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Abstract: In the framework of electromechanical energy conversion devices for vibrational energy
harvesting, magnetostrictive materials are an attractive alternative solution to the brittleness of
piezoelectric materials. Electromagnetic systems have low voltage output at a low frequency while
magnetostrictive materials are suitable for a larger frequency bandwidth. In this work, a special
experimental emphasis is placed on Fe80Si9B11 (also known as Metglas 2605SA1) alloy. The ultimate
energy conversion abilities are investigated by performing experimental Ericsson cycles as well as
through theoretical predictions using a dedicated model for the magnetic curves at the material scale.
Typical output magnetic energy densities ranged between 0.1 and 1 mJ/cm3/cycle under moderate
stress (<100 MPa) and magnetic excitation (up to 4 kA/m). Apart from its energy conversion abilities,
Metglas 2605SA1 also features attractive characteristics for realistic applications in microgenerators,
such as a low price, which is an important advantage for the mass production and cost-effectiveness
of the harvester. Furthermore, its soft magnetic property reduces the need for high magnetic fields
and yields a well-adapted solution from a system point of view. It is therefore shown that this material
is a suitable conversion material according to the available stress and magnetic excitation magnitudes,
in addition to economic considerations.

Keywords: energy harvesting; magnetostrictive; Metglas 2605SA1; Ericsson cycle

1. Introduction

The number of wireless sensors and sensor networks is increasing with the rapid
growth of the Internet of Things [1]. Powering such devices typically relies on primary
batteries, leading to a short lifespan due to self-discharge, for instance [2], which becomes
even more critical than the actual used energy. In this framework, energy harvesting
systems are a great alternative to batteries and their associated drawbacks, such as envi-
ronmental concerns, in the framework of self-powered sensors and sensor networks [3].
The harvester could be classified according to the energy source [4] and corresponding
conversion material, such as magnetostrictive alloys for vibrational sources, thermoelectric
modules for thermal energy [5,6], and photovoltaic cells for solar sources [7]. Among the
available energy sources, vibrations remain one of the most attractive options due to their
ubiquity, availability even in confined environments, and good power densities [8]. A com-
plete electromechanical energy harvesting system [9] consists of three main components:
conversion material [10], mechanical structure [11,12], and electrical interface [13].

From the conversion material [14] point of view, most of the existing vibrational energy
harvesters use piezoelectric, magnetodynamic, or magnetostrictive coupling [15]. Piezoelec-
tric materials are interesting because of their significant voltage output and active nature,
but they also show several disadvantages such as potentially high voltage, low current,
and high impedance at low frequency, typical to vibrational systems [16]. On the other
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hand, magnetodynamic systems show several shortcomings such as low voltage output
and predominant resistive losses at low frequencies. Magnetostrictive materials allow
addressing such issues due to stress-dependent magnetic characteristics. The solid-state
aspect of the magnetomechanical coupling in magnetostrictive materials also yields more
compact devices compared to magnetodynamic systems, as the latter requires significant
dimensional changes to allow the conversion to take place.

Joule discovered the effect of magnetostriction in 1842 [17], consisting of a change
in the sample shape when subjected to a magnetic field. Villari [18] observed the inverse
magnetostrictive effect, where the sample magnetization changes when mechanical stresses
are applied to it. Energy harvesting systems using magnetostrictive materials exploit the
Villari effect [19] and convert the variation of the mechanical excitation during vibration
into a change in magnetic flux density, therefore inducing currents in the coils around the
specimen.

The magnetization of ferromagnetic material in response to an applied magnetic
field originates from two related mechanisms [20]: the domain wall motions, and the
rotation of magnetic moments within domains towards the field direction. The effect
of magnetostriction and inverse magnetostriction could be mostly explained, as a first
approximation, by the rotation of magnetic moments [21]. Generally, in a magnetostrictive
specimen, numerous magnetic domains exist, each having a local magnetization while
the total magnetization of the material is the sum of each local contribution. As depicted
in Figure 1, in the initial state, all the domains are assumed to be randomly distributed,
yielding a null magnetization. In an energy harvesting process, the application of a bias
magnetic field first leads to a rotation of magnetic moments [22] following the magnetic
force and makes the sample longer. When a tensile stress is superimposed along the same
direction, the sample becomes elongated, and the magnetic domain continues rotating.
This external tensile stress is imposed through mechanical excitation. The magnetic flux in
the specimen then varies with the rotation of the magnetic domains.
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Figure 1. Mechanisms during the process of magnetization. (a) Sample in initial state, (b) Sample in
the bias magnetic field, (c) Sample in the bias magnetic field under tensile stress.

Materials such as Terfenol-D [23] and Galfenol [24] have been extensively used in mag-
netostrictive energy harvesters, along with Fe–Co alloys [25] and Metglas 2605SA1 [26,27]
to some extent. Terfenol-D and Galfenol are among the materials with the highest en-
ergy conversion potential and are commercially available [28]. Terfenol-D is brittle under
tension [29] but shows higher admissible compressive stress around 300–880 MPa [30].
Hence, this material is usually used in harvester systems in the shape of rods and mainly
works under compressive stress. Galfenol is usually used in unimorph or bimorph can-
tilevers. However, the costs of Galfenol and Terfenol-D remain too prohibitive for them
to be considered realistic constituents of energy harvesters aiming at replacing batteries.
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Hence, the question behind the actual and realistic use of magnetostrictive materials as
microgenerators lies in finding a cost-effective solution with decent performance.

As listed in Table 1, Metglas 2605SA1 is a soft magnetic material saturating at 500 A/m
with a magnetostrictive coefficient of 41 ppm [31], both being much lower than Galfenol
and Terfenol-D. However, its much lower price, around 100 EUR/kg [32] compared to
10,000–20,000 EUR/kg for Terfenol-D and 5000–10,000 EUR/kg for Galfenol [33], makes the
mass production and cost-effectiveness possible with respect to battery-powered solutions.
To be considered as a conversion material, the intrinsic conversion abilities of such materials
should be investigated independently of the structure. Therefore, the conversion ability of
Metglas 2605SA1 was measured experimentally and estimated by a biphasic model in this
study. Then, Ericsson cycles [34] were assessed on Metglas 2605SA1 foils under different
stresses. The Ericsson cycle, in the case of magnetostrictive energy harvesting process,
includes two constant stress paths and two iso-magnetic field paths. The constant stress
path can be simplified to the unipolar anhysteretic BH curves in this study as explained in
Section 3. Therefore, it can easily be assessed from magnetic characterization and models,
while being quite easy to achieve experimentally. The Ericsson cycle can also give a formal
and clear basis for comparison purposes in terms of energy conversion abilities, as the
area enclosed by the cycle represents the converted energy under a given stress level and
magnetic conditions.

Table 1. Characteristics of different magnetostrictive materials used for energy harvesting.

Materials Magnetostriction Saturation
Magnetic Field

Range of Bias
Magnetic
Excitation

Price
1000 EUR/kg

Galfenol 400 ppm [35] 20 kA/m
3.58 kA/m [36]

5–10 [33]
40 kA/m [37]

Terfenol-D 1100 ppm [38] 10 kA/m 24 kA/m [28] 10–20 [33]

Metglas 2605SA1 41 ppm [31] 0.5 kA/m <1 kA/m [39] 0.1 [32]

In this work, the experimentally measured energy densities obtained by performing
the Ericsson cycle were compared with the predicted results from a dedicated model to
evaluate the energy conversion capabilities of Metglas 2605SA1. Results confirmed the
validity of the model along with the relevance of Metglas for energy harvesting applications.
We also give the orders of magnitude of the converted energy density under various
excitation magnetic fields and applied mechanical stresses, yielding insights with respect
to conventionally used materials. The paper is organized as follows: Section 2 describes
the experimental methods for determining the magnetic properties, and Section 3 gives the
energy conversion using Ericsson cycles, followed by the conclusions.

2. Magnetic Behavior

As a first step towards the investigation of the energy conversion abilities of Metglas,
this section aims at assessing the magnetic responses of the considered material, along with
the development of a theoretical framework to predict the energy conversion performance.
Starting from the experimental characterization of Metglas 2605SA1, a model is thus
proposed to predict the ultimate energy conversion capability.

2.1. Experimental Setup

The variation of the magnetic flux density (B) when applying an excitation magnetic
field (H) was measured with a dedicated test bench. Measurements under several constant
tensile and compressive stresses were performed. The schematic of the setup is shown
in Figure 2. The magnetic excitation part was composed of two U-shaped yokes, the
considered sample, and two coils. The U-shaped yokes ensured the closing of the magnetic
circuit to maximize the magnetic flux density in the sample. The primary coil of 110 turns
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was wound on the two yokes separately and equally (55 turns each) and ensured the
generation of the magnetic excitation from an electrical input. A sinus excitation voltage
was generated by a waveform generator (TEKTRONIX AFG1062) and amplified through
an amplifier (YOKOGAWA 7058). To obtain the value of the current in the primary coil
(and thus the applied magnetic excitation level), a resistance of 20 Ω was connected in
series with the coil. A second sensing coil of 500 turns was also wound around the Metglas
2605SA1 sample to measure the induced magnetic flux density in the material through the
coil voltage using an acquisition system (DEWESoft SIRIUSi). From the measured current
through the resistance and the voltage across the sensing coil, the magnetic excitation H and
flux density B could be derived from Equations (1) and (2), where NP and NS, respectively
represent the number of turns of the primary coil and the number of turns of the sensing
coil, I the current through the primary coil, l the length of the sample, S the cross-section of
the sample, and U the voltage measured across the sensing coil.

H =
NP I

l
(1)

B =
1

NSS

∫
Udt (2)
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Figure 2. Main circuit of the measurement setup.

In the case of tensile stress, the complete structure of the tensile setup is depicted
in Figure 3. The sample consisted of five layers of 25 µm thick Metglas 2605SA1 foil cut
with dimensions of 13 mm × 60 mm and glued together with acrylic resin leading to a
much lower cross-section than that of the yoke (37 mm × 13 mm), in order to reduce the
magnetic flux leakage. The mechanical stress was applied equally on both sides of the
sample through cables. The application of the displacement was carried out using actuators
(MISUMI RSDG306) that were controlled by MATLAB simultaneously through a dedicated
controller (MISUMI EXRS-C1). This displacement was then converted into tensile stress by
the cables. A force sensor (RS Pro 204-2773) was connected with a strain gauge converter
(WACHENDORFF Z-SG, Italy) to measure the real time mechanical input. In this study,
the magnetic characteristics under tensile stress of 0 MPa, 6 MPa, 18 MPa and 30 MPa
(corresponding to 0 N, 10 N, 30 N and 50 N, respectively) were recorded.
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This setup was also used for measuring magnetic hysteresis response curves under
compressive stress as depicted in Figure 4. This was achieved through slight modifications
of the tensile testbench by adding 3D printed components, springs, and linear guides. The
linear guides were added to ensure that the forces on both sides are on the same horizontal
line. Two 3D printed cylinders were added between the sample and the linear guides
to isolate the magnetic field. The addition of the springs allows the displacement of the
actuators to be converted into the corresponding compression. In the compressive case,
the characterization is performed under the same but opposite force, i.e., 0 MPa, −6 MPa,
−18 MPa, and −30 MPa, with the positive and negative sign denoting the tensile and
compressive stress application, respectively.
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2.2. Result and Discussion

Firstly, the anisotropy of Metglas 2605SA1 was assessed. The sample denoted “A”
was cut in RD (rolling direction) and the one denoted “B” in TD (transverse direction).
Both samples were made of a single layer, which increased the stress level to 60 MPa. The
characterization result presented in Figure 5 showed a negligible anisotropy. Therefore, the
sample mentioned in the following discussion is the sample cut in RD.
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Figure 5. Tensile stress influence on characterization of sample A (rolling direction) and sample B
(transverse direction).

The measurements of magnetic hysteresis curves of Metglas 2605SA1 under different
compressive and tensile stresses are depicted in Figure 6. These results demonstrate that
the coercive field showed low sensitivity to the tensile stresses, and, considering the range
of applied magnetic excitation field, could be considered negligible. The results also
highlight that the hysteresis behavior has a limited impact on the enclosed area between
two curves corresponding to different stresses. Overall, the Metglas experiences a very
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limited hysteresis effect over the full stress range. Therefore, the hysteresis effect of the
materials is ignored in the following discussion.
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It could be noted that Metglas 2605SA1 showed a non-negligible linear part in the
considered magnetic excitation range. In particular, the tensile stress increased the slope
around zero flux density point while the compressive stress apparently decreased the
slope. To put it another way, the elongation (resp. contraction) of the sample yielded an
increase (resp. decrease) of the low-regime permeability, in accordance with the physical
mechanisms behind magnetostriction. This low-field equivalent permeability thus ranged
from 600µ0 for a stress of −30 MPa to approximately 8000µ0 for 30 MPa. At zero stress, this
permeability was around 5000µ0. As shown in Figure 6, at the same magnetic field level,
the induced magnetic flux variation caused by compressive stress was twice that of the
one caused under tensile stress. Hence, in terms of relative variation, compressive stress
showed higher magnetostrictive activity than tensile stress. Therefore, the effect of stress
on the variation of magnetic flux density is not linear, which has also been observed in
other materials such as FeCo-2V [40] and FeSiNO [40].

While strong nonlinearity in the form of the hysteresis effect is not considered, as it
could be considered negligible, soft nonlinearities arose as the magnetic responses started
saturating above 500 A/m. Similarly, the application of tensile stress tended to widen the
range of excitation field where the response can be considered linear. Such a behavior is
again consistent with the previously exposed physical effects, as application of tensile (resp.
compressive) stress yields a rotation of magnetic domains so that they are in the same (resp.
perpendicular) axis as that of the applied field. Yet, no clear and pronounced saturation
was observed in the range of the excitation field of interest. Unsurprisingly, the results
also demonstrate a trade off between low-excitation field equivalent permeability and
the wideness of the linear zone. Noticeably, the magnetization tended to converge for all
mechanical stresses for excitation fields around 4 kA/m. While such results are qualitatively
predictable, as the fully saturated magnetic state is independent from mechanical excitation,
these results give relevant quantitative considerations for practical application. Indeed,
this results in a closed Ericsson cycle, so that the ultimate energy density under a constant
stress would not change even with a higher stress level. Therefore, for Metglas 2605SA1, a
higher magnetic field than 4 kA/m is unnecessary.

From these measurements and observations, a model was developed as this investiga-
tion focuses on the characterization and prediction of energy density under different stress
levels. Among the available modeling possibilities and considering the material charac-
teristics (effect of stress and negligible hysteresis among others), we consider a simplified
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anhysteretic model based on a thermodynamic approach presented by Agayan in [41] to
relate the magnetic behavior of the considered material. This model focuses more on a
mathematical formulation rather than a phenomenological approach, which allows describ-
ing the physical meaning of each variable as well as highlighting potential interconnections
in the different physical mechanisms. Furthermore, due to the soft magnetic behavior of
the Metglas 2605SA1, a biphasic function with an inverse hyperbolic tangent and a linear
part is used to describe the sigmoid curves. Therefore, a model that unifies the compressive
and tensile excitation is proposed. This biphasic unified model is defined as follows:

B =

{
2

∑
i=1

αi
2
π

arctan[βi H((1 + tan h(γi·σ))]
}
+(µ − κ ·σ)H (3)

where αi represents the saturation magnetic flux density of a single phase, βi the small-
signal slope of the nonlinear part for the considered phase (2αiβi/π thus being the linear
permeability of the corresponding nonlinear phase i under zero stress), µ the zero-stress
permeability of the linear part, and γi and κ are the magnetostrictive coefficients of the
nonlinear and linear phases, respectively. As Metglas 2605SA1 shows a soft saturation at a
low magnetic field, two functions of B were combined (biphasic model, i = 1 . . . 2). Each
phase can relate different magnetization mechanisms or different magnetization dynamics,
for example, arising from domains of different sizes. Based on previous experimental
measurements for Metglas 2605SA1, a curve fitting process was carried out. When sep-
arating tension and compression cases, a dedicated parameter set was defined for each
case, considering the soft nonlinearity (i.e., saturation) on the magnetic flux variation. This
model provides a precise prediction for both cases as shown in Figure 7. The corresponding
parameters of the model separating tensile and compressive stress are given in Table 2.
However, separating compressive and tensile cases would yield a loss in the physical
significance of the parameters and in terms of the simplicity of the model. Therefore,
the parameters of another fitting process considering a model taking into account both
tension and compression conditions are also given in Table 2 and presented in Figure 7.
It can be noticed that both models give very similar results and are in good agreement
with experimental measurements. Because of its better physical significance and good
agreement with experiments, the unified model is considered in the following.
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Table 2. Parameters of the model separating tensile and compressive stress and the common model.

Model Separated Model
(Tensile)

Separated Model
(Compressive) Unified Model

Phase i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

α (T) 0.4997 0.9375 0.1741 1.091 0.4464 0.9991

β (m·A−1) 24.9 × 10−3 2.6 × 10−3 10.6 × 10−3 6.8 × 10−3 1.227 × 10−3 11.04 × 10−3

γ (Pa−1) 3 × 10−8 4.99 × 10−8 27.95 × 10−8 3.765 × 10−8 2.940 × 10−8 4.329 × 10−8

µ (T·m·A−1) 7.253 × 10−5 11.33 × 10−5 7.817 × 10−5

κ (T·m·A−1·Pa−1) 7.305 × 10−15 1.879 × 10−12 1.566 × 10−13

Considering the equivalent low-field permeability µlin derived from Equation (3) as:

µlin =

{
2
π

2

∑
i=1

αiβi[1 + tan h(γi·σ)]
}
+(µ − κ·σ) (4)

the theoretical low field equivalent permeability value was found to be 5900µ0, 900µ0,
and 10,000µ0 for the respective cases of stress free, compressive (−30 MPa), and tensile
(30 MPa) stresses, respectively. Such values are in quite good agreement with the previous
measurements, preliminarily confirming the relevance of the model. Additionally, the
saturation magnetic flux density, given as α1 + α2, equals 1.45 T, being also in the right
range of magnitude of experimentally observed maximal flux density.

Further investigations on the model consisted of assessing the response over the full
considered magnetic excitation range. Modeling results and comparisons with experiments
are depicted in Figure 7 for Metglas 2605SA1. As previously noted, the experimental
magnetic flux density as a function of the magnetic excitation (B(H) curves) shows a limited
hysteretic behavior, confirming the anhysteretic modeling approach. It can be noted that
the unified model encompassing both tensile and compressive stresses could fit well with
the experiment results, not only for the linear part in the low magnetic field range but also
considering the saturation part for higher magnetic field levels. Finally, a good agreement
between experimental and modeling results can also be observed as the stress is varied,
although some slight discrepancies can be observed in the mid-field region at the maximal
tensile stresses of 18 MPa and 30 MPa, as well as for −18 MPa compressive stress, and at
high excitation values for the maximal tensile stress value of −30 MPa. However, these
discrepancies are rather limited, so that the proposed unified model provides a relevant
theoretical framework for the energy conversion ability assessment of Metglas.

3. Energy Harvesting Application

Based on the previous measurements on Metglas 2605SA1 and the general theoretical
framework exposed in the previous section, this part proposes to investigate the energy
conversion potential of such a material for energy harvesting applications using Erics-
son cycles.

3.1. Principles of the Energy Harvesting Process

The estimation of the harvestable energy is based on Ericsson-like thermodynamic
cycles depicted in Figure 8, with iso-field (D-A, B-C) and iso-stress (A-B, C-D) steps. For
an Ericsson cycle [42] considering compressive stress, in initial state A, the specimen is
left in an initial state with no magnetic excitation field and no stress, then the magnetic
field is increased to state B (without stress). Afterwards, the stress is reduced to state C at
constant excitation field, and finally, the magnetic field is decreased back to state D. Then,
the removal of the stress at the zero-excitation field leads back to state A. For an Ericsson
cycle considering tensile stress, the same process is performed in the order of A-E-F-B-A.
During the tensile process, the tensile stress is first increased (A-E), then the magnetic field
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is increased to its maximum value at the constant stress level (E-F), after that, the stress
comes back to the initial level (F-B), and finally the magnetic field is decreased to the initial
state A. Both processes lead to cycles in a clockwise direction, denoting the mechanical-to-
magnetic energy conversion process. The theoretical ultimate converted energy from the
material produced in this process could be described mathematically by the area enclosed
in the cycle (shaded part in Figure 8). Therefore, during the process of energy harvesting,
the energy could be maximized by combining the tension and compressive stresses, as
shown in Figure 8; an Ericsson cycle from −30 MPa to 30 MPa could be performed in the
sequence of D-E-F-C-D.
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3.2. Experiment with Metglas 2605SA1

To experimentally demonstrate the energy harvesting applicability of Metglas 2605SA1
and evaluate the considered model’s relevance, the Ericsson-like cycle described in Figure 8
was experimentally implemented. Magnetic excitation consisting of several cycles of square
signals (Figure 9a) was considered. The first period was used for assessing magnetic
hysteresis curves and estimating the hysteresis losses without stress. The second and third
periods actually implemented the Ericsson cycle, as compressive stress was applied to the
sample at the maximum magnetic field (transition from state B to state C in Figure 8), and
removed when the magnetic field reached a minimum value (transition from state D to
state A).

Magnetic hysteresis effect causing energy losses is an important factor in energy cal-
culations. In the case of Metglas 2605SA1, the magnetic hysteresis curves performed a
counterclockwise cycle as shown in Figure 9b, denoting hysteresis losses in one unipolar
cycle, while the Ericsson cycle formed a clockwise cycle confirming the actual energy con-
version process. The small area of the BH curves confirmed that the hysteresis effect could
be neglected in the calculation of the harvested energy. The associated area corresponded
to the harvestable energy in the latter case. The estimated energy density in one unipolar
cycle of Metglas 2605SA1 is presented in Figure 10. This figure confirms that the material
has a larger energy density under compressive stress.
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in a unipolar cycle in the range of 0–4 kA/m.

The developed model was also used to predict the converted energy of the Erics-
son cycle. The estimated harvestable energy under different conditions is presented in
Figure 11. Furthermore, Table 3 shows the converted energy densities calculated from
the experimental Ericsson cycle and the proposed model. The difference between data
and model is usually attributed to hysteresis losses, which might not be related to the
used model (as the one considered in this work). However, the previous characterization
of the Metglas sample revealed a very small hysteresis effect (see Section 2.2), yielding
the conclusion that hysteresis does not play a significant role in the difference between
predicted and measured energy density values. Instead, it has to be noted that the model
of BH curves under different stress levels is fitted with the full bipolar magnetic hysteresis
loops. However, the magnetic field is always positive during the measurement of Erics-
son cycles. This therefore leads to a partial demagnetization and a smaller magnetic loss
than a full cycle. The losses calculated from the bipolar magnetic hysteresis curves under
pressure and tensile stress are all in the order of magnitude of 0.1 mJ/cm3. Therefore, in
the case of −6 MPa, even the predicted result of the energy density is in the same order of
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magnitude as the magnetic losses, and the harvested energy is still positive. In addition,
results indicate that the energy density predicted from the model is in the same order of
magnitude as experimental measurements for both the compressive stress and tensile stress.
Consequently, it is confirmed that the model could predict correctly the energy harvesting
performance.
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Table 3. Experimental validation of the estimated energy density of one unipolar cycle under 4 kA/m.

mJ/cm3

(−30 MPa)
mJ/cm3

(−18 MPa)
mJ/cm3

(−6 MPa)
mJ/cm3

(6 MPa)
mJ/cm3

(18 MPa)
mJ/cm3

(30 MPa)

Experimental 1.18 0.64 0.19 0.04 0.26 0.29

Model 1.36 0.58 0.13 0.09 0.19 0.23

In numerous reported configurations, the dynamic response around a bias field is
considered, and the maximum dynamic excitations of different materials are achieved
in a different magnetic field. The energy harvesting is based on a bias magnetic field
and small variations around it due to reluctance variations resulting from mechanical
stress application or vibrations. Therefore, another important figure of merit lies in the
ratio of ∆B over ∆σ, denoting the magnetostrictive coupling. In [43], the ∆B/∆σ of the
devices using Terfenol-D could reach 0.024 T/MPa. In [44], another energy harvesting
device using Galfenol has a ratio of 0.034 T/MPa. This value of flux density variation of
stress variation for Metglas 2605SA1 is presented in Figure 12. It shows that the optimal
condition is achieved around 100 A/m with a ratio reaching nearly 0.015 T/MPa, about
63% of that of Terfenol-D. This figure demonstrates the interest in using Metglas 2605SA1
in a low magnetic excitation zone while Terfenol and Galfenol usually require bias fields
higher than 20 kA/m, as shown in Table 1, and therefore bulky magnets bringing a large
reluctance to the magnetic circuit. Metglas 2605SA1 is most active at much lower magnetic
excitation field, which is consistent with a realistic implementation of magnetostrictive
microgenerators in addition to cost-effectiveness.
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Figure 12. Comparison of variation of ∆B/∆σ of Metglas 2605 SA1 with the model (a) in the range of
0–4 kA/m and (b) zoomed in on the range of 0–1 kA/m.

4. Conclusions

Due to their robustness and potential electromechanical coupling, magnetostrictive
materials are a competitive solution for vibrational energy harvesters. Yet, their realistic
implementation, mainly due to the material price, as well as the deep understanding of
their conversion efficiency, is still an open question.

In this work, an investigation of a magnetostrictive material Metglas 2605SA1 was
proposed based on a theoretical framework and experimental data because of its low
price (thirty times lower than Galfenol and Terfenol-D) and soft magnetic behavior. The
energy conversion capability was assessed under high levels of mechanical stress and
excitation fields. Results showed that for low magnetic excitation, which is typical in
realistic self-powered implementation using magnets, Metglas 2605SA1 is a premium
choice, showing relatively high converted energy in the range of hundreds of µJ/cm3/cycle
through thermodynamic cycles, and reaching up to 1.2 mJ·cm−3 per cycle for a magnetic
field of 4 kA/m and a compressive mechanical stress of 30 MPa. In addition, in the case
of low-level energy harvesting under magnetically biased conditions, the magnetoelastic
coefficient ∆B/∆σ was found to be at maximum under a very low excitation field of
500 A/m, and with a similar value compared to Terfenol-D.

Hence, while not as widely used as a high magnetostriction material, Metglas 2605SA1
appeared to exhibit a very attractive trade-off between cost and performance while being
highly suitable in realistic applications using low magnetic excitation.
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