
HAL Id: hal-04184961
https://hal.science/hal-04184961

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FTM-Broadcast: Efficient Network-wide Ranging
Yann Busnel, Hervé Rivano

To cite this version:
Yann Busnel, Hervé Rivano. FTM-Broadcast: Efficient Network-wide Ranging. IPIN 2023: 13th In-
ternational Conference on Indoor Positioning and Indoor Navigation, Sep 2023, Nuremberg, Germany.
pp.1-6, �10.1109/IPIN57070.2023.10332504�. �hal-04184961�

https://hal.science/hal-04184961
https://hal.archives-ouvertes.fr

FTM-Broadcast: Efficient Network-wide Ranging
Yann Busnel

IMT Atlantique
SOTERN / IRISA
Rennes, France

ORCID: 0000-0001-6908-719X

Hervé Rivano
Univ Lyon, INSA Lyon, Inria

EA3720 CITI
69621 Villeurbanne, France

ORCID: 0000-0001-6112-7468

Abstract—Indoor geolocation has witnessed a significant ad-
vancement through the refinement of the 802.11 FTM (Fine
Timing Measurement) protocol. Accurate indoor geolocation has
numerous applications in areas such as asset tracking, indoor
navigation, and location-based services. The standard 802.11
FTM protocol enables accurate indoor positioning by measuring
the time-of-flight between a mobile device and multiple access
points (APs). It can be generalized to device-to-device ranging.
However, the conventional implementation of FTM suffers from
increased complexity as the number of devices grows, limiting
its scalability. FTM indeed involves a point-to-point exchange of
messages between each pair of devices, leading to a quadratic
increase in the number of messages as the number of neighboring
devices increases. In this article, a breakthrough method is
proposed to enhance the FTM protocol by leveraging broadcast
communication, resulting in a substantial reduction in message
complexity from quadratic to linear. By taking into account
broadcast in the protocol, our approach eliminates the need
for multiple individual exchanges and devises a mechanism
where a single message from the mobile device is broadcasted
to all neighbors simultaneously. Each message exchanged will
then be useful for computing every pairwise time-of-flight, by
piggybacking all timestamps, making the protocol more efficient
and scalable. We conducted extensive simulated experiments to
evaluate the performance of the enhanced FTM protocol. The
results demonstrated the effectiveness of the proposed method,
showcasing a substantial reduction in computational overhead
compared to the conventional FTM implementation.

Index Terms—Geolocation, FTM, Wi-Fi, Broadcast, Piggy-
backing

I. INTRODUCTION

Obtaining accurate indoor location information presents a
significant challenge, as GPS signals are often inaccessible
indoors. For many years, alternative techniques have been
actively pursued to address the challenge of indoor location
tracking [1], in particular using wireless communication for
ranging [2], [3]. One such technique is Fine Timing Measure-
ment (FTM) specified in the 802.11-2016 standard [4], which
has been further enhanced through the 802.11az amendment.
FTM leverages Wi-Fi ranging to enable precise indoor location
tracking. FTM relies on a Time of Flight (ToF)-based proce-
dure. FTM enables ranging exchanges between an initiating
station (ISTA) and a responding station (RSTA), facilitating
indoor localization. However, FTM relies on unicast commu-
nication to compute the ranging distance.

FTM assumes that RSTAs, placed indoors, can be accurately
configured to indicate their geographical position. Typically,

these RSTAs are considered to be Wi-Fi Access Points (APs).
However, it is important to note that other types of 802.11
devices can also act as RSTAs, such as digital signage, Wi-Fi
cameras or printers. In most cases, these devices are located
in fixed or rarely changing locations. However, configuring
their geographical position accurately is a challenge. These
objects usually do not have GPS sensors and, even if they did,
GPS is not reliable indoors. Many users use manual and time-
consuming techniques to establish the geolocation of reference
points on the perimeter of the building using the GPS of their
mobile devices or high resolution aerial images. Then, high-
precision telemetry techniques such as laser or ultra-wideband
are used to estimate the position and location of each sensor.
This process has to be repeated each time an RSTA is moved or
added. However, once the geolocation of one or more devices
is known, the other sensors can use the MTF to self-locate [5],
which greatly simplifies the deployment of an FTM-ready
infrastructure.

However, the current version of FTM assumes that ISTAs
perform an unicast exchange with each RSTA (often between
3 and 6) to estimate its position. If we consider use-cases
with numerous mobile ISTAs, such as smartphones in large
shopping malls or autonomous robots in mega warehouses, it
seems unattractive to multiply unicast communications. In this
paper, we propose to take advantage of the use of broadcast
communication in wireless networks such as Wi-Fi, in order to
save a significant amount of message exchanges, by reducing
the complexity of the self-location protocol while guaranteeing
a reduction in latency in most cases.

The remainder of this paper is organized as follows: Sec-
tion II exposes the system model and the FTM background.
Section III introduces then our network-scale 2-way ranging
protocol. Section IV provides theoretical and experimental val-
idation of the proposed method in various scenarios. Finally,
Section V concludes the paper.

II. FTM PRINCIPLE AND RELATED WORKS

A. System Model

We consider a spatial area containing a set of n devices
(called nodes in the following) that can communicate through
a wireless communication channel, using the IEEE 802.11-
2016 [4]. Each node is identified by their id di, i ∈ JnK, and
located in the three-dimensional space. Let pi = (xi, yi, zi)
be respectively the position (xi, yi) of node di in the 2D

plane, and zi its altitude. Each node di is equipped with an
omnidirectional antenna. It is able to communicate with other
nodes located within a ball of radius ρpi . Let N denotes the
set of all reachable nodes in the ball centered on di.

To take a step forward in the direction of a realistic network
model, a MAC layer is modeled, namely a classical CSMA/CA
with RTS/CTS-like mechanism [6] and clear channel assess-
ment (CCA). Before any transmission, a node senses the
channel. If the channel is occupied by the transmission to
or from a neighboring node, its transmission is delayed by a
backoff, which is randomly picked in range [0;β], with β as a
user parameter. The MAC layer is ideal, meaning it is lossless,
and no simultaneous transmission happens in the transmission
range of a node.

B. Fine Timing Measurement

FTM introduces a novel exchange of unassociated user-
targeted content between an initiating station (ISTA) and a
responding station (RSTA). Unlike previous provisions in the
802.11 standard, which mainly served general information or
radio parameter exchanges, FTM leverages unassociated ex-
changes for user-centric purposes, such as indoor localization.

ISTA negotiates ranging session parameters with RSTA,
followed by a series of bursts. In each burst, RSTA sends a
frame at time t1, received by ISTA at time t2. ISTA responds
with an acknowledgement frame at time t3, received by RSTA
at time t4. RSTA then communicates the values (t1, t4) to
ISTA, enabling ISTA to compute the Time of Flight (ToF):
(t4 − t1)− (t3 − t2) and determine its distance d from RSTA
using:

d =
(t4 − t1)− (t3 − t2)

2
× c (1)

where c refers to the speed of light.
Additionally, ISTA can request the Location Configuration

Information (LCI) from RSTA, which consists of geographical
coordinates. The exchange is repeated multiple times, and
ISTA typically retains the smallest ToF as it represents the
direct line of sight (LoS) path with the shortest time.

Figure 1 presents the chronogram of the protocol as pub-
lished in the standard. In order to symmetrize the knowledge,
so that each participant in the exchange is able to estimate the
distance between them, it is necessary to piggyback t2 and t3

in the last acknowledgement message from ISTA to RSTA.
In the following, we will refer to the original version of

FTM above as FTM-UC.
Although the 802.11 standards do not define a specific

method for location computation, it is evident that the po-
sition is calculated solely based on the ToF and LCI values
obtained from the frame exchanges with local RSTAs. Various
techniques exist for location computation, including geometric
methods, matrix-based approaches, and Kalman filters. In this
paper, we therefore exclude the exchanges of the pairwise
distance calculation rounds.

ISTA RSTA

Initial FTM Request

Ack

Location Configuration Information

Ack

t1

FTM ToFt2

t3

ToF
Ack

t4

FTM, t1 , t4

Ack

round1

Fig. 1: FTM protocol

III. A NETWORK-SCALE 2-WAY RANGING PROTOCOL

A. Intuition of the overall design

The main idea of our proposal is to use broadcasting to
reduce the number of messages exchanged during pairwise
exchanges. Thus, instead of initiating a 2-way ranging with
all its neighbors within communication range, each node
of the network will broadcast its message without targeting
any destination a priori. Thus, any node in the network that
receives a previously broadcast message can consider it as the
initial message of its own FTM with the concerned emitter.

In addition, each message sent can be used to carry all the
information known locally up to that time. Any message will
be piggybacked with the set of timestamps stored within the
current round.

Figure 2 depicts the timeline of our protocol for a clique of
5 nodes. In the first phase of the round, each node responds to
the initial broadcast of Node 0 by transmitting the timestamps
of all broadcast messages received so far (t2∗). Each timestamp
t3∗ will be considered as the timestamp t1 for those pairs that
had not yet communicated during phase 1. Thus, at the end
of phase 1, any pair of nodes will have made a round trip
communication. As with the classic FTM protocol, phase 2
of the algorithm is used to transmit to all the other nodes in
range the send and receive timestamps not yet broadcast in
phase 1.

At the end of phase 2, all the nodes have the 4 timestamps,
enabling them to calculate their distance to any other node in
range using Equation 1.

It is important to note that the order in which messages are
sent between phases 1 and 2 does not matter. The transmitted

Node 0 Node 1 Node 2 Node 3 Node 4
t10

t20,1 t20,2 t20,3 t20,4

t31 [t20,1]

t40,1 t21,2 t21,3 t21,4

t32 [t2
0,2, t2

1,2]

t40,2 t41,2 t22,3 t22,4

t33
[t20,3, t

2
1,3, t

2
2,3]

t40,3 t41,3 t42,3 t23,4

t34[t20,4, t
2
1,4, t

2
2,4, t

2
3,4]

phase1

t40,4 t41,4 t42,4 t43,4

t010 [t10, t40,1, t40,2, t40,3, t40,4]

t020,1 t020,2 t020,3 t020,4

t031 [t31, t41,2, t41,3, t41,4]

t040,1 t021,2 t021,3 t021,4

t032 [t3
2, t4

2,3, t4
2,4]

t040,2 t041,2 t022,3 t022,4

t033[t33, t
4
3,4]

t040,3 t041,3 t042,3 t023,4

t034[t34]

phase2

t040,4 t041,4 t042,4 t043,4

Fig. 2: FTM-BC protocol

C. Packet Processing

The algorithm takes as input three data structures:
reception, emission, and received at. These dictionaries
store information about received packets, emitted packets, and
reception times, respectively.

The algorithm receives a packet p from source s at time
t and extracts relevant information such as the packet ID
(pid), current phase, and lists of sent and received packets
timestamps (sents and receiveds).

First, the algorithm update all the dictionnaires:
• The reception of the packet p is recorded in the reception

Algorithm 1: Protocol FTM BC : packet processing
Data: reception dict

node:packet id:(sending time, reception time)
Data: emission dict packet id:emission time
Data: received at dict packet id:node:reception time
self packet p from s at time t
p id, phase, sents, receiveds p
/* record reception of p */
reception[s][p id] (;, t)
/* update emission times from s */
for pi, ti in sents do

if pi 2 reception[s] then
(;, tr) reception[s][pi]
reception[s][pi] (ti, t

r)

/* update reception times by s */
for pi, ti in receiveds[self] do

received at[pi][s] ti

/* check if ToF from s is known */
if 9p1s.t. s 2 received at[p1] and p2 2
reception[s] s.t. reception[s][p2] 6= (;,) then

t1 emission[p1]
t2 received at[p1][s]
t3, t4 reception[s][p2]

! ToF (s, self) = (t4�t1)�(t3�t2)
2

/* check if reaction is needed */
if self = 0 then

if phase+1 not prepared then
prepare packet(phase+1)
mark next phase as prepared

else
if never reacted to phase then

prepare answer packet(phase)
mark phase is answered

delay next packet to now + phase delay

Algorithm 2: Protocol FTM BC : Sending packet
Data: buffer = list of packets to send
Data: run when sending is possible
for each packet p in buffer do

if p.time to send = now then
load unsend data from emission and received at

dictionaries into p
send p

dictionary, with the reception time set to an empty value
(;) and the current time t.

• The algorithm updates the emission times from source s
by iterating over each packet (pi) and its corresponding
emission time (ti) in the sents list. If the packet pi is
present in the reception dictionary for source s, the
algorithm updates the reception time for that packet to
the effective emission time ti.

• The reception times by source s are updated by iterating
over each packet (pi) and its reception time (ti) in the
receiveds[self] list. The reception time for the packet
pi from source s is then stored in the received at

Fig. 2: FTM-BC protocol

data can be done in any order, with no consistency between
the two phases. The only constraint is that all messages in
phase 1 must be completed before phase 2 is initialized.

B. Precise design of the protocol

The algorithm of the protocol FTM-BC consists of two
parts: the packet processing (Algorithm 1: packet processing),
where received and emitted packet information is recorded and
analyzed, and the sending of packets (Algorithm 2: Sending
packet) based on specific conditions. Let us describe each part
in detail.

1) Packet Processing: The algorithm takes as input three
data structures: reception, emission, and received at. These
dictionaries store information about received packets, emitted
packets, and reception times, respectively.

The algorithm receives a packet p from source s at time
t and extracts relevant information such as the packet ID
(pid), current phase, and lists of sent and received packets
timestamps (sents and receiveds).

First, the algorithm updates all the dictionaries:

Algorithm 1: Protocol FTM-BC: packet processing
Data: reception dict

node:packet id:(sending time, reception time)
Data: emission dict packet id:emission time
Data: received at dict packet id:node:reception time
self ← packet p from s at time t
p id, phase, sents, receiveds ← p
/* record reception of p */
reception[s][p id]← (∅, t)
/* update emission times from s */
for pi, ti in sents do

if pi ∈ reception[s] then
(∅, tr)← reception[s][pi]
reception[s][pi]← (ti, t

r)

/* update reception times by s */
for pi, ti in receiveds[self] do

received at[pi][s]← ti

/* check if ToF from s is known */
if ∃p1s.t. s ∈ received at[p1] and p2 ∈
reception[s] s.t. reception[s][p2] ̸= (∅,) then

t1 ← emission[p1]
t2 ← received at[p1][s]
t3, t4 ← reception[s][p2]

→ ToF (s, self) = (t4−t1)−(t3−t2)
2

c

/* check if reaction is needed */
if self = 0 then

if phase+1 not prepared then
prepare packet(phase+1)
mark next phase as prepared

else
if never reacted to phase then

prepare answer packet(phase)
mark phase is answered

delay next packet to now + phase delay

Algorithm 2: Protocol FTM-BC: Sending packet
Data: buffer = list of packets to send
Data: run when sending is possible
for each packet p in buffer do

if p.time to send = now then
load unsend data from emission and received at

dictionaries into p
send p

• The reception of the packet p is recorded in the reception
dictionary, with the sending time set to an empty value
(∅).

• The emission times of previous packets from s are
retrieved in the sents list and the reception dictionary
for source s is updated.

• The reception times by source s are updated similarly.

When all needed timestamps from s have been received, the
Time of Flight (ToF) can be computed.

The last part of the algorithm checks whether the node has
already managed the necessary reaction to the current phase.
On the one hand, if we are on the root node initiating the

FTM-BC (here, set to 0 without losing generality), it prepares
the next packet to be sent at the start of the next phase. On
the other hand, if we are on another node, it checks whether
a response message has already been sent. If not, it prepares
the answer packet for the current phase and marks the phase
as answered.

Finally, the algorithm delays the sending of the next packet
by the current time plus the phase delay.

2) Sending Packet: The algorithm takes as input a buffer,
which is a list of packets to send. It is executed only when
the underlying MAC layer signals that an emission is possible
(e.g. when the backoff counter of the packet reaches 0 in a
CSMA/CA mechanism).

For each packet p in the buffer, the algorithm checks if it
is time to send the packet (p.time to send = now). If so,
the algorithm loads the unsent data from the emission and
received at dictionaries into the packet p and sends it.

C. Practical implementation issues

The latter sending mechanism yields an issue for an im-
plementation in a real networking stack. It is usually not
possible to modify the payload of a packet once it is in
the lower layers buffers. It may need that the protocol is
implemented in the driver of the network interface, similarly
to actual FTM implementations [7]. Some Ultra-Wide Band
chipset (e.g. Decawave DW1000 chipset [8]) performs such
last moment modifications for precise timestamping. Never-
theless, we conjecture that it is also possible to circumvent
most of these issues by adapting techniques that have been
used in different settings facing similar challenges, such as
network coding experiments [9]. An optimized and a practical
implementation will be investigated in future works.

IV. VALIDATION AND EVALUATION

In this section, we will analyze the asymptotic behavior of
our protocol, before presenting intensive simulation results.

A. Theoretical analysis

In this section, we will formally analyze the performance of
the algorithm in terms of communication complexity, number
of messages and time.

1) Communication complexity in terms of messages:
Theorem 1 (Communication complexity of FTM-UC– Mes-

sages): Let N be the average degree of the nodes in the
underlying communication graph. Each round of the FTM-
UC protocol requires 2nN messages to estimate the complete
set of pairwise distances of the participating nodes. The worst
case corresponds to a complexity of 2n(n−1) messages, while
the best case has a complexity of 4(n− 1) messages.

The proof of Theorem 1 is basic graph theory arguments
and is omitted here.

Theorem 2 (Communication complexity of FTM-BC– Mes-
sages): Each round of the FTM-BC protocol requires exactly
2n messages to estimate all the pairwise distances of the
participating nodes.

Proof. As introduced in Section III, by design, each node
sends exactly 2 messages per round (1 in each phase of FTM-
BC). Thus, the number of messages exchanged during one
round is exactly 2n, that concludes the proof. ⊓⊔

Thus, whatever the topology of the graph concerned, with
n ≥ 2, the complexity of FTM-UC is greater than FTM-BC,
and significantly higher most of the time. In the case of very
high density graphs, it even goes from quadratic complexity
to linear complexity.

2) Communication complexity in terms of information ex-
changed:

Theorem 3 (Communication complexity of FTM-UC– Infor-
mation): Let N be the average degree of the nodes in the
underlying communication graph. For the protocol FTM-UC,
the complexity of communication, in terms of the amount of
information transmitted, is 2nN timestamps per round.
Proof. To determine the distance between any two partic-
ipating nodes, 4 timestamps are required. As introduced in
Section II-B, each pair of nodes exchanges 4 messages over
each edges in the graph. Then, as the number of messages to
compute all the pairwise ranging is 2nN (cf., Theorem 1), the
overall number of timestamps sent is the same. ⊓⊔

Theorem 4 (Communication complexity of FTM-BC– Infor-
mation): Let N be the average degree of the nodes in the
underlying communication graph. For the protocol FTM-BC,
the complexity of communication, in terms of the amount of
information transmitted, is n(N + 1) timestamps per round.
Proof. In this proof, we separate the processing of timestamps
for sent and received messages.

In the case of FTM-BC, some timestamps are identical
for several neighbors (cf., Section III). In fact, as the FTM-
BC protocol is based on broadcast communication, only one
emission will happen, and the timestamps t1 and t3 are the
same for all the neighbors of a given node i. Therefore, these
timestamps only need to be transmitted once by node (during
phase 2) to reach the entire Ni.

Furthermore, as explained in Section III-A, each timestamp
t3∗ will be considered as the timestamp t1∗ for those pairs that
had not yet communicated during phase 1. Thus, for each
given node i, only one timestamp will be transmitted (t1i for
the initiator and t3i for the other participating nodes). This
optimization by design reduces by a factor of 2 the number of
all the timestamps t1 and t3 for sent messages. This represents
n timestamps to be sent for the overall round.

On the other hand, the reception time of the same broadcast
message depends on the receiving node. Thus, all the reception
timestamps (t2∗ and t4∗) will have to be transmitted during
phases 1 and 2 of the protocol. This represents exactly nN
timestamps (cf., Proof of Theorem 3).

Finally, the overall amount of timestamps exchanged is:

n+ nN = n(N + 1),

that concludes the proof. ⊓⊔

B. Performance evaluation

1) Simulator software: Both FTM-BC and FTM-UC have
been implemented in a dedicated simulator build on the
SimPy3 discrete event simulation framework1. For the sake of
reproducibility, the code of the simulator is available on git-
lab2. All nodes are autonomous agents that can communicate
only through an ideal communication layer, also implemented
as an autonomous agent.

While the implementation of the nodes is close to what
a real implementation would look like, the communication
layer only mimics an ideal CSMA/CA-based MAC layer and
emulates transmission and propagation times. It is however
possible to gradually increase the realism of the network
model up to a certain point. To simulate a very precise Wi-Fi
stack, e.g., to take account of interference, it will nevertheless
be necessary to switch to a real network simulator such as
NS33 for which a recent implementation of FTM has been
proposed [10].

2) Simulation settings: For each simulation, the network
is represented as a graph of the radio connectivity. In this
paper, all nodes have the same communication range. The
graph is therefore a symmetric unit disk graph. The node with
the identifier 0 has the special role of initiating the FTM-BC
protocol or a BFS protocol that allows each node to discover
its neighborhood before running FTM-UC.

Indeed, our implementation of FTM-UC runs in two phases.
1) Node 0 starts a BFS, each node discovers its neighbors.
2) Then each node initiates the FTM-UC exchange with all

its neighbors that have a larger identifier.
After a 4 packets FTM-UC exchange, both the initiating

and responding nodes knows the ranging between them.

Several metrics are presented.
• The number of packet transmissions are given to validate

the theoretical analysis.
• The node completion time is the time elapsing between

sending or receiving the first FTM message and receiving
or sending the last packet, when the ranging to all
its neighbors is known. If the nodes were mobile, this
time would distort the ranging information obtained. The
greater the time, the greater the errors introduced into a
multilateration calculation.

• The overall completion time is the time needed for
computation of all ranging information in the network.
If the nodes were mobile, the ranging process would
have to be repeated periodically to update the location
information. The greater the overall completion time,
the lower the update frequency. Even if each location
calculation is perfect, its accuracy degrades over time as
a function of the speed of the nodes.

3) Simulation results: In the following, we report simula-
tion results on 2 to 200 nodes lines, 2 to 200 cliques and 50

1SimPy 3: https://simpy.readthedocs.io
2Gitlab of our code: https://gitlab.inria.fr/hrivano/ftm broadcast
3NS3: https://www.nsnam.org/

nodes random graphs for which the communication range vary
from 1 (sparse graph) to high values (when the graph becomes
a clique)

Figure 3 reports the number of packets sent by each method.
As expected, it validates the theoretical analysis. FTM-BC
sends 2 packets per node, as FTM-UC 2 packets per edge.

Figure 4 and Figure 5 reports the overall completion time.
For both protocols, a high degree implies more contention
for accessing the medium, hence larger delays due to the
random backoff in the CSMA/CA layer. This slows down
both FTM-BC and FTM-UC. For FTM-UC however, the
degree has an additional and more significant impact since
one transaction has to be performed with each neighbor.
Sparse networks with large diameters and low degrees are
the most efficient configurations for FTM-UC. It indeed is
able to perform several ranging in parallel. Oppositely, the
two waves produced by FTM-BC induces a delay that is
proportional to the diameter time the phase delay parameter.
Overall, for very sparse networks, FTM-UC can complete the
ranging faster than FTM-BC by taking advantage of spatial
reuse in radio networks. Note that FTM-UC needs that a BFS
is done beforehand so that each node knows its neighborhood,
in particular their ID. But, since there are other mechanisms,
potentially more effective, that can provide this information
or that this information can be needed by other protocols, the
time taken by BFS is not counted here for sake of fairness.

Figure 6 reports the average node completion time, only
on the 50 nodes random graphs, since the results on lines
and cliques are directly related to the overall completion
time. More than 120 topologies have been simulated because
the randomness of CSMA/CA have a significant impact on
the result, in particular for FTM-UC, as one can see in
the min-max discrepancy. FTM-UC is faster in most of the
sparse network cases, which is expected since each FTM-
UC transaction is run in a row and each node loops over
its neighbors (with higher IDs) while each node waits that
the first FTM-BC wave is completed in its neighborhood
before answering to the second one. Besides, the waiting time
implemented (phase delay in Algorithm 1) might be over
dimensioned and need to be carefully optimized. However,
the difference between the mean node completion time with
FTM-BC and FTM-UC is much lower in sparse networks than
in dense ones.

V. CONCLUSION AND FUTURE WORKS

In this article, we present an improvement to the geolocation
protocol included in the 802.11.2016 standard, namely Fine
Timing Measurement (FTM). The main idea is to optimize
the two-way handshake of the classic protocol by taking into
account the omnidirectional communication of the devices
involved in the use of this wireless communication standard.
We leveraged the protocol with broadcast communication,
enabling the number of messages exchanged to be drastically
reduced, and dividing the amount of information required to
be transmitted by 2.

10 20 30 40 50
Average node degree

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f p

ac
ke

ts
FTM BC
FTM UC

(a) 50 nodes random graphs

0 20 40 60 80 100
Network diameter

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f p
ac

ke
ts

FTM BC
FTM UC

(b) 2-100 nodes lines

0 20 40 60 80 100
Average node degree

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f p
ac

ke
ts

FTM BC
FTM UC

(c) 2-100 nodes cliques

Fig. 3: Number of packets

10 20 30 40 50
Average node degree

25

50

75

100

125

150

175

200

Ov
er

al
l c

om
pl

et
io

n
tim

e

FTM BC
FTM UC

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Network diameter

25

50

75

100

125

150

175

200

Ov
er

al
l c

om
pl

et
io

n
tim

e

FTM BC
FTM UC

Fig. 4: Overall completion time - 50 nodes random graphs, min-max values

0 20 40 60 80 100
Average node degree

0

200

400

600

800

Ov
er

al
l c

om
pl

et
io

n
tim

e

FTM BC
FTM UC

0 20 40 60 80 100
Network diameter

0

50

100

150

200

250

Ov
er

al
l c

om
pl

et
io

n
tim

e

FTM BC
FTM UC

Fig. 5: Overall completion time - 2-100 nodes cliques (left) and lines (right), min-max values

0 10 20 30 40 50
Average node degree

0

20

40

60

80

100

120

140

M
ea

n
no

de
 c

om
pl

et
io

n
tim

e

Type of FTM
bc
uc

0 2 4 6 8 10 12 14 16
Network diameter

0

20

40

60

80

100

120

140

M
ea

n
no

de
 c

om
pl

et
io

n
tim

e

Type of FTM
bc
uc

Fig. 6: Mean node completion time - 50 nodes random graphs, min-max values

REFERENCES

[1] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Comm. Surveys and Tutorials, 2019.

[2] M. Von Tschirschnitz and M. Wagner, “Synchronization-free and low
power tdoa for radio based indoor positioning,” in IPIN, 2018.

[3] P. Corbalán and G. P. Picco, “Ultra-wideband concurrent ranging,” ACM
Transactions on Sensor Networks (TOSN), 2020.

[4] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, IEEE Std. 802.11, 2016.

[5] J. Henry, N. Montavont, Y. Busnel, R. Ludinard, and I. Hrasko, “A
Geometric Approach to Noisy EDM Resolution in FTM Measurements,”
MDPI Computers, 2021.

[6] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “Macaw: A media
access protocol for wireless lan’s,” in ACM SIGCOMM, 1994.

[7] V. Barral Vales, O. C. Fernández, T. Domı́nguez-Bolaño, C. J. Escudero,
and J. A. Garcı́a-Naya, “Fine Time Measurement for the Internet of
Things: A Practical Approach Using ESP32,” IEEE Internet of Things
Journal, 2022.

[8] J. Cano, G. Pagès, E. Chaumette, and J. LeNy, “Clock and Power-
Induced Bias Correction for UWB Time-of-Flight Measurements,” IEEE
Robotics and Automation Letters, 2022.

[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“Xors in the air: Practical wireless network coding,” IEEE/ACM Trans-
actions on Networking, 2008.

[10] A. Zubow, C. Laskos, and F. Dressler, “FTM-ns3: WiFi Fine Time
Measurements for NS3,” in WONS, 2022.

