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1.  Introduction
The tropical Pacific Ocean is the center of action of the El Niño-Southern Oscillation (ENSO), the dominant 
mode of tropical climate variability (Philander, 1990; Vecchi & Wittenberg, 2010). This phenomenon changes 
temperature and weather patterns via atmospheric teleconnections, thus affecting ecosystems and human soci-
eties worldwide (Cai et al., 2021; Collins et al., 2010). However, El Niño's response to global warming is still 
unclear in model projections and limits future predictions (Cai et al., 2014, 2021; Callahan et al., 2021; DiNezio 
et al., 2012; Fredriksen et al., 2020; Freund et al., 2020; Wengel et al., 2021).

Additional complexity arises from the diversity of El Niño events, or flavors, which is now well characterized 
(Capotondi et al., 2015; Timmermann et al., 2018). There is no robust consensus regarding the changes in El 
Niño events' diversity under climate change (Lee & McPhaden, 2010; McPhaden et al., 2011; Yeh et al., 2009). 
For example, models that predict an El Niño-like warming in the future have been associated with an increase 
in Eastern Pacific (EP) El Niño events (Fredriksen et al., 2020), or with more Central Pacific (CP) and fewer EP 
events (Freund et al., 2020).

The Holocene period, which began 10,000 years ago, provides a long-time-scale perspective on the links between 
changes in the mean state and El Niño variability, primarily related to orbitally driven changes in insolation. 
Throughout the Holocene, the seasonal cycle of incoming solar radiation at the top of the atmosphere decreases 
in the Northern Hemisphere and increases in the Southern Hemisphere due to slow changes in the Earth's orbital 
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and robust climate variability analysis.
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conditions, these indicators lead to opposite conclusions on the evolution of El Niño patterns over the last 
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parameters (Braconnot et  al.,  2019). Models and marine data show a reduction of ENSO variability in the 
mid-Holocene compared with the present (Brown et al., 2020; Carré et al., 2014, 2021; Emile-Geay et al., 2016). 
The last 6,000 years allow us to explore whether the diversity of El Niño events may change with the climate 
mean state.

A limited amount of studies tried to characterize the changes in El Niño flavors from paleoclimate simula-
tions (e.g., Luan et al., 2012; Karamperidou et al., 2015) and even less from paleoclimate data. One of the first 
attempts to detect past changes in ENSO flavors in paleoclimate records during the Holocene was based on fossil 
bivalve records from Peru (Carré et al., 2014). This study showed a period of negatively skewed anomalies about 
7,000 years ago and it was interpreted as a period dominated by CP El Niño events. Recently, Holocene changes 
in ENSO flavors were explored using the ratio of interannual variability changes recorded in the EP and CP 
regions, using boxes corresponding to the location of the fossil coral and bivalve records (Carré et al., 2021). The 
variance ratio between the EP and CP boxes in four transient simulations had either decreased or barely changed 
from 6,000 years ago to the present, which is qualitatively consistent with proxy observations (Carré et al., 2021). 
This is opposite to Karamperidou et  al.  (2015)'s results. Using two snapshot simulations of a mid-Holocene 
climate and pre-industrial conditions, they computed the variance of EP and CP El Niño events as defined by 
Takahashi et al. (2011) and found an increase in the variance of EP El Niño events and no changes in CP El Niño 
events in the preindustrial run compared with the mid-Holocene.

Here, we compare results obtained with the two types of methods using  transient simulations of the last 
6,000 years with two reference versions of the IPSL model (Braconnot et al., 2019), as well as two historical 
datasets (Hirahara et al., 2014; Huang et al., 2017). We analyze the reasons for the difference between the results 
of Carré et al. (2021) and Karamperidou et al. (2015). We do not judge which definition of ENSO flavors is best 
and note that the choice of methods should depend on the analysis context. We, therefore, question the way of 
interpreting the indicators and the exact meaning of the indicators themselves. We also discuss the implication 
for model-data comparisons and for assessing ENSO flavor changes in a context of mean state shift that might 
alter ENSO patterns.

Section 2 describes the historical datasets and transient simulations, the two methods of El Niño flavors' compu-
tation, and the multi-linear regression approach chosen to characterize El Niño pattern shifts. Section 3 presents 
the different approaches to El Niño flavor shifts over the Holocene and present times, and discusses how to inter-
pret the results of the two methods.

2.  Methods
2.1.  Transient Holocene Simulations and SST Observation Data

The two transient simulations used in this study, Vlr01 and Sr02, are described in Braconnot et al. (2019) and 
were also part of the model-data comparison in Carré et al. (2021). The IPSL fully coupled model includes the 
energy, water, and carbon cycle between the atmosphere, ocean, land, and ice. For Vlr01, obtained with the 
IPSL-CM5 model, the atmosphere has a horizontal resolution of 96 points in longitude and latitude and a vertical 
resolution of 39 levels. The ocean has a resolution of 182 points in longitude, 149 points in latitude, and 31 verti-
cal levels. The model version is described in Dufresne et al. (2013). Sr02 is run with a modified model version 
with a different soil hydrological scheme over land and a dynamical vegetation module (Braconnot et al., 2019). 
It also has a higher horizontal atmospheric resolution of 144 points in longitude and 143 in latitude. Both simu-
lations are run from 6,000 BP to 0 BP (1950 CE). The initial state corresponds to a mid-Holocene simulation 
with the corresponding model version. Earth orbital parameters and trace gases are updated annually (Braconnot 
et al., 2019), following the experimental protocol proposed by Otto-Bliesner et al. (2017).

In both versions of the IPSL model, the equatorial upwelling extends too far west, eroding the warm pool, and 
there is a tendency to produce too many spring El Niño events (Dufresne et al., 2013; Saint-Lu et al., 2016). 
Dynamic and thermodynamic feedbacks are smaller than observed, and ENSO variability is underestimated 
(Bellenger et al., 2014).

To compare the model results with observations, we use two historical SST datasets: COBE-SST2 (Hirahara 
et al., 2014) and ERSSTv5 (Huang et al., 2017). The temporal coverage of COBE-SST2 extends from 1850 to 2019 
and ERSSTv5 from 1854 to 2023. ERSSTv5 is derived from the International Comprehensive Ocean-Atmosphere 
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Dataset (ICOADS). The SST field from COBE-SST2 is reconstructed from in-situ SST and sea ice concentration 
observations. The common time frame for comparing the SST datasets and simulations is 1854–1950 CE. To 
have the same comparison framework, COBE-SST2, ERSSTv5, Vlr01, and Sr02 were remapped to a resolution 
of 1° in both latitude and longitude.

2.2.  Estimation of El Niño Flavors

Most definitions of ENSO diversity in the present, future, or past climates fall into two categories. In the first 
one, an Empirical Orthogonal Functions (EOF) approach is preferred to retrieve specific ENSO patterns (e.g., 
Takahashi et al., 2011; Kao and Yu, 2009; Ashok et al., 2007). Here, we use the indicator provided by Takahashi 
et al. (2011). We call it M1, and the way to estimate the EP and CP El Niño flavors is by rotating the first two prin-
cipal components, PC1 and PC2, of SST anomalies in the tropical Pacific Ocean (10°S–10°N, 110°E−60°W):

𝐸𝐸1 =
𝑃𝑃𝑃𝑃1 − 𝑃𝑃𝑃𝑃2

√

2
� (1)

𝐶𝐶1 =
𝑃𝑃𝑃𝑃1 + 𝑃𝑃𝑃𝑃2

√

2
� (2)

The E1 flavor emphasizes a type of El Niño that is more extreme with maximum anomaly located in the eastern 
tropical Pacific. The C1 flavor defines less extreme El Niño events in the central equatorial Pacific and some La 
Niña events. The E1 and C1 axes are orthogonal and, according to Takahashi et al. (2011), have dynamical mean-
ing because they characterize anomalies related to changes in large-scale ENSO dynamics.

In the second category, ENSO flavor indicators are estimated from the evolution of spatially averaged SST over 
specific areas (boxes) in the tropical Pacific that best represent EP and CP El Niño events (e.g., Kug et al. (2009); 
Yeh et al. (2009); Ren and Jin (2011)). E1 and C1 flavors, as computed above, correlate well with SSTs in the 
Niño4 (5°S–5°N, 160°E−150°W) and Niño1+2 (10°S–0°, 90°W–80°W) boxes. Based on the M1 method (Equa-
tions 1 and 2), Takahashi et al. (2011) proposed a way to approximate E1 and C1 through the linear combination 
of the SST anomalies in the Niño4 and Niño1+2 boxes. This method is called M2 and chosen to generically 
represent methods that compute ENSO flavors through the use of Niño boxes or boxes related to proxy records 
(e.g., Ren and Jin, 2011; Carré et al., 2021). Here, we use the same definition as Takahashi et al. (2011):

𝐸𝐸2 = 𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 − 0.5 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4� (3)

𝐶𝐶2 = 1.7 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 − 0.1 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2� (4)

With this definition, M1 and M2 provide similar results for the recent climatic period (Figure S1 in Supporting 
Information S1). For M2 and M1, E and C flavors, are estimated using the interannual band of SST anoma-
lies, obtained first by detrending SSTs and then applying a 2–7 year bandpass filter. The principal components 
computed in M1, PC1 and PC2, were standardized to unit standard deviation. For both methods, we take the 
October-April averages of the computed E and C flavors, that are then standardized to unit standard deviation. We 
note that, for M1, the EOF analysis gives both the patterns and time series of E1 and C1, while M2 is empirically 
computed, and thus we only have access to the time series of E2 and C2. We regress the times series onto the SST 
anomaly field to have the associated patterns. To stay consistent, we use the same method for E1 and C1. The 
regressed E1 and C1 give the same results as their original EOF projections.

To reflect changes in the relative contribution of E and C flavors in total ENSO variability, we compute estimates 
of the ratios of E over C, expressed as variance ratios for both methods. To show the long-term evolution of the 
ratio, we use a rolling window of 500 years over the Holocene. We also employ a window of 10 years to show the 
variability of ENSO flavors and agreement between methods in present times. We note that the shorter 10-year 
window and observational period are not long enough to capture long-term changes in ENSO variability, which 
requires at least 250 years (Stevenson et al., 2013; Wittenberg, 2009).

2.3.  Multi-Linear Regression

To interpret the differences between the two methods, we analyze how the E and C flavors represent the time 
series variability in the Niño1+2 and Niño4 boxes, the regions at the eastern and western ends of ENSO activity. 
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We first compute the average SST anomaly time series over each box. The variance is decomposed as the linear 
combination of the E and C flavors' variance:

𝜎𝜎
2

𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑦𝑦
= 𝛼𝛼 × 𝜎𝜎

2

𝐸𝐸𝑖𝑖
+ 𝛽𝛽 × 𝜎𝜎

2

𝐶𝐶𝑖𝑖
+ 𝛾𝛾� (5)

where i = 1 or i = 2, 𝐴𝐴 𝐴𝐴
2

𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑦𝑦
 is the variance of 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 1+2 or 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴4 , 𝐴𝐴 𝐴𝐴

2

𝐸𝐸
 is the variance of the E flavor with 

method Mi, and 𝐴𝐴 𝐴𝐴
2

𝐶𝐶
 is the variance of the C flavor estimated by method Mi. Variances were calculated over a 

window of 500 years, sliding over the 6,000–0 BP period. The regression coefficients are α and β, and γ is the 
residual. We computed these coefficients using a lasso regression model because it avoids overfitting by adding 
a penalty term to too-large coefficients (Tibshirani, 1996).

3.  Different Approaches of El Niño Flavor Changes
3.1.  Relative Changes Over the Last 6,000 Years

A surprising first result emerges from comparing the relative evolution of the E and C flavor variance ratios in the 
two transient simulations (Figures 1a and 1b). The ratio increases for both simulations when computed with M1 
and decreases when calculated using M2. The two methods lead to opposite conclusions on the relative evolution 
of ENSO throughout the Holocene when they should provide similar results. We hypothesize that the differences 
between Carré et al. (2021) and Karamperidou et al. (2015) come from the methods themselves.

Therefore, the difference between M1 and M2 might reflect specific Holocene variability or result from some of 
the model biases listed above. We first investigate the robustness of M2 and M1 estimates in the recent period 
from observations.

Although estimations of the E and C flavors for COBE-SST2 and ERSSTv5 match almost perfectly for the period 
1950 to 2019 (Figure 1c and Figure S1 in Supporting Information S1), differences also emerge. Indeed, from 
1854 to 1950, the agreement between the two datasets is not as good (Figure 1c). This can be attributed to the time 
window (1950–2010) used in Takahashi et al. (2011) to calibrate M2 from M1, which is too short to document 
the range of El Niño event diversity properly (Equations 3 and 4). A calibration for the 1854–1950 period would 
yield 𝐴𝐴 𝐴𝐴2 = −1.63 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 + 2.86 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 and 𝐴𝐴 𝐴𝐴2 = 4.28 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 − 1.73 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 for COBE-SST2, and 

𝐴𝐴 𝐴𝐴2 = −0.34 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 + 1.58 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 and 𝐴𝐴 𝐴𝐴2 = 2.66 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 − 0.81 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 for ERSSTv5. Differences 

Figure 1.  Evolution of the variance ratios of the E over C flavors during the Holocene for the simulations (a) Vlr01 and (b) Sr02, and for (c) present times. In (a) and 
(b), the solid lines represent E's 500-year rolling variance ratio over C (red for M1 and blue for M2). The shadings represent an error bar estimated from the variance 
ratio using a bootstrap approach with 1000 random 500-year non-overlapping windows. The x-axis represents the time in kyears BP (from left to right). In (c), we 
represented the mean of the 10-year rolling variance ratios of E over C, for each simulation (Vlr01, Sr02) and observational datasets (ERSSTv5, COBE-SST2), as a 
scatter plot. The dashed lines represent the 95% confidence interval of the mean, evaluated by bootstrap (10,000 repetitions). The scatter plots in (a) and (b) are also 
evaluated similarly for 1750–1800, 1800–1850, and 1850–1900 CE for both simulations. Each 50-year block comes from a separate analysis where we computed M1 
and M2 in non-overlapping successive 50-year windows.
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between the two periods and datasets can also be attributed to how ship observation biases were estimated before 
1950. For ERSSTv5, the nighttime marine air temperature helps correct the ship observations' biases. 140 Empir-
ical Orthogonal Teleconnections (EOT) were also used to reconstruct an SST field from 1854 to the present 
(Huang et al., 2018). For COBE-SST2, a bucket model calculates the biases of ship observations before 1941. 
133 EOF modes were used to reconstruct monthly SSTs from 1850 to today (Huang et al., 2018). Our analysis 
shows that the estimates of M1 and M2 are sensitive to climatic changes between two short and close periods, 
and different observational products.

The methods could also be affected by the IPSL model not reproducing the correct ENSO flavors. If we focus on 
the Holocene, we find opposite slopes of the simulated variance ratios between M1 and M2. However, if we focus 
on shorter time scales, for example, the last three time periods in the simulations, they show how variable the vari-
ance ratio of E over C is for both methods (Figures 1a and 1b). For 1854–1950, the variance ratio of M2 in the simu-
lations is compatible with ERSSTv5 but not COBE-SST2 (Figure 1c). The range of M1 and M2's variance ratios 
computed with COBE-SST2 seem to have stayed about the same between 1854–1950 and 1950–2019, contrary to 
ERSSTv5. Because of the sparse data before 1950, the methods used to reconstruct the SST field, and the biases, 
we cannot discuss the change in variability in detail. Also, we note the too-little length of observational windows 
to properly account for the chaotic nature of ENSO diversity. This model-data comparison indicates that despite 
the model biases and with the agreement regarding ERSSTv5 on the range of the variances of M1 and M2, we can 
use the simulations and discuss the evolution of the El Niño flavors during the Holocene. For the rest of this study, 
we focus on the Sr02 simulation since Vlr01 and Sr02 have similar trends in the Holocene (Figures 1a and 1b).

Figure 2.  El Niño flavor patterns from 6,000 to 0 BP for (a), (b) M1 and (c), (d) M2 in the Sr02 simulation. The patterns are the regressed SST anomalies onto the E 
or C flavors. The blue and green boxes represent the Niño4 and Niño1+2 boxes, respectively. Solid (dashed) contours denote positive (negative) values. To estimate 
the significance of the pattern changes over the last 6,000 years, for each simulation and method, we performed a recomputation of the E and C regressed patterns 
every 50 years. We then calculated the standard deviation at each grid point for each set of 120 patterns we obtained after the recomputation. Hatches represent areas 
where the signal exceeds 1.2 times the average standard deviation. We call this criterion “Holocene stability,” representing areas with the most robust patterns over the 
last 6,000 years. For each method, we show the variance explained by the E and C flavors in the (e), (g) Niño1+2 and (f), (h) Niño4 boxes in the Sr02 simulation (see 
Methods section). The y-coordinate represents the variance. The red dotted lines are the 500-year rolling variance in the Niño boxes, and the blue and yellow solid lines 
are respectively the regressed 500-year rolling variance of the E and C flavors in the Niño boxes.
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3.2.  Differences in ENSO Flavor Patterns

Another explanation for the difference in the variance ratio of E over C between the two periods of observations 
stems from the ENSO flavor patterns. In the observations, the patterns of E1 and E2 share similarities between 
1950 and 2019 (Figure S2 in Supporting Information S1) and 1854–1950 (Figure S3 in Supporting Informa-
tion S1), but there are some non-negligible differences. The C patterns are different in both present time frames, 
with C2 extending to the Peruvian coast compared to C1. The E and C pattern differences between methods are 
also seen in the historical period of the simulations (Figures S2 and S3 in Supporting Information S1).

The simulated patterns for the Holocene also show similar differences (Figure 2). To understand the Holocene differ-
ences between M1 and M2, we focus on the evolution of each of the variances explained by each flavor in the eastern 
(Niño1+2) and the western (Niño4) ends of the Pacific. The pattern of E1 is confined to the central-to-eastern part of 
the basin, while E2 is only confined to the east. E1 and E2 show greater variance explained in the Niño1+2 box over 
the Holocene. E2 explains almost no variance in the Niño4 box, compared with E1. Overall, M1 and M2 have similar 
shapes for the E flavor, but the amplitude is much larger in M1. For the C flavor, the differences in patterns are more 
drastic. C2 spreads out over the whole basin compared to only the western part for C1 (Figure 2). This results in C2 
having a variance explained in the Niño1+2 and Niño4 boxes, compared to only the Niño4 box for C1. Thus, ENSO 
flavor changes seem inconsistent between methods because they do not describe the same flavor patterns.

Inconsistency between methods could arise from M2, which is based on an approximation of M1 for the 1950–
2010 period in Takahashi et  al.  (2011). We recomputed the coefficients in Equations  3 and  4 using E1 and 
C1 as references over the 6,000–0 BP interval. For Sr02, we have 𝐴𝐴 𝐴𝐴2 = −0.32 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 + 2.28 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 and 

𝐴𝐴 𝐴𝐴2 = 2.85 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁4 − 1.41 ×𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁1+2 . We represent the variance ratio of the new E2 and C2 estimates (“M2 
redone” in Figure 3). The M1 and “M2 redone” variance ratios match better in the Holocene, but overall trends 
still differ. If we look at the period 6–5 kyr BP, the variance ratio of “M2 redone” says that the variance of 
E events is superior to C events; it is the opposite for M1. Figure 3 also shows variance ratios for the methods 
of Carré et al. (2021) and Ren and Jin (2011). Note that over the historical period Carré et al. (2021) capture the 
same fluctuations as the other indicators but with reduced magnitude (Figure S1 in Supporting Information S1). 
This can be attributed to the fact that the EP box chosen where data are available is only a proxy of the Niño1+2 
box and located entirely south of the equator. The different ENSO metrics give different variance ratios over the 
Holocene, suggesting that calibration alone cannot solve the problem.

ENSO variability was weaker in the mid-Holocene compared to present-day as models and data suggest (Carré 
et al., 2021; Cobb et al., 2013; Emile-Geay et al., 2016). The mean state of the Pacific Ocean has changed under 
insolation forcing over the last 6,000 years; thus, we need to consider it. In the mid-Holocene, the thermocline 
feedback weakened, reducing ENSO variability. The weakening was linked to changes in the ocean currents. 
Specifically, enhanced surface poleward meridional currents reduced the Bjerknes feedback, that is, the response 
of anomalous thermocline depth to the zonal wind stress anomaly (An & Choi, 2014; Chen et al., 2019; Iwakiri & 

Figure 3.  Variances ratios of E over C during the Holocene for the Sr02 simulation. The variance ratios were computed using 
500-year moving windows spanning from 6,000 to 0 BP. See Supporting Information S1 for the definitions of Ren and 
Jin (2011) and Carré et al. (2021). Above the y = 1 dashed line, the variance of the E flavor is greater than the C flavor, and 
the inverse for below. Same figure is shown in the additional material, for the Vlr01 simulation (Figure S5 in Supporting 
Information S1).
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Watanabe, 2019). Also, the tropical Pacific's thermocline was more diffuse and less stratified than in the present 
due to a more pronounced zonal tilt (Figure S4a in Supporting Information S1) and colder surface temperatures 
(Figure S4b in Supporting Information S1). On average, ENSO activity was more confined and attached to a less 
developed equatorial upwelling structure in the mid-Holocene (An et al., 2018; Braconnot et al., 2012; Iwakiri 
& Watanabe, 2019; Luan et al., 2012). With time, ENSO activity strengthened and could develop more over the 
tropical basin (An et al., 2018; Iwakiri & Watanabe, 2019). If we go back to the patterns of C2 and E1, they have 
their center of action over most of the Pacific (Figure 3). Therefore, the increase in variance of C2 and E1 over both 
Niño boxes should be interpreted as an increase in El Niño activity extending east and west.

4.  Discussion and Conclusions
In this paper, we chose two methods of computing E and C flavors in the tropical Pacific Ocean, following Takahashi 
et al. (2011)'s study, and looked at their changes over 6,000 years with transient simulations. In instrumental data, we 
show that the two methods are almost the same in the present (1950–2019), but discrepancies arise when looking at an 
adjacent period (1854–1950). In the simulations, on even longer time scales, we find opposite results between M1 and 
M2. The concepts of E and C flavors do not translate the same for M1 and M2. In the simulations, the C2 pattern domi-
nates the tropical Pacific and exhibits a higher weight in terms of explained variance than the E2 pattern. In contrast, 
the simulated E1 pattern forms in the central-to-east part of the basin, while the simulated C1 pattern is confined to the 
western side. Although seemingly contradictory over the last 6,000 years, both methods conclude for their dominant 
flavor (E for M1 and C for M2) that their variance signal has spread to the east and western part of the tropical Pacific 
Ocean, thus expressing a westward and eastward expansion of El Niño variance. This is dynamically in accordance 
with the thermocline feedback changes that occurred during the Holocene. The opposite results between M1 and M2 
could lead to opposite conclusions without proper interpretation, even if calibration is considered. The indicators used 
in this study, and most El Niño indicators in general, are designed with frameworks that are too restricted.

To study past changes in El Niño flavors, one would assume that M2 is the best choice since it uses regional 
boxes in its definition, allowing for better comparison to data. Carré et al. (2021) used the ERSSTv5 dataset from 
1900 to 2017 to compare the variance ratio of their defined EP and CP boxes with the variance ratio of E2 and 
C2. They matched, albeit with minor differences in magnitude. However, two boxes do not suffice to cover the E 
and C flavor pattern shifts over time. We could consider M1 to be the most rigorous method due to its ability to 
properly distinguish unique pattern characteristics between E and C flavors. However, comparing the results from 
M1 to the boxes defined by the paleo-archives’ location is not viable, since these boxes fail to encompass the two 
patterns resulting from the EOF rotation.

Our results imply that different techniques of detecting E or C flavor-like El Niño events in models and observa-
tions could lead to incoherent results. A suggestion for using M2 would be to make sure that the linear regression 
coefficients (Equations 3 and 4) are computed for the study's time frame (in models or observations) instead 
of taking them directly from Takahashi et al. (2011). This is true for other methods that use the linear combination 
of Niño or regional boxes.

It is important to note that these findings do not imply the superiority of one method over the other. Furthermore, 
we strongly advise caution in future studies that employ techniques to differentiate El Niño flavors based on pres-
ent conditions, as variations in the mean state can introduce discrepancies between methods that are expected to 
estimate similar ENSO variances. This is already the case with the results from the last IPCC report regarding El 
Niño flavor changes in the future. In models that have an El Niño-like warming, Fredriksen et al. (2020) estimate 
an increase in EP ENSO events while Freund et al. (2020) predict more CP and fewer EP events. Our results 
indicate that their contradictory conclusions stem from the difference in the methods used to characterize ENSO 
flavors. The apparent differences in results will cause a misinterpretation that could affect how they will be used 
to characterize future changes in ENSO characteristics.

Data Availability Statement
The processed data are available at https://doi.org/10.6084/m9.figshare.20789203 and the Jupyter Notebook used 
to make the figures is available at https://github.com/iadicarlo/elnino-flavors-paper (https://doi.org/10.5281/
zenodo.7938040). We acknowledge NOAA/OAR/ESRL PSL, USA for providing us the COBE-SST2 and 
ERSSTv5 data respectively at https://psl.noaa.gov/data/gridded/data.cobe2.html and https://psl.noaa.gov/data/
gridded/data.noaa.ersst.v5.html.
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