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Abstract.

Configurations of rotating black holes in the cubic Galileon theory are computed

by means of spectral methods. The equations are written in the 3+1 formalism and

the coordinates are based on the maximal slicing condition and the spatial harmonic

gauge. The black holes are described as apparent horizons in equilibrium. It enables

the first fully consistent computation of rotating black holes in this theory. Several

quantities are extracted from the solutions. In particular, the vanishing of the mass is

confirmed. A link is made between that and the fact that the solutions do not obey

the zeroth-law of black hole thermodynamics.
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1. Introduction

In the last decade, observations have provided strong evidences that black holes are

true astronomical objects. One cannot help mentioning the first observations of the

gravitational waves resulting from the coalescence of two black holes in 2015 [1] by

the LIGO-Virgo collaboration [2, 3]. Since that first breakthrough, several tens of

such events have been detected. Another strong evidence comes from the high angular

resolution observations of the environment of the supermassive objects located at the

center of galaxies. Those observations are made either in radio by the EHT collaboration

[4] or in the infrared with the Gravity instrument [5].

If all the current observations are consistent with the compact objects being

black holes described by General Relativity, it is believed that the next generation

of gravitational wave detectors, LISA [6, 7] or the Einstein Telescope [8], will put more

stringent constraints on their nature. Deviations from General Relativity could then be

detected where black holes differ from the Kerr solution [9]. In order to prepare the

future observations and maximize the scientific payback, many research projects aim at

computing black hole solutions in various alternative theories of gravity.
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In a previous work [10], black holes in the cubic Galileon theory were constructed.

This theory of gravity belongs to the class of scalar-tensor theories known as Horndeski

theories [11], theories which lead to second-order field equations. It has been shown that

black holes constructed in the cubic Galileon theory could differ from those obtained in

General Relativity [12]. Using quasi-isotropic coordinates, solutions of rotation black

holes in this context were first obtained in [10]. However it turned out that the choice

of quasi-isotropic coordinates was inconsistent because of a violation of the circularity

condition (see Sec. 3.5 of [10] for a detailed discussion). It followed that the rotating

solutions obtained were only approximate.

In order to cure the limitations of [10] one must move away from the quasi-isotropic

coordinates. So, in this paper, one relies on numerical coordinates based on the maximal

slicing condition and the spatial harmonic gauge. This choice has proven to enable the

computation of various models of black holes, once appropriate boundary conditions are

enforced on the fields at the horizon [13]. Here, the formalism of [13] is applied to the

rotating black holes in the cubic Galileon theory and leads, for the first time, to exact

(up to the numerical precision) solutions.

The paper is organized as follows. Section 2 presents the theory and the various

equations in the 3+1 framework. The formalism described in [13] is then briefly recalled.

A detailed presentation of the resolution of the equation for the scalar-field is given,

as it turned out to be the most difficult part in obtaining the solutions. Section 3

presents various aspects of the computed black holes. After explaining the numerical

setup, the achieved precision is assessed by showing the behavior of error indicators

when increasing resolution. Last, some mathematical aspects of the configurations are

discussed, in particular the fact that the black holes do not obey the zeroth-law of

thermodynamics.

Throughout this paper Greek indices are four-dimensional ones, ranging from 0 to

3 whereas Latin indices are spatial ones, ranging from 1 to 3. Units such that G = c = 1

are used.

2. Equations

2.1. Model

Gravity in the cubic Galileon model involves a metric field g and a scalar-field ϕ. The

action contains an Einstein-Hilbert term, a kinetic one for the scalar-field and a non-

standard contribution of higher order in ϕ:

S (g, ϕ) =

∫ [
ξ (R− 2Λ)− η (∂ϕ)2 + γ (∂ϕ)2□ϕ

]√
−gdx4. (1)

g denotes the four-dimensional metric and ∇ the covariant derivative associated to

it. Λ is the cosmological constant and ξ, η and γ some coupling constants. The kinetic

term is (∂ϕ)2 = ∇µϕ∇µϕ and □ϕ = ∇µ∇µϕ.
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Following [10], the results presented in this paper are restricted to the case with

Λ = 0 and η = 0. The action then only depend on one coupling constant γ and reduces

to

S (g, ϕ) =

∫ [
R + γ (∂ϕ)2□ϕ

]√
−gdx4. (2)

The γ appearing in Eq. (2) relates to the one in Eq. (1) by a simple rescaling by ξ and

the same notation is used for simplicity. The stress energy-tensor then reads

Tµν = γ

[
∂(µϕ∂ν)∂ϕ

2 −□ϕ∂µϕ∂νϕ− 1

2
gµν∂

ρϕ∂ρ∂ϕ
2

]
. (3)

The variation of the action with respect to the scalar-field leads to an equation that

can be cast into the form of a current conservation ∇µJ
µ = 0 with

Jµ = γ

[
∂µϕ− 1

2
∂µ (∂ϕ)

2

]
. (4)

Black holes that differ from the Kerr solution can be obtained by demanding that

the scalar-field depends on time, in a linear manner

ϕ = qt+Ψ, (5)

where q is a constant and Ψ is a time-independent field. The stress-energy tensor (3)

contains only derivative of ϕ so that the form (5) leads to stationary solutions for which

q is a parameter.

2.2. 3+1 decomposition

Throughout this work, a 3+1 decomposition of spacetime is used (see, for instance,

[14] for a detailed presentation of the formalism). Spacetime is foliated by spatial

hypersurfaces of constant time Σt. On each slice, spatial coordinates xi are defined. In

this context, the geometry of the full spacetime can be given in terms of several spatial

quantities: a scalar the lapse N , a vector the shift Bi and a three-dimensional metric

γij. The four-dimensional line-element then reads

ds2 = (−N2 +BiB
i)dt2 + 2Bidx

idt+ γijdx
idxj. (6)

The normal to each hypersurface is given by nµ = (−N, 0, 0, 0) and nµ =

(1/N,−Bi/N). All spatial indices (Latin) are manipulated by means of γ. The second

fundamental form, the extrinsic curvature tensor, is given by

Kij =
1

2N
(DiBj +DjBi − ∂tγij) , (7)

where D denotes the covariant derivative with respect to γij.

The various parts of the stress-energy tensor can be expressed in terms of Ψ and

the 3+1 quantities.

□ϕ =
1√
−g

∂µ
( √

−gT µ
)
=

1

N
Di

(
NT i

)
, (8)
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with

T i = giα∂αϕ =
Bi

N2
q +

(
γij − BiBj

N2

)
DjΨ, (9)

so that

□ϕ =
1

N
Di

[
Bi

N
q +N

(
γij − BiBj

N2

)
DjΨ

]
. (10)

One also has

∂ϕ2 = gµν∂µϕ∂νϕ = − q2

N2
+ 2

Bi

N2
qDiΨ+

(
γij − BiBj

N2

)
DiΨDjΨ. (11)

The last term appearing in Eq. (3) is

∂ρϕ∂ρ∂ϕ
2 =

Bi

N2
qDi

(
∂ϕ2

)
+

(
γij − BiBj

N2

)
DiΨDj

(
∂ϕ2

)
. (12)

The 3+1 projections of the stress-energy tensor can be written in terms of Ψ also.

The computation of E = nµnνTµν involves the following terms

nµnν∂(µϕ∂ν)

(
∂ϕ2

)
= − q

Bi

N2
Di

(
∂ϕ2

)
+

BiBj

N2
DiΨDj

(
∂ϕ2

)
(13)

nµnν∂µϕ∂νϕ =

(
q

N
− Bi

N
DiΨ

)2

(14)

nµnνgµν = − 1. (15)

It leads to

E = γ

[
−q

Bi

N2
Di

(
∂ϕ2

)
+

BiBj

N2
DiΨDj

(
∂ϕ2

)
−□ϕ

(
q

N
− Bi

N
DiΨ

)2

+
1

2
∂ρϕ∂ρ∂ϕ

2

]
.(16)

The computation of Pi = −nµγν
i Tµν involves the following terms

nµγν
i ∂(µϕ∂ν)∂ϕ

2 =
q

2N
Di

(
∂ϕ2

)
− Bj

2N

(
DiΨDj

(
∂ϕ2

)
+DjΨDi

(
∂ϕ2

))
(17)

nµγν
i ∂µϕ∂νϕ =

(
q

N
− Bj

N
DjΨ

)
DiΨ (18)

nµγν
i gµν = 0. (19)

One then finds

Pi = −γ
[ q

2N
Di

(
∂ϕ2

)
− Bj

2N

(
DiΨDj

(
∂ϕ2

)
+DjΨDi

(
∂ϕ2

))
(20)

− □ϕ

(
q

N
− Bj

N
DjΨ

)
DiΨ

]
.

The last projection is Sij = γµ
i γ

ν
j Tµν with terms
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γµ
i γ

ν
j ∂(µϕ∂ν)∂ϕ

2 =
1

2

(
DiΨDj

(
∂ϕ2

)
+Dj ΨDi

(
∂ϕ2

))
(21)

γµ
i γ

ν
j ∂µϕ∂νϕ = DiΨDjΨ (22)

γµ
i γ

ν
j gµν = γij, (23)

so that

Sij = γ

[
1

2

(
DiΨDj

(
∂ϕ2

)
+Dj ΨDi

(
∂ϕ2

))
−□ϕDiΨDjΨ− 1

2
γij∂

ρϕ∂ρ∂ϕ
2

]
.(24)

The equation for the scalar-field can also be expressed in terms of the 3+1

quantities. The components of the conserved current (4) read

J0 = γq□ϕ (25)

Ji = γ

[
DiΨ□ϕ− 1

2
Di

(
∂ϕ2

)]
, (26)

so that

J i = giµJµ = γ

[
Bi

N2
q□ϕ+

(
γij − BiBj

N2

)(
DjΨ□ϕ− 1

2
Dj

(
∂ϕ2

))]
.(27)

Beware that J is not a three-dimensional vector so that J i doesn’t simply relate to

Ji by a contraction with γij. The conservation-law for the current is then

Di

(
NJ i

)
= 0. (28)

2.3. Gravitational sector

In [10] the field equations were solved by making use of quasi-isotropic coordinates.

The unknowns of the numerical code were then the non-vanishing components of the

various tensors (i.e. the grr = gθθ, gφφ and Bφ ones). This is to be contrasted with what

is used here, which is an application of the method presented in [13]. The unknowns are

the tensors N , Bi and γij themselves and not their individual components. Maximal

slicing and spatial harmonic gauge are used. Such choice of coordinates is enforced by

modifying the original system of the 3+1 equations. Maximal slicing is a condition on

the choice of time-coordinate. It amounts to maximizing the volume of the foliation

hypersurfaces (see Sec. 9.2.2 of [14]). From the mathematical point of view it translates

in the fact that the trace of the extrinsic curvature tensor vanishes : γijKij ≡ K = 0.

This condition is enforced by removing all the occurrences of K in the equations.

The spatial harmonic gauge defines the choice of spatial coordinates. It translates

in the condition that V i ≡ γkl
(
Γi
kl − Γ̄i

kl

)
= 0, where Γi

kl denotes the Christoffel

symbols of γij and Γ̄i
kl the ones of a background metric. In this paper the background

metric is chosen to be the flat one fij (see Sec. II.A of [13] for more details). In the

equations, the occurrences of the Ricci tensor are replaced by Rij − 1
2
(DiVj +DjVi).
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This modification ensures that the second order derivatives of the metric appear as a

Laplacian-like operator γkl∂k∂lγij. The resulting system of equations is

R−DkV
k −KijK

ij = 16πE (29)

DjKij = 8πPi (30)

LB⃗Kij −DiDjN + N

(
Rij −

1

2
(DiVj +DjVi)− 2KikK

k
j

)
(31)

= 4πN
(
2Sij −

(
γklSkl − E

)
γij

)
,

where Kij = 1
2N

(DiBj +DjBi) (no time derivative in that case) and L denotes the

Lie derivative. Equation (29) is the Hamiltonian constraint, Eq. (30) the momentum

one and Eq. (31) the evolution equation for Kij. The modified system Eqs. (29-31) is

expected to be well posed. However, for the solution to be a true solution of Einstein’s

equations, one must check, a posteriori, that the quantities K and V i are indeed zero.

This criterion has proven, in the past, to be a very strong test to assess the validity of

solutions (see the tests performed in [13]).

The presence of the black hole is imposed by enforcing appropriate boundary

conditions on an inner sphere of radius rH and by solving Eqs. (29-31) outside that

sphere. The boundary conditions used are those proposed in [13]. Only the main

features of those conditions are recalled here and the reader should refer to [13] for a

detailed presentation of the method. The boundary conditions encode the fact that

the inner sphere is an apparent horizon, in equilibrium, and rotating at a velocity Ω, a

parameter that enters the condition of the shift. Some quantities are freely specifiable

on the horizon, due to the fact that the coordinates used are defined by differential

conditions (i.e. the equations K = 0 and V i = 0 lead to differential equations on the

fields). In this work, those quantities are chosen, at the inner boundary, as follows:

N = 0.5 and γrθ = γφφ = 0. The spherically symmetric part of γrr (i.e. its Y 0
0

component) is also free and chosen to be 8. Those values have proven in the past (see

[13]) to facilitate the convergence of the numerical code. Changing them would only

lead to different choices of coordinates and not to new configurations.

The boundary condition on the shift radial component is Br = Ns̃r, where s̃i

denotes the unit normal to the horizon (with respect to the metric γij). This condition

comes from the fact the horizon is not expanding. It has an important implication

because it makes some components of Eq. (31) degenerate. This means that the factor in

front of the highest order radial derivatives term ∂2
rγij vanishes on the horizon, implying

that the equation becomes first order there and so does not require any boundary

conditions to be solved. This in particular the case for the components (θθ), (θ, φ)

and (φ, φ). This point is also relevant for the scalar-field equation as discussed in Sec.

2.4. Once again, a detailed analysis can be found in [13].

Outer boundary conditions are given at spatial infinity and simply amount to

demanding that the spacetime is asymptotically flat. This leads to N = 1, Bi = 0

and gij = fij, where fij is the flat three-dimensional metric. From the numerical point
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of view, the use of a compactification in 1/r allows for those conditions to be enforced

at exact spatial infinity (see Sec. 3.1).

2.4. Field equation

The equations presented in Sec. 2.2 involve only derivatives of the field Ψ. This is true for

the various projections of the stress-energy tensor and also for the scalar-field equation

(28). In all those cases, the only relevant quantity is DiΨ. For axially symmetric

solutions (the ones considered here) one has DφΨ = 0. So, from the numerical point

of view, one can consider the two quantities Ψr = ∂rΨ and Ψθ = 1
r
∂θΨ as being the

unknowns of the problem (a similar technique is used in [10]). The factor 1/r appearing

in Ψθ comes from the fact that an orthonormal spherical tensorial base is used ; it

ensures that DiΨ = (Ψr,Ψθ, 0).

Let us first consider the non-rotating case for which the solution is spherically

symmetric. It follows that Ψθ = 0 and only one unknown remains: Ψr. One needs to

assess the order of Eq. (28) in terms of the derivatives of Ψr. Equation (10) contains first

order derivatives of Ψr. However, the prefactor in front of DrΨr is
(
grr − BrBr

N2

)
, which

vanishes on the horizon, due to the boundary conditions used (see Sec. 2.3 and [13]). So

□ϕ is a first order equation in terms of Ψr but only zeroth order near the horizon. The

same is true for Eq. (11). It is then easy to verify that the conservation equation (28)

contains second order derivatives of Ψr but is degenerate on the horizon, where only

first order derivatives are present. It follows that only one boundary condition must

be prescribed when solving Eq. (28). A naive choice would be to relax any condition

on the horizon and simply demand that Ψr = 0 at infinity. However this leads to

solutions that do not verify K = 0 and V i = 0 and so are not solutions of Einstein’s

equations. A suitable choice consists in relaxing the condition at infinity and to enforce,

on the horizon, the condition V r = 0. It is not trivial that this condition is sufficient

to ensure that K and V i vanish everywhere, but it turns out to be the case. Moreover

the obtained solutions do indeed fulfill Ψr = 0 at infinity. This situation concerning the

boundary conditions is to be contrasted with what happens for the hairy black holes

constructed in Sec. V of [13] where only a vanishing boundary condition at infinity is

needed. One can conjecture that this difference comes from the fact that the equations

are of different order, in terms of the scalar-field: second order for the hairy black holes

of [13] and third order in the cubic Galileon case.

The above conclusions still hold in the rotating case, where both Ψr and Ψθ must

be taken into account. The conservation equation (28) is solved using a single boundary

condition on the horizon: V r = 0. An additional equation is provided by the symmetry

of second derivatives: ∂r (rΨθ) = ∂θΨr. From a technical point of view, this can be

seen as a first order differential equation on Ψθ, which is solved by demanding that, at

infinity Ψθ = 0. It turns out that this is sufficient to lead to valid solutions. In particular,

there is no need to impose anything for V θ on the horizon. All this discussion about

the scalar-field equation may seem rather technical but it is be noted that solving it
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properly has been the main difficulty in getting the solutions presented here.

3. Results

3.1. Numerical method

The equations presented in Sec. 2 are solved by means of the Kadath library [15, 16].

The setting is very similar to the one used in Sec. V of [13]. Space is divided into several

spherical shells, the last one extending up to infinity thanks to a compactification in

1/r. This setting is very standard and has proven to lead to good numerical results, in

terms of both convergence and precision, in many different physical situations. Spherical

coordinates (r, θ, φ) are used for the points and the tensors are given on the associated

spherical orthonormal tensorial base. In each domain, a spectral decomposition of the

fields is used where the angles (θ, φ) are expanded onto trigonometrical functions and

the radial coordinate is described by means of Chebyshev polynomials. The numbers

of points in each dimension are labelled Nr, Nθ and Nφ. This work is concerned with

axisymmetric configurations only, so that the resolution in φ is maintained fixed to

Nφ = 4 (for technicalities in the Kadath library it is not possible to have less points).

The Kadath library enables to transform the system of equations into a discretized

system on the spectral coefficients by means of a weighted residual method, essentially

a version of the tau-method. Some regularities (i.e. on the axis of the spherical

coordinates) are enforced by means of Galerkin basis. The non-linear discretized system

is solved by means of a Newton-Raphson iteration. The code is parallelized using MPI

and an typical job runs on 200 cores.

As in [10], as a first step, the test-field solution is obtained. It corresponds to

the limit γ → 0, where the back-reaction of the scalar-field onto the metric sector is

neglected. Thus the metric fields are fixed to the ones of a Schwarzschild black hole,

obtained numerically in the maximal slicing and spatial harmonic gauge. It corresponds

to the configurations obtained in Sec. III of [13], with Ω = 0. Once the metric fields

are known, the scalar-field is obtained by solving the equation Jr = 0, which, in the

non-rotating case, is equivalent to solving Eq. (28). The test-field solution is known to

have a different asymptotic behavior, at spatial infinity, than the full solutions. Indeed,

as can be seen, for instance, on Eq. (41) of [10], Ψr behaves like 1/
√
r when r → ∞.

This square-root behavior is inconsistent with the compactification used by the Kadath

library so that Jr = 0 is solved only up to a finite radius rout. At that outer radius, the

boundary condition ∂rΨr + 2/rΨr = 0 is enforced. This ensures that the true test-field

solution is recovered when rout → ∞. This technicality is only used for the test-field

case and standard compactification and exact boundary conditions at infinity are used

otherwise.

The test-field solution is used as a first initial guess to get solutions of the full

Einstein-Klein-Gordon system. In the context of this paper, the coordinate radius

of the black hole is maintained fixed to rH = 1. The parameter q is also fixed to
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q = 1, so the configurations depend on two remaining parameters: the angular velocity

Ω and the coupling constant γ. Sequences are constructed by slowly varying those

parameters. Let us mention that the various quantities are not scaled in the same way

as in [10]. Indeed, in that previous paper, the various quantities were scaled by means

of the radius of the horizon, which is not a coordinate independent quantity. In this

paper, the circumferential radius rcirc of the black hole, that is the proper length of the

horizon in the orbital plane divided by 2π, is used. This change in scaling makes a

precise comparison between the two papers somewhat difficult. However this drawback

is overcome by the advantage in dealing with coordinate independent quantities only.

Let us mention that the computation of rcirc involves the value of γφφ on the horizon,

so that it is not constant for all configurations, even if rH is fixed.

3.2. Exact solutions with rotation

In order to assess the validity of the computed configurations, the various sources of

numerical errors are monitored, as a function of the resolution. More precisely they

consist of every equation that must be verified for a true solution but that is not solved

explicitly by the code. This is the case for the gauge conditions K = 0 and V i = 0 and

for the Y 0
0 part of the expansion condition on the horizon Θ = 0 (see [13] and Sec. 2.3

for more details). An additional source of error comes from the method used to solve

the partial differential equations (i.e. the tau-method). In order to enforce appropriate

boundary and matching conditions, the last coefficients of the residual of the equations

are not forced to be zero. Nevertheless, their value must go to zero with increasing

resolution for well-posed problems. The maximal value of all those errors are shown in

Fig. 1, for various resolutions. The curves are labelled by the number of points in r and

θ in the form Nr × Nθ. The number of points in the radial direction is always higher

than the angular one, a typical feature when using the Kadath library, that is known to

facilitate convergence.

The first panel of Fig. 1 shows the errors for non-rotating configurations, as a

function of the coupling constant γ. The errors exhibit a spectral convergence with an

order of magnitude improvement between the various resolutions. Moreover, the code

can reach higher values of the coupling constant with higher resolution. The second

panel of Fig. 1 shows the errors for configurations with rotation. The coupling constant

is maintained fixed to a moderate but not negligible value. The errors are plotted as a

function of the angular velocity Ω. As for the non-rotating case, the curves exhibit a clear

spectral convergence. This is to be contrasted with the second panel of Fig. 1 of [10],

where the errors were independent of the resolution. This shows that the coordinates

used in this work are consistent with the true rotating solutions, contrary to the quasi-

isotropic ones (see discussion in Sec. 3.5 of [10]). The configurations presented in this

work are the first exact numerical solutions of rotating black holes in the cubic Galileon

theory.

The scalar-field Ψ can be constructed from Ψr by a numerical integration of the
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Figure 1: Errors on the full set of equations, for various resolutions. The first panel

shows the errors for the non-rotating solutions, as a function of the coupling constant γ

and the second one the errors for rotating configurations, as a function of the angular

velocity Ω. Spectral convergence is observed in both cases.

Figure 2: Radial profiles of the scalar-field Ψ, for γ = 0.01 and rcircΩ ≈= 0.505481.

Three different values of the coordinate θ are shown in each case. The curves are shown

as a function of r/rcirc and the three panels represent different radial regions.

equation ∂rΨ = Ψr. This is easily done using Kadath. One can check that the solution

is, as expected, regular everywhere. In particular no divergences appear on the horizon

and the field vanishes at spatial infinity. As an illustration, some radial profiles of Ψ are

shown in Fig. 2. One can notice that the angular dependence is relatively small. This is

to be expected as the amplitude of Ψθ is, in that case, almost two orders of magnitude

smaller that the one of Ψr. Nevertheless some effect of the coordinate θ can be seen, in

particular in the region close to r ≈ 3rcirc where the amplitude of Ψθ is the biggest. The

value of the field on the horizon also exhibits some θ dependence. By carefully exploring

the parameter space, it should be possible to find configurations for which the effect of

θ is bigger but this is beyond the scope of this paper.

Figure 3 shows, as an example, two global quantities for a sequence of rotating

solutions: the ADM (Arnowitt-Deser-Misner) mass and the angular momentum. Both

quantities are computed by surface integrals at infinity (see chapter 8 of [14] for
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Figure 3: The ADM mass MADM (first panel) and angular momentum J (second

panel), for a sequence of rotating solutions and three different resolutions. The coupling

constant is fixed to γ = 0.01. The ADM mass converges to zero whereas the angular

momentum is non-zero.

instance). The first panel shows that the ADM mass vanishes, for all configurations,

as its values converges to zero when increasing the resolution (the blue curve behavior

comes from a change of sign in the computed ADM mass). This is an effect already

observed in [10] where it was shown that the Komar mass of the configurations must be

zero as soon as the coupling constant γ is different from zero. The configurations being

stationary, the Komar and ADM mass must coincide. It implies that the ADM mass

must also vanish, as is confirmed by the first panel of Fig. 3. The situation is different

for the angular momentum shown in the second panel of Fig. 3. The curves do not

converge to zero and the difference between the two highest resolutions gives a measure

of the overall precision on the value of J .

To further illustrate the differences between the cubic Galileon black holes and the

classical ones, one can study the surface gravity. At each point of the horizon, it can be

computed by (see Eq. (10.9) in [17]):

κ = s̃iDiN −NKij s̃
is̃j. (32)

The first panel of Fig. 4 shows the orbital velocity Ω as a function of the average

value of κ on the horizon. The black curve corresponds to the Kerr black hole case and

to other ones to two different values of the coupling constant. The average is taken on

the collocation points that lie on the horizon. So it is not the true angular average but

converges rapidly to it, when resolution increases. The plot clearly indicates that the

cubic Galileon field has a strong impact, at least on the average value of the surface

gravity, even in the non-rotating case. Moreover, the effect of the cubic Galileon does

not limit itself to the average of the surface gravity. It also makes the solutions deviate

from the zeroth law of black holes thermodynamic which states that the surface gravity

must be constant on the horizon. This can be measured by computing the mean of
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Figure 4: The first panel shows the angular velocity Ω, as a function of the average

value of the surface gravity on the horizon. The second panel shows the average relative

variation on the horizon of the surface gravity ∆κ, as a function of Ω. Quantities are

scaled by rcirc.

the absolute value of relative deviation on the horizon, defined as ∆κ = ⟨ |κ− ⟨κ⟩|
κ

⟩,
quantity that vanishes if and only if κ is constant. This deviation is shown on the

second panel of Fig. 4 for rotating sequences of various resolutions. The value of ∆κ is

clearly independent of the resolution and in particular it does not converge to zero: the

black holes in the cubic Galileon theory don’t obey the zeroth law.

It was shown in [18] that the zeroth law is true for stationary black holes under the

dominant energy condition. For the configurations obtained in this paper, it turns out

that the value of the energy density given by Eq. (16) is negative everywhere. It violates

the weak energy condition which states that TµνX
µXν ≥ 0 for every time-like vector

Xµ, meaning every physical observer measures a positive energy density. The weak

energy solution being included in the dominant one, the latter is also violated ; there is

no reason the zeroth law should hold. This can be linked to the positive energy theorem

[19, 20, 21] which essentially states that any spacetime with zero ADM mass and that

obeys the dominant energy condition must be Minkowski spacetime. It follows that

the zero ADM mass configurations constructed in this paper cannot obey the dominant

energy condition and so can violate the zeroth law, as is observed.

4. Conclusion

In this paper, for the first time, exact configurations (up to the numerical precision)

of rotating black holes in the cubic Galileon theory are constructed. This is achieved

by moving away from the quasi-isotropic coordinates used before. Instead a set of

differential gauges under the 3+1 formalism is used : maximal slicing for the time

coordinate and the spatial harmonic gauge for the spatial coordinates. In this context,

the presence of the black hole is enforced by demanding that it is an apparent horizon
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in equilibrium. The full set of boundary conditions that ensues from those choices has

been presented is details in [13] and used with success in several cases. The fact that

the equation for the scalar-field contains third order derivatives (instead of two for more

usual cases), leads to additional complication in terms of what boundary conditions

must be used for the scalar-field. Nevertheless, an appropriate choice has been found

and enabled the successful computation of rotating black holes in the cubic Galileon

theory.

After carefully assessing the validity of the numerical results by monitoring various

error indicators, especially those linked to the gauge choice, several properties of the

solutions have been discussed. In particular, as in [10], it is shown that the mass of

the black hole vanishes, contrary to the angular momentum. A link is made between

that property and the fact that the configurations do not obey the zeroth-low of

thermodynamics. Both features arise from the fact that the stress-energy tensor coming

from the scalar-field doesn’t verify the dominant energy condition.

If the black holes in the cubic Galileon theory do not seem to be a valid alternative

to the astrophysical ones, especially with a vanishing mass, they are still worth studying.

First, there was a need to cure the main limitation of [10], limitation coming form the

use of quasi-isotropic coordinates. Second, this paper is another successful application

of the formalism presented in [13], a valuable tool to compute black hole solutions in

various context. For the future, there are plans to apply it to cases that are still allowed

by the observations. Once computed, various physical observables could be extracted

from the numerical solutions. One could study the orbits of massive or massless particles

around those objects, accretion disks in their vicinity, compute the frequencies of the

quasi-normal modes or extract the gravitational waveform emitted by a binary system.

In the long run, it will help unveiling the nature of the most compact objects in the

Universe and put constraints on the theory of gravity.
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