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The paper presents the analysis, approximation and numerical realization of 3D contact problems for an elastic body unilaterally supported by a rigid half space taking into account friction on a common surface. Friction obeys the simplest Tresca model (a slip bound is given a priori) but with a coefficient of friction F which depends on a solution. It is shown that a solution exists for a large class of F and is unique provided that F is Lipschitz continuous with a sufficiently small modulus of the Lipschitz continuity. The problem is discretized by finite elements and convergence of discrete solutions is established. Finally, methods for numerical realization are described and several model examples illustrate the efficiency of the proposed approach.

Introduction

The aim of this paper is to analyze, discretize and solve a mathematical model describing 3D contact problems for an elastic body unilaterally supported by a rigid foundation taking into account the influence of friction on contacting parts. We shall consider the simplest model of friction, the so-called Tresca model in which the threshold slip is a priori given (see [START_REF] Duvaut | Grundlehren der mathematischen Wissenschaften[END_REF]). Although this model of friction is in a certain manner unphysical (unilateral and friction conditions are uncoupled) it plays an important role in the numerical realization of the more realistic Coulomb law of friction ( [START_REF] Hlaváček | Solution of variational inequalities in mechanics[END_REF], [START_REF] Kikuchi | Contact problems in elasticity: A study of variational inequalities and finite element methods[END_REF]). In the classical Tresca model the threshold slip is expressed as the product Fg, where g is a non-negative function and F is a coefficient of friction which does not depend on the solution. In some problems, however, F can be of the form F := F( u t ), i.e. the coefficient of friction depends on the magnitude of the tangential contact displacement. The paper deals just with this case. The same 2D problem has been already studied in [START_REF] Haslinger | Signorini problem with a solution dependent coefficient of friction (model with given friction): Approximation and numerical realization[END_REF]. Its extension to the 3D-case, however, is not straightforward, in particular as far as the numerical treatment is concerned. Indeed, the Lagrange multipliers regularizing the frictional term are now subject to quadratic constraints so that the resulting minimization problem involves quadratic constraints, as well. The theoretical analysis of discrete contact problems with Coulomb friction and a coefficient depending on the solution which is based on a penalization and regularization approach is presented in [START_REF] Hlaváček | Finite element analysis of a static contact problem with Coulomb friction[END_REF].

The paper is organized as follows: Section 2 presents the classical and weak formulation of our problem. The existence result which is based on a fixed-point reformulation of the problem is established in Section 3. It is shown that there exists at least one solution for any continuous and bounded coefficient of friction F. In addition, the solution is unique provided that F is Lipschitz continuous with a sufficiently small modulus of the Lipschitz continuity. A finite element approximation is studied in Section 4 together with convergence of discrete solutions. The method of successive approximations serves as a main tool for numerical realization of this problem. In Section 5 we describe an efficient way of solving one iterative step which is represented by a contact problem with the Tresca model of friction with a coefficient of friction which does not depend on the solution. Finally, results of several model examples are shown in Section 6.

Throughout the paper we use following notation: x , x ⊤ y stands for the Euclidean norm of a vector x ∈ R 3 , the scalar product of x, y ∈ R 3 , respectively. By H k (Ω), H k (Γ), k a non-negative integer, Γ ⊆ ∂Ω we denote the classical Sobolev spaces of functions defined in Ω, Γ with the norms . k,Ω , . k,Γ , respectively. Further, |.| k,Ω , |.| k,Γ are the corresponding seminorms. If X is a Banach space then the Cartesian product (X) 3 and its elements will be denoted by bold letters. Norms and seminorms in X are introduced in a standard way.

Setting of the Problem

Let us consider an elastic body occupying a bounded domain Ω ⊂ R 3 with Lipschitz boundary ∂Ω which is split into three open, non-empty, non-overlapping parts Γ u , Γ p and Γ c such that ∂Ω = Γ u ∪ Γ p ∪ Γ c . The zero displacements are prescribed on Γ u while surface tractions of density p = (p 1 , p 2 , p 3 ) ⊤ ∈ L 2 (Γ p ) act on Γ p . The body is unilaterally supported by a rigid foundation S along Γ c . For the sake of simplicity of our presentation we shall suppose that S is the half-space R 2 × R 1 -and there is no gap between S and Ω for the undeformed configuration. Besides unilateral constraints imposed on the deformation of Ω on Γ c , we shall take into account effects of friction represented by the model with given friction in which a given slip bound g is multiplied by a coefficient of friction F which depends on the norm of the tangential component of the displacement vector on Γ c . Finally, the body is subject to volume forces of density f = (f 1 , f 2 , f 3 ) ⊤ ∈ L 2 (Ω). Our aim is to find an equilibrium state of Ω. (equilibrium equations)

∂τ ij ∂x j (u) + f i = 0 in Ω , i = 1, 2, 3 ; (2.1)
(kinematical boundary conditions)

u i = 0 on Γ u , i = 1, 2, 3 ; (2.2) (static boundary conditions) T i (u) = p i on Γ p , i = 1, 2, 3 ; (2.3) (unilateral conditions) (2.4) u n ≤ 0 , T n (u) ≤ 0 , u n T n (u) = 0 on Γ c ; (friction conditions) (2.5)    u t = 0 =⇒ T t (u) ≤ F(0)g on Γ c ; u t = 0 =⇒ T t (u) = -F( u t )g u t u t on Γ c .
The symbol τ (u) = (τ ij (u)) 3 i,j=1 stands for a symmetric stress tensor which is related to a linearized strain tensor ε(u) = (ε ij (u)) 3 i,j=1 by means of linear Hooke's law:

τ ij (u) = c ijkl ε kl (u), i, j = 1, 2, 3,
where

ε ij (u) = 1 2 
∂u i ∂x j + ∂u j ∂x i , i, j = 1, 2, 3,
and c ijkl ∈ L ∞ (Ω), i, j, k, l = 1, 2, 3, are linear elasticity coefficients. They satisfy the following symmetry and ellipticity conditions:

c ijkl (x) = c jikl (x) = c klij (x) for a.a. x ∈ Ω ; (2.6) ∃ c ell > 0 : c ijkl (x)ξ ij ξ kl ≥ c ell ξ ij ξ ij for a.a. x ∈ Ω and all ξ ij = ξ ji ∈ R 1 . (2.7)
Further, n is the unit outward normal to Ω on ∂Ω, u n = u ⊤ n, u t = uu n n stand for the normal, tangential component of a displacement vector u on Γ c , respectively, and

T (u) = (T 1 (u), T 2 (u), T 3 (u)) ⊤ is a stress vector whose components are T i (u) = τ ij (u)n j , i = 1, 2, 3. The symbols T n (u) = (T (u)) ⊤ n, T t (u) = T (u) -T n (u)
n denote the normal, tangential component of a stress vector T (u) on Γ c , respectively. Finally, F is a continuous, positive, bounded function in R 1 + which defines the coefficient of friction depending on the magnitude u t on Γ c and g ∈ L 2 (Γ c ), g ≥ 0, is a given slip bound.

Let us notice that due to the special geometry of Ω and S it holds that v n = -v 3 and

v t = (v 1 , v 2 , 0) ⊤ on Γ c . Let V = v ∈ H 1 (Ω) v = 0 on Γ u , V = (V ) 3
and K be a closed convex set of kinematically admissible displacements:

K = {v ∈ V | v n ≤ 0 a.e. on Γ c } .
Definition 2.1. By a weak solution to a contact problem with given friction and a solution-dependent coefficient of friction F we mean any displacement vector u satisfying the following implicit variational inequality of elliptic type:

(P)    Find u ∈ K such that a(u, v -u) + Γc F( u t ) g ( v t -u t ) dS ≥ F (v -u) ∀ v ∈ K, where a(u, v) := Ω τ ij (u)ε ij (v) dx , u, v ∈ V , F (v) := Ω f i v i dx + Γp p i v i dS , v = (v 1 , v 2 , v 3 ) ⊤ ∈ V .

Existence Result

In this section we derive an equivalent fixed-point formulation of our problem. With its aid we prove the existence of at least one solution and we give conditions guaranteeing its uniqueness.

First, we introduce some notation. Let γ be the trace operator on Γ c :

γv = v |Γ c , v ∈ V,
and let γ, γ n and γ t be defined by

γv = (γv 1 , γv 2 , γv 3 ) ⊤ , γ n v = (γv) n , γ t v = (γv) t , v = (v 1 , v 2 , v 3 ) ⊤ ∈ V .
By H 1/2 (Γ c ) we denote the space of traces on Γ c of all functions from V , by H 1/2 + (Γ c ) its subset of all non-negative elements:

H 1/2 (Γ c ) = γV , H 1/2 + (Γ c ) = ψ ∈ H 1/2 (Γ c ) ψ ≥ 0 a.e. on Γ c . The trace space H 1/2 (Γ c
) is a Banach space equipped with the norm:

(3.1) ψ 1/2,Γc = inf v∈V γv=ψ v 1,Ω , ψ ∈ H 1/2 (Γ c ) .
Accordingly to our notation, H 1/2 (Γ c ) is the trace space on Γ c of functions from V with the norm:

(3.2) ψ 1/2,Γc = inf v∈V γv=ψ v 1,Ω , ψ ∈ H 1/2 (Γ c ) .
From the definition of the norms it immediately follows that

(3.3) ψ 1/2,Γc ≤ ψ 1/2,Γc ∀ ψ ∈ H 1/2 (Γ c ) .
In the sequel we shall need the following auxiliary results.

Lemma 3.1. It holds:

(i ) if v ∈ H 1 (D) then v ∈ H 1 (D) and v 1,D ≤ v 1,D , D = Ω , Γ c ; (ii ) if v ∈ V then γ n v ∈ H 1/2 (Γ c ), γ t v ∈ H 1/2 (Γ c ) and γ t v ∈ H 1/2 (Γ c ); (iii ) if v k ⇀ v in H 1 (Ω), v k , v ∈ V , k → ∞, then γ t v k ⇀ γ t v in H 1/2 (Γ c ), k → ∞, γ t v k ⇀ γ t v in H 1/2 (Γ c ), k → ∞.
For the proofs we refer to [START_REF] Ligurský | Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution[END_REF].

With any ϕ ∈ H 1/2 + (Γ c ) we associate the following auxiliary problem:

(P(ϕ))    Find u := u(ϕ) ∈ K such that a(u, v -u) + Γc F(ϕ) g ( v t -u t ) dS ≥ F (v -u) ∀ v ∈ K.
It is known (see [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF]) that (P(ϕ)) has a unique solution for every ϕ ∈ H 1/2 + (Γ c ). Thus one can define a mapping Ψ :

H 1/2 + (Γ c ) → H 1/2 + (Γ c ) by (3.4) Ψ : ϕ → γ t (u(ϕ)) , ϕ ∈ H 1/2 + (Γ c
), where u(ϕ) ∈ K solves (P(ϕ)).

Comparing (P) and (3.4) we arrive at the following alternative (and equivalent) definition.

Definition 3.2. By a weak solution to a contact problem with given friction and the solution-dependent coefficient of friction F we mean any function u ∈ K solving (P(

γ t u )), i.e. γ t u is a fixed point of Ψ in H 1/2 + (Γ c ): Ψ( γ t u ) = γ t u on Γ c .
To prove the existence of at least one fixed point we examine basic properties of Ψ. Denote

B R = ψ ∈ H 1/2 + (Γ c ) ψ 1/2,Γc ≤ R for every R > 0. Lemma 3.3. The mapping Ψ maps B R into itself with R := F (H 1 (Ω)) ′ c ell c K ,
where c ell > 0 is the constant in (2.7) and c K > 0 is the constant of Korn's inequality:

c K v 2 1,Ω ≤ Ω ε ij (v)ε ij (v) dx ∀ v ∈ V . Proof. Let ϕ ∈ H 1/2
+ (Γ c ) be arbitrary but fixed and denote u := u(ϕ) the solution to (P(ϕ)). Inserting v := 0 ∈ K into (P(ϕ)) we obtain:

-a(u, u) - Γc F(ϕ)g u t dS ≥ -F (u). Therefore c ell c K u 2 1,Ω ≤ Ω c ijkl ε kl (u)ε ij (u) dx + Γc F(ϕ)g u t dS (3.5) ≤ F (u) ≤ F (H 1 (Ω)) ′ u 1,Ω
in virtue of (2.7) and Korn's inequality. From (3.2) and (3.3) one has:

(3.6) u ∈ V =⇒ γ t u 1/2,Γc ≤ γ t u 1/2,Γc ≤ γu 1/2,Γc ≤ u 1,Ω .
From this and (3.5) we obtain the assertion of the lemma.

Next we show that the mapping Ψ is weakly continuous in H

1/2 + (Γ c ). Lemma 3.4. Let ϕ ∈ H 1/2 + (Γ c ), ϕ k ⊂ H 1/2 + (Γ c ) be such that ϕ k ⇀ ϕ in H 1/2 (Γ c ), k → ∞.
Then

Ψ ϕ k ⇀ Ψ(ϕ) in H 1/2 (Γ c ), k → ∞. Proof. Let u k := u ϕ k ∈ K be a solution to P ϕ k , k ∈ N: a u k , v -u k + Γc F ϕ k g v t -u k t dS ≥ F v -u k ) ∀ v ∈ K.
From (3.5) we see that u k is bounded in H 1 (Ω). Thus there exist a subsequence u l ⊆ u k and a function u ∈ V such that

u l ⇀ u in H 1 (Ω), l → ∞.
We prove that u solves (P(ϕ)). First, u ∈ K and lim sup

l→∞ a u l , v -u l ≤ a(u, v -u) ∀ v ∈ K, lim l→∞ F v -u l = F (v -u) ∀ v ∈ K.
Since F is continuous and

H 1/2 (Γ c ) is compactly embedded into L 2 (Γ c
), one can pass to a subsequence of ϕ l (denoted by the same symbol) such that

(3.7) F ϕ l → F(ϕ) a.e. on Γ c , l → ∞.
From (iii ) of Lemma 3.1 we know that

γ t u l ⇀ γ t u in H 1/2 (Γ c ), l → ∞,
which yields:

γ t u l → γ t u in L 2 (Γ c ), l → ∞.
From this, the Lebesgue dominated convergence theorem and (3.7) it follows:

lim l→∞ Γc F ϕ l g v t -u l t dS = Γc F(ϕ) g ( v t -u t ) dS .
Letting l → ∞ in P ϕ l and using the previous results we see that

a(u, v -u) + Γc F(ϕ) g ( v t -u t ) dS ≥ F (v -u) ∀ v ∈ K,
i.e. u solves (P(ϕ)). Since (P(ϕ)) has a unique solution, the original sequence u k tends weakly to u in H 1 (Ω) and

γ t u k ⇀ γ t u in H 1/2 (Γ c ), k → ∞.
On the basis of Lemmas 3.3 and 3.4 we obtain the following existence result.

Theorem 3.5. There exists a weak solution to a contact problem with given friction and a solution-dependent coefficient of friction.

Proof. It follows from the weak version of the Schauder fixed-point theorem (see [START_REF] Hlaváček | Solution of variational inequalities in mechanics[END_REF]).

Next we show that Ψ is Lipschitz continuous in the L 2 (Γ c )-norm provided that F is Lipschitz continuous in R 1 + and g ∈ L ∞ (Γ c ). Theorem 3.6. Let g ∈ L ∞ (Γ c ), g ≥ 0 a.e. on Γ c , and c L > 0 be such that

|F(x 1 ) -F(x 1 )| ≤ c L |x 1 -x 1 | ∀ x 1 , x 1 ∈ R 1 + . Then Ψ(ϕ) -Ψ(ϕ) 0,Γc ≤ c L c 2 T g ∞,Γc c ell c K ϕ -ϕ 0,Γc ∀ ϕ, ϕ ∈ H 1/2 + (Γ c ) ,
where c T is the norm of the trace mapping γ t : V → L 2 (Γ c ) and c ell , c K are the constants from (2.7), Korn's inequality, respectively.

Proof. Let ϕ, ϕ ∈ H 1/2
+ (Γ c ) be given and u, u be the respective solutions of (P(ϕ)), (P(ϕ)):

a(u, v -u) + Γc F(ϕ) g ( v t -u t ) dS ≥ F (v -u) ∀ v ∈ K, a(u, v -u) + Γc F(ϕ) g ( v t -u t ) dS ≥ F (v -u) ∀ v ∈ K.
Inserting v := u into the first and v := u into the second inequality and summing them we obtain:

(3.8) a(u -u, u -u) + Γc (F(ϕ) -F(ϕ)) g ( u t -u t ) dS ≥ 0 .
It is readily seen that (3.9)

γ t u -γ t u 0,Γc ≤ γ t u -γ t u 0,Γc ≤ c T u -u 1,Ω .
From (2.7), Korn's inequality, (3.8) and (3.9) we obtain:

c ell c K u -u 2 1,Ω ≤ a(u -u, u -u) (3.10) ≤ g ∞,Γc F(ϕ) -F(ϕ) 0,Γc γ t u -γ t u 0,Γc ≤ c L c T g ∞,Γc ϕ -ϕ 0,Γc u -u 1,Ω .
Finally, (3.9) and (3.10) yield:

γ t u -γ t u 0,Γc ≤ c T u -u 1,Ω ≤ c L c 2 T g ∞,Γc c ell c K ϕ -ϕ 0,Γc . Corollary 3.7. If c L c 2 T g ∞,Γc c ell cK < 1 then the mapping Ψ : H 1/2 + (Γ c ) → H 1/2 + (Γ c ) is contractive in the L 2 (Γ c )-norm.
Consequently, Ψ has a unique fixed point and the method of successive approximations:

(3.11) ϕ 0 ∈ H 1/2 + (Γ c ) given; for k = 1, 2, . . . set ϕ k := Ψ ϕ k-1
is convergent in the L 2 (Γ c )-norm for any choice of ϕ 0 .

Finite Element Approximation

This section deals with a discretization of problem (P) by a finite element method. We establish the existence as well as the uniqueness of discrete solutions in a similar way as in the continuous case. Then we shall study convergence of discrete solutions and as a by-product we obtain an alternative proof of the existence of a solution to (P).

To avoid the use of curved elements we shall suppose that Ω is a polyhedron. Let {T h }, h → 0+, be a system of regular partitions of Ω into tetrahedra such that every partition T h is compatible with the decomposition of ∂Ω into Γ u , Γ p and Γ c and such that T h| Γc , h → 0+, is a strongly regular system of triangulations of Γ c (see [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]). With any T h the following sets will be associated:

V h = v h ∈ C(Ω) v h| T ∈ P 1 (T ) ∀ T ∈ T h , v h = 0 on Γ u , V h = (V h ) 3 , K h = {v h ∈ V h | v hn (a i ) ≤ 0 ∀ a i ∈ N h } , V h = V h| Γc , V + h = {ϕ h ∈ V h | ϕ h (a i ) ≥ 0 ∀ a i ∈ N h },
where N h is the set of all contact nodes, i.e. the nodes of

T h lying on Γ c \ Γ u . Obviously, K h ⊂ K and V + h ⊂ H 1/2 + (Γ c ) ∀ h > 0. For every ϕ h ∈ V +
h we shall consider the following discrete problem:

(P(ϕ h )) h          Find u h := u h (ϕ h ) ∈ K h such that a(u h , v h -u h ) + Γc F(ϕ h ) g ( v ht -u ht ) dS ≥ F (v h -u h ) ∀ v h ∈ K h .

Again (P(ϕ h

)) h has a unique solution for any ϕ h ∈ V + h and one can define a mapping

Ψ h by Ψ h (ϕ h ) = r h γ t (u h (ϕ h )) , ϕ h ∈ V + h
, where u h (ϕ h ) ∈ K h is the solution to (P(ϕ h )) h and r h : H 1/2 (Γ c ) → V h is a linear interpolation operator with the following approximation property: there exists a constant c r > 0 independent of h Γc := max

F ∈T h | Γc diam(F ) such that (4.1) ψ -r h ψ µ,Γc ≤ c r h 1-µ Γc ψ 1,Γc ∀ ψ ∈ H 1 (Γ c )
for µ = 0 and 1/2 which preserves monotonicity, i.e.

(4.2)

ψ ≥ 0 on Γ c , ψ ∈ H 1/2 (Γ c ) =⇒ r h ψ ∈ V + h .
As an example of r h satisfying (4.1) and (4.2) we refer to [START_REF] Clement | Approximation by finite element functions using local regularization[END_REF]. The mapping Ψ h : V + h → V + h can be viewed to be a discretization of Ψ defined by (3.4). Definition 4.1. By a discrete solution to (P) we mean any function

u h ∈ K h solving (P(r h γ t u h )) h , i.e. r h u ht := r h γ t u h is a fixed point of Ψ h in V + h .
Lemma 4.2. The mapping Ψ h is continuous and maps

V + h ∩ B R into V + h ∩ B R for some R > 0, which does not depend on h.
Proof. Let ϕ h ∈ V + h be arbitrary but fixed and u h := u h (ϕ h ) be a solution of (P(ϕ h )) h . The approximation property (4.1), (i ) of Lemma 3.1, (3.3) and the inverse inequality between H 1 (Γ c ) and H 1/2 (Γ c ) give:

r h γ t u h 1/2,Γc ≤ r h γ t u h -γ t u h 1/2,Γc + γ t u h 1/2,Γc (4.3) ≤ c r h 1/2 Γc γ t u h 1,Γc + γ t u h 1/2,Γc ≤ c r h 1/2 Γc γ t u h 1,Γc + γ t u h 1/2,Γc ≤ c r c inv γ t u h 1/2,Γc + γ t u h 1/2,Γc ,
where the constants c r and c inv do not depend on h. Arguing exactly as in Lemma 3.3 (see (3.5) and (3.6)) one can show that

γ t u h 1/2,Γc ≤ u h 1,Ω ≤ F (H 1 (Ω)) ′ c ell c K ,
where c ell , c K are the same as in Lemma 3.3 and independent of h. From this and (4.3) we see that

Ψ h maps V + h ∩ B R into V + h ∩ B R with R := (1 + c r c inv ) F (H 1 (Ω)) ′ c ell c K .
Next we show that Ψ h is continuous in

V + h . Let ϕ k h → ϕ h in H 1/2 (Γ c ), ϕ k h , ϕ h ∈ V + h , k → ∞, and denote u k h := u h (ϕ k h ) ∈ K h solutions to P ϕ k h h .
Arguing as in Lemma 3.4 we have:

(4.4) γ t u k h → γ t u h in L 2 (Γ c ), k → ∞, where u h := u h (ϕ h ) solves (P(ϕ h )) h . We already know that r h γ t u k h is bounded in the H 1/2 (Γ c )-norm. Thus there exist: a subsequence r h γ t u l h ⊆ r h γ t u k h and a function ϕ ∈ H 1/2 (Γ c ) such that r h γ t u l h ⇀ ϕ in H 1/2 (Γ c ), l → ∞. Since r h preserves monotonicity (see (4.2)), it is readily seen that r h γ t u l h -γ t u h 0,Γc ≤ r h γ t u l h -γ t u h 0,Γc ∀ l. Hence r h γ t u l h -r h γ t u h 0,Γc ≤ r h γ t u l h -γ t u h 0,Γc (4.5) ≤ r h γ t u l h -γ t u h -γ t u l h -γ t u h 0,Γc + γ t u l h -γ t u h 0,Γc ≤ c r h Γc γ t u l h -γ t u h 1,Γc + γ t u l h -γ t u h 0,Γc ≤ c r h Γc γ t u l h -γ t u h 1,Γc + γ t u l h -γ t u h 0,Γc ≤ c r c inv γ t u l h -γ t u h 0,Γc + γ t u l h -γ t u h 0,Γc l→∞ -→ 0
in virtue of (4.1), (i ) of Lemma 3.1, the inverse inequality between H 1 (Γ c ) and L 2 (Γ c ) and (4.4). Thus ϕ = r h γ t u h on Γ c and

r h γ t u k h → r h γ t u h in H 1/2 (Γ c ), k → ∞,
using that V h is finite-dimensional for every h > 0 fixed.

From Lemma 4.2 and the Brouwer fixed-point theorem we arrive at the following result.

Theorem 4.3. There exists a discrete solution to (P).

Under additional assumptions on F and g one obtains the following uniqueness result.

Theorem 4.4. Let g ∈ L ∞ (Γ c ), g ≥ 0 a.e. on Γ c , and c L > 0 be such that

|F(x 1 ) -F(x 1 )| ≤ c L |x 1 -x 1 | ∀ x 1 , x 1 ∈ R 1 + .
Then there exists a positive constant c which does not depend on h and such that

Ψ h (ϕ h ) -Ψ h (ϕ h ) 0,Γc ≤ cc L ϕ h -ϕ h 0,Γc ∀ ϕ h , ϕ h ∈ V + h . Proof.
In the same way as in Theorem 3.6 it can be shown (see (3.10)) that (4.6)

u h -u h 1,Ω ≤ c L c T g ∞,Γc c ell c K ϕ h -ϕ h 0,Γc ,
where u h , u h are the solutions to (P(ϕ h )) h , (P(ϕ h )) h , respectively, for ϕ h , ϕ h ∈ V + h given. Moreover we know (cf. (4.5) and (3.9)) that

r h γ t u h -r h γ t u h 0,Γc ≤ (1 + c r c inv ) γ t u h -γ t u h 0,Γc ≤ c T (1 + c r c inv ) u h -u h 1,Ω ,
where c T , c r , c inv are independent of h. From this and (4.6) we see that the assertion of the theorem holds with

c := c 2 T (1 + c r c inv ) g ∞,Γc c ell c K .
Corollary 4.5. Let h > 0 be fixed. If cc L < 1 then the mapping Ψ h : V + h → V + h is contractive. Consequently, Ψ h has a unique fixed point and the method of successive approximations:

(4.7) ϕ 0 h ∈ V + h given; for k = 1, 2, . . . set ϕ k h := Ψ h ϕ k-1 h is convergent for any choice of ϕ 0 h .
Let us suppose that K ∩ C ∞ (Ω) is dense in K in the H 1 (Ω)-norm (some cases when this assumption is satisfied are studied in [START_REF] Hlaváček | Solution of variational inequalities in mechanics[END_REF]). Let {u h }, h → 0+, be a sequence of discrete solutions to (P) and v ∈ K be arbitrary but fixed. Our density assumption ensures the existence of a sequence

{v h }, v h ∈ K h , such that (4.8) v h → v in H 1 (Ω), h → 0+ .
Since {u h } is bounded in H 1 (Ω) and u h ∈ K h ⊂ K ∀ h > 0, one can pass to a subsequence {u h ′ } ⊆ {u h } and find a function u ∈ K such that

u h ′ ⇀ u in H 1 (Ω), h ′ → 0+.
This together with (4.8) yield:

lim sup h ′ →0+ a(u h ′ , v h ′ -u h ′ ) ≤ a(u, v -u) , lim h ′ →0+ F (v h ′ -u h ′ ) = F (v -u) , γ t u h ′ → γ t u in L 2 (Γ c ), h ′ → 0+.
Using the last relation, (4.1), (i ) of Lemma 3.1, the inverse inequality between H 1 (Γ c ) and H 1/2 (Γ c ) and the boundedness of {γ t u h ′ } in the H 1/2 (Γ c )-norm we obtain:

r h ′ u h ′ t -γ t u 0,Γc (4.9) ≤ r h ′ u h ′ t -γ t u h ′ 0,Γc + γ t u h ′ -γ t u 0,Γc ≤ c r h ′ Γc γ t u h ′ 1,Γc + γ t u h ′ -γ t u 0,Γc ≤ c r h ′ Γc γ t u h ′ 1,Γc + γ t u h ′ -γ t u 0,Γc ≤ c r c inv (h ′ Γc ) 1/2 γ t u h ′ 1/2,Γc + γ t u h ′ -γ t u 0,Γc h ′ →0+ -→ 0 .
Hence, for an appropriate subsequence of {u h ′ } denoted by the same symbol it holds:

r h ′ u h ′ t → γ t u a.e. on Γ c , h ′ → 0 + .
The previous results imply:

lim h ′ →0+ Γc F(r h ′ u h ′ t ) g ( v h ′ t -u h ′ t ) dS = Γc F( u t ) g ( v t -u t ) dS.
Consequently, u ∈ K satisfies:

a(u, v -u) + Γc F( u t ) g ( v t -u t ) dS ≥ F (v -u) .
Since v ∈ K was arbitrary, the function u solves (P) and γ t u is a fixed point of Ψ. Finally, from the boundedness of {r h ′ u h ′ t } in the H 1/2 (Γ c )-norm and (4.9) it follows that {r h ′ u h ′ t } tends weakly to γ t u in the H 1/2 (Γ c )-norm.

The result is summarized in the following theorem.

Theorem 4.6. Let K ∩C ∞ (Ω) be dense in K in the H 1 (Ω)-norm, {u h }, h → 0+, be a sequence of discrete solutions to (P). Then for any sequence {r h γ t u h }, h → 0+, of fixed points of Ψ h there exists a subsequence of {u h } (denoted by the same symbol) such that (4.10)

u h ⇀ u in H 1 (Ω), h → 0+, r h γ t u h ⇀ γ t u in H 1/2 (Γ c ), h → 0+,
where u solves (P) and γ t u is the respective fixed point of Ψ. In addition, if (P) has a unique solution, (4.10) holds for the whole sequences.

Mixed Variational Formulation

A natural way how to find a fixed point of the mapping Ψ is to use the method of successive approximations (3.11). Since the main step in this method is a contact problem with given friction and a coefficient which does not depend on a solution, we focus on it now.

It is known (see [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF]) that the solution u of (P(ϕ)), ϕ ∈ H

1/2
+ (Γ c ), can be equivalently characterized as a solution of the following minimization problem:

Find u := u(ϕ) ∈ K such that J ϕ (u) ≤ J ϕ (v) ∀ v ∈ K, where J ϕ (v) = 1 2 a(v, v) -F (v) + j ϕ (v) , v ∈ V , with j ϕ (v) = Γc F(ϕ)g v t dS , v ∈ V .
This is a constrained minimization problem for the non-differentiable total potential energy functional J ϕ . To release the unilateral constraint u n ≤ 0 on Γ c and to regularize the non-differentiable term j ϕ we shall use a mixed variational formulation. Let t 1 , t 2 be two unit orthogonal vectors in Γ c . Then the triplet {n, t 1 , t 2 } forms an orthonormal basis in R 3 and any vector function v : Γ c → R 3 can be represented in the coordinate system {n, t 1 , t 2 } as follows:

v(x) = (v n (x), v t (x)) ⊤ ∈ R × R 2 , x ∈ Γ c , where v n (x) = (v(x)) ⊤ n, v t (x) = (v t1 (x), v t2 (x)) ⊤ , v tj (x) = (v(x)) ⊤ t j , j = 1, 2.
This representation will be used for the traces of displacement vectors on Γ c . In accordance with previous notation, the symbol v t stands for the Euclidean norm of v t :

v t = (v t1 ) 2 + (v t2 ) 2 1/2 on Γ c . Next, let ϕ ∈ H 1/2 + (Γ c ) be given and denote Λ n = µ ∈ H 1/2 (Γ c ) ′ µ, ψ 1/2,Γc ≥ 0 ∀ ψ ∈ H 1/2 + (Γ c ) , Λ t (ϕ) = µ t ∈ L 2 (Γ c ) 2 µ t ≤ F(ϕ)g a.e. on Γ c ,
where H 1/2 (Γ c ) ′ stands for the topological dual space of H 1/2 (Γ c ), ., . 1/2,Γc denotes the respective duality pairing and g ∈ L 2 (Γ c ), g ≥ 0 a.e. on Γ c , is a given slip bound.

It is easy to see that

min v∈K J ϕ (v) = min v∈V sup µn∈Λn µ t ∈Λt(ϕ) L(v, µ n , µ t ) ,
where

L : V × Λ n × Λ t (ϕ) → R 1 is the Lagrangian defined by L(v, µ n , µ t ) = 1 2 a(v, v) -F (v) + µ n , v n 1/2,Γc + Γc µ ⊤ t v t dS , (v, µ n , µ t ) ⊤ ∈ V × Λ n × Λ t (ϕ) .
By a mixed variational formulation of (P(ϕ)) we call a problem of finding a saddlepoint of L on V × Λ n × Λ t (ϕ):

Find (w, λ n , λ t ) ⊤ ∈ V × Λ n × Λ t (ϕ) such that L(w, µ n , µ t ) ≤ L(w, λ n , λ t ) ≤ L(v, λ n , λ t ) ∀ (v, µ n , µ t ) ⊤ ∈ V × Λ n × Λ t (ϕ)
or equivalently:

(M(ϕ))                    Find (w, λ n , λ t ) ⊤ ∈ V × Λ n × Λ t (ϕ) such that a(w, v) = F (v) -λ n , v n 1/2,Γc - Γc λ ⊤ t v t dS ∀ v ∈ V , µ n -λ n , w n 1/2,Γc + Γc (µ t -λ t ) ⊤ w t dS ≤ 0 ∀ (µ n , µ t ) ⊤ ∈ Λ n × Λ t (ϕ) .
The following result is a standard one.

Theorem 5.1. There exists a unique solution (w, λ n , λ t ) ⊤ of (M(ϕ)). In addition, w = u , λ n = -T n (u) , λ t = -T t (u) , where u ∈ K solves (P(ϕ)).

Next, we describe an approximation of (M(ϕ)). Recall that the sets V h and V + h have been already defined in Section 4. Further, let {T H }, H → 0+, be a family of regular partitions of Γ c into rectangles R whose diameters do not exceed H. With any T H we associate the space of piecewise-constant functions:

L H = µ H ∈ L 2 (Γ c ) µ H |R ∈ P 0 (R) ∀ R ∈ T H . Let ϕ h ∈ V + h be fixed. The sets Λ nH = {µ nH ∈ L H | µ nH ≥ 0 a.e. on Γ c } , Λ tH (ϕ h ) = µ tH ∈ (L H ) 2 µ tH |R ≤ R F(ϕ h )g dS meas 2 (R) ∀ R ∈ T H ,
be the algebraic representatives of Λ nH , Λ tH (ϕ h ), respectively. Further, let K be the stiffness matrix, f the load vector, M the kinematic transformation matrix linking the primal and the dual variables and B 1 , B 2 , B 3 the matrices representing the linear mappings

v h → v hn , v h → v ht1 , v h → v ht2 , v h ∈ V h , respectively.
The algebraic form of (M(ϕ h )) hH reads as follows:

(5.4)

       Find w, λ ⊤ ∈ R p × Λ(ϕ h ) such that K w = f -B ⊤ λ , µ -λ ⊤ B w ≤ 0 ∀ µ ∈ Λ(ϕ h ) ,
where

µ := ( µ n , µ t1 , µ t2 ) ⊤ , λ := λ n , λ t1 , λ t2 ⊤ , Λ(ϕ h ) := Λ n × Λ t (ϕ h ) and B :=   MB 1 MB 2 MB 3   , for short.
For numerical realization of (5.4) we shall use the dual approach. From (5.4) 2 one can express w:

w = K -1 f -B ⊤ λ .
Inserting w into (5.4) 3 we obtain a new problem in terms of the Lagrange multipliers which is equivalent to the following quadratic programming problem:

(5.5) Find λ ∈ Λ(ϕ h ) such that S λ ≤ S( µ) ∀ µ ∈ Λ(ϕ h ) ,
where

S( µ) = 1 2 µ ⊤ Q µ -h ⊤ µ , µ ∈ Λ(ϕ h ) , with (5.6) 
Q := BK -1 B ⊤ , h := BK -1 f .
Let us point out that Λ n is defined by the simple (box) constraints (5.2) while Λ t (ϕ h ) is determined by the quadratic constraints (5.3). Since the quadratic constraints are separated, one can use an algorithm that combines the conjugate gradient method with the gradient projections for solving (5.5). For the detailed theoretical analysis of this approach we refer to [START_REF] Kučera | Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints[END_REF].

The iterative process (4.7) based on the dual formulation (5.5) reads as follows:

(5.7)

                           Let ϕ 0 h ∈ V + h be given; for ϕ k-1 h ∈ V + h , k = 1, 2, . . . , known, solve: λ = arg min S( µ) µ ∈ Λ ϕ k-1 h ; set w = K -1 f -B ⊤ λ ; ϕ k h = r h γ t w h ; k = k + 1;
repeat until stopping criterion.

Here w h denotes the element of V h whose nodal values are given by w.

Model Examples

We now present numerical results of several model examples. A deformable body Ω will be represented by the brick (0, 3) × (0, 1) × (0, 1) (in m) which is fixed along Γ u = {0} × (0, 1) × (0, 1) and supported by the rigid foundation S = R 2 × R 1 -, i.e. Γ c = (0, 3) × (0, 1) × {0}. The rest of the boundary ∂Ω represents Γ p , where the body is subject to surface tractions of density p = (p 1 , p 2 , p 3 ) ⊤ (see Figure 2): The brick is made of an elastic, isotropic and homogeneous material characterized by Poisson's ratio σ = 0.277 and Young's modulus E = 21.19e10 [Pa] (steel). The coefficient of friction F is defined by (6.1)

p 1 = p 1 x , p 2 = 0, p 3 = p 1 z on Γ 1 p = x = (x 1 , x 2 , x 3 ) ⊤ ∈ Γ p x 1 = 3 , p 1 = 0, p 2 = 0, p 3 = p 2 z on Γ 2 p = x = (x 1 , x 2 , x 3 ) ⊤ ∈ Γ p x 3 = 1 , p = 0 on Γ p \ (Γ 1 p ∪ Γ 2 p ) ,
x 1 x 3 x 2 S p p Γ u Ω Γ c Γ 2 Γ 1 p p
F(t) =        0.3 if t ≤ 10 -5 ; 0.3 -0.1param 2 (t -10 -5 ) if t ∈ 10 -5 , 10 -5 + 2 param ; 0.2 if t ≥ 10 -5 + 2 param .
Three different values of param were considered, namely param = 2.e4; 6.e4 and 3.e5 (see Figure 3). The slip bound was chosen to be g = 2.e7 [Pa].

To construct partitions T h we cut Ω into 3n × n × n small cubes for n = 4, 6, 8, 10, 12, 14 and 16. Next, each cube is divided into five tetrahedra as shown in Figure 4. Having T h at our disposal, we construct the partition T H of Γ c as shown in Figure 5: the partition T h| Γc and its nodes are depicted by the fine lines and the black dots, respectively, while the partition T H is "the chessboard" on Γ c whose elements The initial approximation of w t for the method of successive approximations was chosen to be ϕ 0 h = 0 on Γ c . The stopping criterion of the outer (fixed-point) loop is:

err(k) := ϕ k -ϕ k-1 ϕ k ≤ 10 -4 ,
where ϕ k is the vector whose components are the values of ϕ k h at the contact nodes and . stands for the Euclidean norm. The minimization problem (5.5) was realized by the algorithm described in [START_REF] Kučera | Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints[END_REF] with a minor modification -the proportioning and the expansion steps are performed simultaneously. The stopping criterion of this inner loop is: g λ ≤ 10 -6 h , where g λ is the so-called projected gradient of S at λ, . is the Euclidean norm and h is defined in (5.6). Table 1 presents results for different values of n and for the coefficient of friction F defined by (6.1) with param = 6.e4, while Table 2 compares results for the different coefficients F on the finest mesh (n = 16). Here n p , n d stand for the total number of the primal, dual variables, respectively, and it is the number of the fixed-point iterations. Further, n mult is the total number of the multiplications by K -1 , which is the most expensive part of the algorithm (in fact, we do not compute the matrix K -1 but the Cholesky factorization is performed at first and then we use the backwardsubstitution instead). The total computational time is given in seconds and w + hn is the positive part of w hn : w + hn = max{0, w hn } on Γ c . Hence, the last two columns of the tables can be viewed as a measure of violation of the non-penetration condition. explains in more details the behaviour of λ tH . The radius of each circle whose centre is in the centre of gravity of R ∈ T H is equal to R F ( w ht ) g dS/ meas 2 (R) while the segment emanating from its centre represents the vector λ tH in R.

Conclusions

The theoretical analysis, approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution were presented. The mathematical analysis, as well as numerical realization are based on a fixed-point formulation of this problem. We proved the existence of at least one fixed point provided that the coefficient of friction is represented by a continuous, positive and bounded function. Conditions guaranteeing the uniqueness of the fixed point were given. Further, the convergence of the discretized problems was established. The method of successive approximations was proposed as a tool for finding fixed points. The numerical realization uses the dual formulation of each iterative step. This formulation after a discretization leads to a quadratic programming problem for the Lagrange multipliers on Γ c subject to simple and separable quadratic constraints.

Several numerical experiments were done. No preconditioning was used in our computations. However, the values of n mult indicate that the matrix Q in the quadratic programming problem (5.5) is relatively well-conditioned. Moreover, only a small number of the fixed-point iterations practically independent of both the mesh size and the modulus of the Lipschitz continuity of F is needed to get a solution with a given accuracy. Thus, the cost of solving depends only on the cost of the individual iterative step represented by a contact problem with given friction in which the coefficient of friction does not depend on the solution. Therefore, the method of successive approximations (5.7) combined with the dual formulation of each iterative step turned out to be an efficient method for solving such problems.
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 1 Figure 1: Geometry of the model

where p 1 x

 1 = 1.e7 [Pa], p 1 z = 2.e7 [Pa] and p 2 z = -3.e7 [Pa]. The volume forces will be neglected, i.e. f = 0 in Ω.
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Table 1 :

 1 The convergence history of the method of successive Different meshes

	n	n p	n d it n mult time	w + hn 0,Γc	w + hn 0,∞,Γc
	4	900	36 6 2383	13	7.0e-6	1.6e-5
	6	2646	81 6 2063	60	1.6e-6	4.6e-6
	8	5832 144 6 3381	341	1.4e-6	7.4e-6
	10 10890 225 6 3622	1006	1.5e-6	4.0e-6
	12 18252 324 6 3985	2565	8.4e-7	2.7e-6
	14 28350 441 7 3962	5221	7.7e-7	4.5e-6
	16 41616 576 6 4432 11033	8.2e-7	2.2e-6
		param it n mult time	w + hn 0,Γc	w + hn 0,∞,Γc
		2.e4	6 3870	9705	8.4e-7	2.3e-6
		6.e4	6 4432 11033	8.2e-7	2.2e-6
		3.e5	7 4604 11490	8.0e-7	2.2e-6

Table 2 :

 2 Different coefficients F

Here and in what follows the summation convention will be adopted.
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where meas 2 (R) is the area of R, will be used as the discretizations of Λ n and Λ t (ϕ h ), respectively.

The discretization of the mixed formulation (M(ϕ h )) reads as follows:

It is known (see [START_REF] Hlaváček | Solution of variational inequalities in mechanics[END_REF], [START_REF] Kikuchi | Contact problems in elasticity: A study of variational inequalities and finite element methods[END_REF]) that (M(ϕ h )) hH has a unique solution provided that the following stability condition is satisfied:

(5.1)

Denote by

the approximations of K and j ϕ h , respectively. It is easy to show that the first component w h of the solution to (M(ϕ h )) hH solves the variational inequality of the second kind:

It is worth noticing that K hH is an external approximation of K since the nonpenetration condition w hn ≤ 0 on Γ c is satisfied in a weak (integral) sense only.

Next we present the algebraic form of (M(ϕ h )) hH . Let h, H > 0 be fixed and suppose that the stability condition (5.1) is satisfied. By v ∈ R p , p = dim V h , we denote the coordinates of v h with respect to a chosen basis in V h . Analogously, µ n , µ t1 , µ t2 ∈ R r , r = dim L H , are the coordinates of µ nH , µ t1H , µ t2H , respectively, with respect to the basis of L H consisting of the characteristic functions of int R i , R i ∈ T H , i = 1, . . . , r. Let