired ADFD image, depth map obtained using the proposed ADFD system and depth map obtained with the active stereoscopic camera. Scale is in mm.