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ABSTRACT

Characterizing and interpreting expressivity in performed
music remains an open problem. In this paper, we ex-
plore the novel representation of recorded performances
of triple time music using a 2-simplex, a graphical rep-
resentation used to visualize three-interval rhythms. We
analyze the MazurkaBL dataset, which contains beat-level
tempo and loudness data of over 2000 recorded perfor-
mances of 46 Chopin Mazurkas. Mazurkas’ triple time
lends themselves well to the 2-simplex; the expressive fea-
tures of each three-beat bar map directly to unique points
in the 2-simplex. We extend the rhythm simplex designed
for beat durations to the representation of loudness. Each
recorded performance is thus reduced to a set of points
in 2-simplices based on beat-level duration or loudness.
We provide the transformation to convert three-interval in-
formation to points in the 2-simplex; prove that inter-beat
intervals and tempo representations in the 2-simplex are
equivalent when timing variations are small; and, explain
how smoothing the data impacts the coordinates of the
points in the simplex. We demonstrate that the use of sim-
plices can facilitate the analysis and interpretation of ex-
pressive music features; the method enables the identifying
of bars with notable expressive variations such as temporal
suspensions that form tipping points, and characterizing of
performance regularity.

1. INTRODUCTION

Characterizing and interpreting expressivity in performed
music is a fundamental problem in fields such as musicol-
ogy, music perception, and music analysis. Moreover, the
emergence of computational models has produced signifi-
cant advances in expressive music research [1]. Computa-
tional modeling of expressive music performance requires
large-scale databases; to create such databases, it is more
expedient to focus on piano music. We focus on the piano
pieces of the romantic period, which allow for greater ex-
pressive variations. A significant amount of this repertoire
has been written for solo instruments, which makes com-
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parative analysis of performances more straightforward.
Furthermore, with the existence of computer-controlled pi-
anos such as the Bösendorfer and Steinway Spirio, realistic
piano performances can be readily captured with accuracy,
which is not the case with other instruments. Therefore, the
majority of performance research focuses on piano music.

Due to the resources amassed for and made available by
the Mazurka Project 1 , numerous studies have been based
on Chopin’s Mazurkas. A main purpose of the initial stud-
ies was to identify correlations between performed tempo
and between performed loudness features [2, 3, 4, 5].
These analyses were based on selected Mazurka record-
ings. More recently, beat level tempo and loudness in-
formation of 2000 recorded Mazurkas have been extracted
and made available for research [6]. Other studies have
focused on generating Mazurka performances using ma-
chine learning models [7]. The two main expressive pa-
rameters considered are tempo and loudness variations [8].
Using these two parameters, trajectories in tempo-loudness
space [9] were traced to represent the performance. An-
other representation of tempo and loudness curves for
analysis is the arc model [10, 11]. Arc models have
been successfully used to determine the segmentation of a
piece based only on the loudness and tempo curves versus
time [12, 13, 14].

In this paper, we propose to represent beat-level tempo
and loudness information of a Mazurka performance in
tempo and loudness simplices, a graphical representation
used in music to analyze the perception of three-interval
rhythms. This is the first time these simplices are applied
to visualize Mazurka performances. This representation
makes it straightforward to determine performance charac-
teristics such as the accented beat in a bar or the regularity
of a performance.

This paper is organized as follows: Section 2 introduces
the rhythm simplex and reviews related work; Section 3
presents the dataset we used and explains why the 2-
simplex representation is relevant to this dataset; Section 4
describes the proposed method, by first providing a trans-
formation to convert a three-interval information into the
2-simplex, then proving that the choices of inter-beat in-
tervals or tempo data are equivalent when timing variation
are small, and explaining the impact of smoothing the data
in the 2-simplex representation; and, Section 5 presents

1 http://www.mazurka.org.uk/
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analyses and interpretations that can be made with the sim-
plices, such as visualizing time suspensions, characterizing
the notion of regularity of a performance, and identifying
the bars with notable expressive variations.

2. THE RHYTHM SIMPLEX

In this section, we introduce the rhythm simplex, a graphi-
cal representation used to visualize three-interval rhythms,
and related work.

2.1 Presentation of the Rhythm Simplex

The rhythm simplex, also known as a rhythm chart or
chronotopological map, is a graphical representation de-
veloped for visualizing three-interval rhythms. The idea of
the rhythm simplex is that any three-interval rhythm can be
represented in a 2-dimensional plot if the total duration of
the rhythm is fixed (usually normalized to 1). For example,
A = [0.50, 0.25, 0.25] and B = [0.33, 0.33, 0.33]. By fix-
ing the total duration, it is sufficient to know the first two
intervals to deduce the third one. So a 2-dimensional plot
can be used to visualize the rhythm. Thus, a three-interval
rhythm is mapped to a unique point in the rhythm simplex.
As illustrated in Figure 1(a), this 2-dimensional plot is a 2-
simplex, i.e. a triangle. Figure 1(b) represents the rhythm
simplex where each side of the triangle corresponds to one
of the three intervals. In this figure, each three-interval
rhythm is represented by a unique point. The rhythm A is
located by the light blue arrows, while the rhythm B is in
the middle of the rhythm simplex.
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(a) The space of three-interval rhythms in the 2-simplex.

A : [0.50, 0.25, 0.25]

B : [0.33, 0.33, 0.33]

C : [0.25, 0.50, 0.25]A
B
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(b) Rhythm simplex where the three-interval rhythms A, B, and C are
represented by unique points in the 2-simplex.

Figure 1. Three-interval rhythms in the rhythm simplex (adapted from
Desain & Honing [15]).

2.2 Previous Work Related to the Rhythm Simplex

The use of the simplex representation in music was intro-
duced by Desain and Honing [15, 16] to understand how
listeners perceive rhythm categories. They asked the lis-
teners to identify three-interval rhythms on a continuous
scale to determine areas in the rhythm simplex representing
equivalence classes. These rhythm equivalence classes can
evolve according to parameters such as tempo [17], loud-
ness or melodic structure [18]. Vaquero and Honing [19]
created paths within these areas to generate performances.
Based on a type of formal grammar called Lindenmayer
systems [20], they defined paths in the rhythm simplex
to generated expressivity in music. Bååth et al. [21] im-
plemented a dynamical systems model to reproduce the
categorical choices of listeners to retrieve these areas in
the rhythm simplex. More recently, Jacoby and McDer-
mott [22] ran a study where random rhythms in the rhythm
simplex had to be reproduced by participants. Participants
converged to rhythms having integer ratios after five iter-
ations. They showed that the areas defined in [15] have
little dependence on musical training but are highly depen-
dent on cultural biases. For instance, listeners in the United
States had different results than native Amazonian listen-
ers. Nave et al. [23] conducted a similar experiment to
the one in [22] with iterative reproductive tasks based on
random rhythms in the rhythm simplex, but with children.
They demonstrated the existence of rhythm priors in chil-
dren, also related to cultural biases, which would develop
in middle childhood.

Finally, these different studies used the rhythm simplex
to understand the perception of three-interval rhythms,
whether in populations of different cultures or of different
ages. Only Vaquero and Honing have applied it to musi-
cal performances, but for generation rather than analysis.
Here, we propose a new approach to use the rhythm sim-
plex to represent musical performances in order to charac-
terize and interpret music expressivity.

3. MAZURKA PERFORMANCES

In this section, we present the dataset that we use in this
paper and explain how the rhythm simplex can be used to
represent the essential expressive features of Mazurka per-
formances.

3.1 The Dataset

To map a large number of Mazurka performances to the
rhythm simplex for analysis, we used the MazurkaBL
dataset [6]. This is currently by far the largest database
of annotated performed classical music having multiple
performances of each piece. The MazurkaBL contains
beat level duration and loudness annotations for over 2000
recorded performances of 46 Chopin Mazurkas. There
are, on average, more than 40 distinct performances per
Mazurka. This dataset was made by manually annotat-
ing the beats of one recording of a Mazurka and automat-
ically transferring these annotations to other recordings of
the same piece through audio alignment. It is important
to note that we used a smoothed version of the loudness
data. Kosta et al. [6] filtered the loudness annotations by
local regression using a weighted linear least squares and



a 2nd degree polynomial model (the LOESS method of
MATLAB’s smooth function) with window sizes that are
1/30-th of the length of the recorded Mazurka while the
tempo annotations are raw. It is therefore essential to take
this into account, as it has an impact on the position of
points in the 2-simplex and therefore on their interpreta-
tion, as explained in the following sections.

3.2 Representing Mazurka Performances in
2-Simplices

As described in Section 2.1, the rhythm simplex repre-
sents a three-interval rhythm as a unique point in a 2-
dimensional plot. The use of the rhythm 2-simplex must
therefore be applied to rhythm data that can be split into
groups of three intervals, which is not the case for any
general temporal data. However, Chopin’s Mazurkas is
particularly well suited to rhythm simplex representation
because Mazurkas are folk dances mostly in triple meter,
i.e., they are mostly pieces with three beats in each bar. On
very rare occasions, some of Chopin’s Mazurkas may con-
tain bars that are not in triple meter, in which case these
bars are removed from the analysis. Otherwise, the three
beats can be seen as three intervals which have equal du-
ration in the score but whose time is rendered differently
in performance. Therefore, a bar of a performed Mazurka
can be mapped into the rhythm simplex as a single point.
By viewing the recording of a Mazurka as a sequence of
performed three-beat bars, we can represent the recording
by a set of points in the rhythm simplex. The rhythm sim-
plex can show not only the timing variations in each bar,
it can also display the beat accentuation because the loud-
ness data of each beat of a three-beat bar can also be rep-
resented in a 2-simplex. For Mazurkas beginning with an
anacrusis, we ignore the notes that come before the first
full bar of music. Therefore, the essential expressive fea-
tures of the musical performance of the Mazurkas can be
visualized using 2-simplices because most of the bars have
three beats.

4. THE METHOD TO REPRESENT MAZURKA
PERFORMANCES IN 2-SIMPLICES

In this section, we give the transformation that we use
to convert three-interval information into points in the 2-
simplex. For the information related to rhythm, we prove
that using inter-beat intervals or using tempo are equiva-
lent in the 2-simplex representation. For the information
related to loudness, we introduce the loudness simplex and
explain how smoothing the data impacts the coordinates in
the simplex.

4.1 Computing Points in the 2-Simplex

Previous articles on the rhythm simplex (see Section 2.2)
have not explicitly provided the transformation to map a
three-interval rhythm to a point in the rhythm simplex.
Here, we provide the transformation we use to convert
three-interval information to a point in 2-simplex.

First, we fix the vertices of the 2-simplex on the unit cir-
cle, i.e. the vertices are (0, 1), (

√
3
2 ,− 1

2 ), and (−
√
3
2 ,− 1

2 )
(which are represented in Figure 1(b) by the top vertex,

the bottom right vertex, and the bottom left vertex, respec-
tively). In this case, the middle of the triangle is at the
origin (0, 0) (represented by point B in Figure 1(b)).

Let B = (b1, b2, b3) represent some properties of a three-
beat bar such that b1 + b2 + b3 = 1, where b1, b2, and b3
are three positive numbers. The corresponding point (x, y)
in the 2-simplex is defined by:

x =

√
3

2
−

√
3

2
b3 −

√
3b1, (1)

y =
3

2
b3 −

1

2
. (2)

Reciprocally, given a point (x, y) in the 2-simplex, the cor-
responding bar B = (b1, b2, b3) is defined by:

b1 =
1

3
− 1√

3
x− 1

3
y, (3)

b2 =
1

3
+

1√
3
x− 1

3
y, (4)

and b3 =
1

3
+

2

3
y. (5)

This defines a bijection between the 2-simplex and a nor-
malized feature of the three-beat bars.

4.2 Inter-Beat Intervals and Tempo Data in the
2-Simplex

To represent a recorded Mazurka performance (or any per-
formed piece in triple time) in the rhythm simplex, we
compute inter-beat intervals from the beat onset informa-
tion in the MazurkaBL. This gives us the duration of each
beat, (d1, d2, d3), in a bar. We scale this vector so that
the elements sum to one to get (b1, b2, b3), where bi =

di

d1+d2+d3
for i = 1, 2, 3. The normalized durations in that

bar then map to a point in the rhythm simplex according
to Equations 1 and 2. In this way, we map the performed
beat durations of all bars to the rhythm simplex. For ex-
ample, in Figure 2, the different interpretations of the first
four bars of Mazurka 6-1, obtained from the MazurkaBL
dataset, are represented in the rhythm simplex. In this case,
the first note is not considered, as Mazurka 6-1 begins with
an anacrusis. Each point in a rhythm simplex corresponds
to an interpretation of a bar, where the temporal deforma-
tion of the three beats (d1, d2, d3) can be visualized. We
can notice that all the performers follow a similar path. For
instance, for the first bar, all points tend to be on the left in
the simplex (meaning a long first beat and a short second
beat). Whereas on the second and fourth bars, the points
are on the right in the simplex (meaning a short first beat
and a long second beat). Finally, for the third bar, inter-
pretations are on average more regular as the points are
concentrated in the middle of the simplex.

Previous studies on Mazurkas use tempo data rather than
duration data. To generate comparable results, we can
also compute the respective beat-to-beat tempo of a bar
(t1, t2, t3) with ti = 60/di for i = 1, 2, 3, and normalize
the values for mapping to a 2-simplex. However, which
data should we choose: inter-beat intervals or tempo? We
show with the following proposition that the points in the
2-simplex based on inter-beat intervals or tempo data have
approximately the same coordinates up to one symmetry
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Figure 2. Visualization of different interpretations of the first four bars of Mazurka 6-1 in the rhythm simplex. Each point in a rhythm simplex corresponds
to the interpretation of a bar by a performer, where the temporal deformation of the three beats of the bar is visualized.

with respect to the origin. This proposition shows that
the choice of tempo or duration does not matter in the 2-
simplex representation.

Proposition. Let (d1, d2, d3) denote three inter-beat in-
tervals of a bar and (x, y) the corresponding point in the
2-simplex. When (x, y) is close to the origin, the 2-
simplex mapping of the beat-to-beat tempo of the same bar
(t1, t2, t3) is approximately (−x,−y).

Proof. Let d = d1 + d2 + d3 and bi =
di

d for i = 1, 2, 3.
Now, normalize the vector (t1, t2, t3) and find its coordi-
nates (xT , yT ) in the 2-simplex.
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(
1
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,
1
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,
1
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)

=
1

b2b3 + b1b3 + b1b2
(b2b3, b1b3, b1b2)

with (b1, b2, b3) expressed with x and y as shown in Equa-
tions 3, 4 and 5. The vector (d1, d2, d3) represents the du-
ration of each beat of a bar. In a performance without large
timing variations, the bi’s are close to 1

3 and (x, y) is close
to (0, 0) in the 2-simplex (i.e. close to point B shown in
Figure 1(b)). When x and y are close to zero, x2, y2, and
xy are negligible. In this case, we get:

b1b2 ≈
1

9
(−2y + 1), b1b3 ≈

1

9
(y −

√
3x+ 1),

b2b3 ≈
1

9
(y +

√
3x+ 1), b2b3 + b1b3 + b1b2 ≈

1

3
.

Applying the transformation in Equations 1 and 2 to the
vector (t1, t2, t3) normalized with the approximations (i.e.

x2, y2, and xy are negligible), we have:

xT ≈
√
3

2
−
√
3

2
(
1

3
(−2y+1))−

√
3(

1

3
(y+

√
3x+1)) = −x,

and
yT ≈

3

2
(
1

3
(−2y + 1))− 1

2
= −y.

To illustrate this result, Mazurka 6-1 performed by
Luisada is represented in a 2-simplex in Figure 3(a) based
on inter-beat intervals, and in Figure 3(b) based on beat-
to-beat tempo. We can see that the point sets are similar in
both figures up to one symmetry with respect to the origin.

4.3 The Loudness Data in the 2-Simplex

Because loudness data are also available in the MazurkaBL
dataset, we extend the rhythm simplex to the representation
of loudness. We define the loudness simplex by consider-
ing the relative proportion of loudness for each beat in a
three-beat bar. This is exactly the same idea as for rhythm;
as we shall see later, it provides additional insights.

Because the loudness data have been smoothed with a
LOESS filter by Kosta et al. [6], the loudness curves as a
function of time tend to be smoother, involving fewer lo-
cal maxima or minima. This has a direct consequence on
the coordinates of the points in the loudness simplex. Fig-
ure 4 shows the triangle of the 2-simplex split into four
regions: two areas, in blue, located at the top right and
bottom left of the simplex; and, two areas, in red, located
at the top left and bottom right. The two blue areas corre-
spond to points in the simplex where the loudness increases
or decreases with time within a bar. At the top right of the
simplex, the elements are increasing, while at the bottom
left they are decreasing. Musically, these areas translate to
bars where the performer has an ascending (top right) or
descending (bottom left) movement within that expressive
property. Conversely, the points in the simplex are located
in the red zone if the second beat is a local minimum or
maximum, which is more seldom seen with loudness data
because the data have been smoothed. Thus, as can be seen
in Figures 6(a) and 6(b), when representing the loudness
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(a) Representation of Mazurka 6-1 performed by Luisada
in the 2-simplex based on inter-beat intervals.
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(b) Representation of Mazurka 6-1 performed by Luisada
in the 2-simplex based on beat-to-beat tempo.

Figure 3. Inter-beat intervals and tempo data represented in a 2-simplex
to illustrate the symmetry with respect to the origin between the two sets
of points.

data in the 2-simplex, the points tend to stay in the blue
area because the data have been smoothed. However, this
does not exclude performance information as we will see
in the rest of this paper. Note that this reasoning applies to
any type of smoothed data projected into a 2-simplex.

5. ANALYSIS AND INTERPRETATION OF
MUSICAL EXPRESSIVITY USING THE

SIMPLICES REPRESENTATION

In this section, we present analyses and interpretations that
can be derived from the simplices representation. This in-
cludes visualizing tipping points (here realized as time sus-
pensions) introduced by the performer, defining the regu-
larity of a performance, and identifying bars that exhibit
notable expressivity.

5.1 Visualize Time Suspensions in the Simplex

Some recorded Mazurkas display musical tipping
points [24] which present as significant temporal sus-

Figure 4. Area in the loudness simplex characterized by an increasing
loudness curve (in blue) or local maxima or minima (in red) in the bar.

pensions. These time elongations may be indicated in
the score as fermatas or may simply be inserted by the
performer. Representing these Mazurka performances in
the rhythm simplex allows these temporal deformations
to be visible. For example, in Mazurka 24-3, bars 10,
22, 46, and 70 are identical and have a fermata marked
and executed on the second beat. Thus, the duration
of the second beat of these bars is significantly longer
than others, making them more important. Therefore,
the points corresponding to these bars are situated at the
bottom right of the rhythm simplex. For example, by
representing Uninsky’s interpretation of Mazurka 24-3 in
the rhythm simplex, we can easily extract these bars as
shown in Figure 5.

These temporal suspensions are present in most interpre-
tations of Mazurka 24-3, so these four points in the bot-
tom right of the simplex are seen in other interpretations as
well. These tipping points [24] allow performers to pause
to highlight certain notes or harmonies to create tension
and anticipation [25]; in the case of Figure 5, it is the high-
est note of the bar on the second beat.

Figure 5. Temporal suspensions of the second beat of bar 10, 22, 46,
and 70 of Mazurka 24-3 indicated as fermatas in the score (frame on the
right) and visualized in Uninsky’s interpretation by isolated points in the
bottom right of the rhythm simplex.



5.2 Characterizing the Regularity of a Performance
Using the Simplices Representation

During a music performance, some performers allow
themselves greater latitude in their temporal and loudness
variations than others. However, quantifying these vari-
ations to define the regularity of a performance is not
easy [8]. If a performer chooses to always accentuate the
first beat of each bar, the performance could be described
as regular, even though the differences in tempo and vol-
ume per beat can be large during the piece. Therefore, it
is not sufficient to characterize the regularity of a perfor-
mance by the sum of the deviations per beat from the aver-
age of tempo and loudness. Hence, we propose to quantify
the regularity of a performance using the 2-simplices. To
get an intuition about this, see Figure 6(a) where the points
are very dense in the loudness simplex meaning that the
loudness variations are very regular. On the other hand,
in Figure 6(b), the points are more spread out because the
loudness varies less regularly.
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(a) Small area of the ellipse in the loudness simplex
from Kapell’s interpretation of Mazurka 6-2 indicating
an interpretation with regular loudness.
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(b) Large area of the ellipse in the loudness simplex
from Ohlsson’s interpretation of Mazurka 6-2 indicat-
ing an interpretation with non-regular loudness.

Figure 6. Example of regular and non-regular performed loudness shown
by a small and a large ellipse area in the loudness simplex. Kapell’s el-
lipse area is three times smaller than Ohlsson’s, pointing to greater loud-
ness regularity.

We propose to define the regularity of a performance
from the covariance matrix of the points in the 2-simplex
as follows. Let (xi, yi)1≤i≤n denote the points in the sim-

plex and Σ their covariance matrix:

Σ =

(
Cov(X,X) Cov(X,Y )
Cov(Y,X) Cov(Y, Y )

)
,

where X = (xi)1≤i≤n, Y = (yi)1≤i≤n,

x̄ =
1

n

n∑
i=1

xi,

ȳ =
1

n

n∑
i=1

yi,

and Cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ).

Let λ1 and λ2 denote the eigenvalues of Σ. They define an
ellipse 2 , whose semi-axes lengths are

√
λ1 and

√
λ2. The

orientation is derived from Σ as well, but not involved in
the regularity computation. We define the regularity value
of a performance as the inverse of the area of that ellipse.

Since the area of an ellipse is equal to the multiplication
of π by the length of the semi-major and the semi-minor
axes, it is easy to compare the regularity of two perfor-
mances in the 2-simplex. Using the example in Figure 5,
Kappel (λ1 and λ2 as eigenvalues) is 2.995 times more
regular than Ohlsson (λ′

1 and λ′
2 as eigenvalues) because√

λ′
1λ

′
2/
√
λ1λ2 = 2.995. This reasoning can be applied

across interpretations to other expressive features like beat-
level tempo and duration.

5.3 The Most Distant Points in the Simplex Indicate
Bars with Notable Musical Expressivity

The ellipses described in the previous section correspond
to points having the same Mahalanobis distance to the
center [26]. Distinct from Euclidean distance, the Ma-
halanobis distance takes into account the distribution of
points in the simplex. Given two points (x1, y1) and
(x2, y2) in the 2-simplex, the Mahalanobis distance is de-
fined by:

d

((
x1

y1

)
,

(
x2

y2

))
=

√(
x1 − x2

y1 − y2

)T

Σ−1

(
x1 − x2

y1 − y2

)
.

This distance is useful in our case because there is often
a correlation between the coordinates of the points in the
simplex, in particular, for points in the loudness simplex,
the x coordinate increases when the y coordinate increases
(but the reasoning is also correct for the rhythm simplex).
For example, in Figure 6, the points are aligned in the sim-
plex because the loudness data have been smoothed, as de-
tailed in Section 4.3. In this case, the Mahalanobis dis-
tance allows us to give more importance to the points that
do not follow this alignment. Thus, the points with a high
distance value compared to the average are the bars that
present a strongly divergent musical expressivity accord-
ing to the simplex feature. For example, we can identify
the temporal elasticity in the interpretation of Mazurka 24-
3 by Uninsky which is represented in the rhythm simplex
in Figure 5.

2 We used the matplotlib package https://matplotlib.org/
stable/gallery/statistics/confidence_ellipse.
html, with the default setting n std=3.0, for the ellipses in Figure 6.

https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html
https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html
https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html


We computed the Mahalanobis distance between each
simplex point and the mean and plotted the result in Fig-
ure 7. Bars that have an extreme time elongation on the
second beat, i.e. bars 10, 22, 46, and 70 of Mazurka 24-
3 represented by the four points at the bottom right of
the rhythm simplex in Figure 5, are located almost at the
end of each A section and have a high distance value due
to their divergent interpretation as compared to other bars
(Figure 7). Thus, by considering the maximum values of
the Mahalanobis distance between the simplex points and
their mean, we can detect the bars that have a notable ex-
pressive variation. For example, in Figure 7, bars 34 and
57 also have a high distance value because the first beat is
considerably longer than the other two, which can be seen
in the top corner of the rhythm simplex in Figure 5.
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Figure 7. Mahalanobis distance between the points of Uninsky’s inter-
pretation of Mazurka 24-3 in the rhythm simplex shown in Figure 5. High
distance values are bars with notable expressive variations. For example,
bars 10, 22, 46, and 70 have high distance values because their second
beats are elongated, while bars 34 and 57 have their first beats elongated.

6. CONCLUSION

In this paper, we proposed a novel method to represent
performed music using beat duration, tempo and loud-
ness simplices. We analyzed the MazurkaBL dataset us-
ing these simplices. MazurkaBL contains more than 2000
recorded performances of 46 of Chopin’s Mazurkas with
annotations of beat level tempo and loudness values. We
provided the equations to map any bounded three-interval
information into the 2-simplex. We proved that the choices
of inter-beat intervals or tempo are nearly equivalent in the
2-simplex up to one symmetry with respect to the origin.
We also explained the impact of smoothed data in the 2-
simplex. Finally, we showed that the simplices facilitate
the analysis and interpretation of music expressivity fea-
tures. For example, by using the Mahalanobis distance, it
is possible to identify bars with notable expressive varia-
tions such as temporal tipping points or to specify the reg-
ularity of a performance.

However, this method has some limitations. Firstly, the
duration or loudness of each bar is normalized. As a re-
sult, information on the total duration or loudness of each
bar is not available, i.e. only the proportional distribution
of durations and loudness are shown. This means that two
points with the same coordinates in the simplex might be
two bars of completely different overall loudness or du-
ration. For example, if the three beats of a bar are played
equally fast or slow, the corresponding point is at the center

of the rhythm simplex. Thus, this method is more appropri-
ate for analyzing performance expressivity at the bar level.
Nevertheless, we believe that variations on the scale of a
musical phrase should also be considered. The bars corre-
sponding to the beginning and end of the phrase are points
distant from the center of the simplex, as they have increas-
ing or decreasing tempo or loudness values. Whereas the
bars in the middle of the phrase are bars with small varia-
tions in loudness or tempo, i.e. points in the center of the
simplex. Another limitation of this method is that it can
only be applied to three-interval data. While this approach
is appropriate for the MazurkaBL dataset, which comprises
of music pieces in triple time, it may not be suitable for
more general types of data. However, since the Mazurk-
aBL is the largest existing annotated dataset of performed
music, we believe that developing tools like the 2-simplex,
even if these methods are not applicable to all types of data,
is crucial for analyzing and gaining a better understanding
of music performances.

For future research, it would be valuable to study the
movement of points within the simplex over time, in or-
der to identify the trajectories of a section of music within
the simplex and to capture the variation in interpretations
amongst several performers. This would be useful to gen-
erate or modify performances by moving points in the 2-
simplex and to identify the musical structure of a piece by
knowing the trajectory patterns corresponding to the inter-
pretation of sections. Finally, we expect that the devel-
opment of methods based on formal mathematical repre-
sentations, such as the 2-simplex in this paper, holds great
promise for facilitating a more comprehensive analysis and
understanding of musical performance.
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