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Abstract
A set S of isometric paths of a graph G is “v-rooted”, where v is a vertex of G, if v is one of the

end-vertices of all the isometric paths in S. The isometric path complexity of a graph G, denoted by
ipco (G), is the minimum integer k such that there exists a vertex v ∈ V (G) satisfying the following
property: the vertices of any isometric path P of G can be covered by k many v-rooted isometric
paths.

First, we provide an O(n2m)-time algorithm to compute the isometric path complexity of a
graph with n vertices and m edges. Then we show that the isometric path complexity remains
bounded for graphs in three seemingly unrelated graph classes, namely, hyperbolic graphs, (theta,
prism, pyramid)-free graphs, and outerstring graphs. Hyperbolic graphs are extensively studied in
Metric Graph Theory. The class of (theta, prism, pyramid)-free graphs are extensively studied in
Structural Graph Theory, e.g. in the context of the Strong Perfect Graph Theorem. The class of
outerstring graphs is studied in Geometric Graph Theory and Computational Geometry. Our results
also show that the distance functions of these (structurally) different graph classes are more similar
than previously thought.

There is a direct algorithmic consequence of having small isometric path complexity. Specifically,
using a result of Chakraborty et al. [ISAAC 2022], we show that if the isometric path complexity
of a graph G is bounded by a constant k, then there exists a k-factor approximation algorithm for
Isometric Path Cover, whose objective is to cover all vertices of a graph with a minimum number
of isometric paths.
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1 Introduction

A path is isometric if it is a shortest path between its endpoints. An isometric path cover of
a graph G is a set of isometric paths such that each vertex of G belongs to at least one of
the paths. The isometric path number of G is the smallest size of an isometric path cover of
G. Given a graph G and an integer k, the objective of the algorithmic problem Isometric
Path Cover is to decide if there exists an isometric path cover of cardinality at most k.
Isometric Path Cover has been introduced and studied in the context of pursuit-evasion
games [2, 3]. However, until recently the algorithmic aspects of Isometric Path Cover
remained unexplored. After proving that Isometric Path Cover remains NP-hard on
chordal graphs (graphs without any induced cycle of length at least 4), Chakraborty et al. [7]
provided constant-factor approximation algorithms for many graph classes, including interval
graphs, chordal graphs, and more generally, graphs with bounded treelength. To prove the
approximation ratio of their algorithm, the authors introduced a parameter called isometric
path antichain cover number of a graph G, denoted as ipacc (G) (see Definition 6), and
proved (i) when ipacc (G) is bounded by a constant, Isometric Path Cover admits a
constant-factor approximation algorithm on G; and (ii) the isometric path antichain cover
number of graphs with bounded treelength is bounded.

The objectives of this paper are three fold: (A) provide a more intuitive definition of
isometric path antichain cover number; (B) provide a polynomial-time algorithm to compute
ipacc (G); and (C) prove that it remains bounded for seemingly unrelated graph classes.
Along the way, we also extend the horizon of approximability of Isometric Path Cover.
To achieve (A) we introduce the following new metric graph parameter, that we will show
to be always equal to the isometric path antichain cover number, and whose definition is
simpler.

▶ Definition 1. Given a graph G and a vertex v of G, a set S of isometric paths of G is
v-rooted if v is one of the end-vertices of all the isometric paths in S. The isometric path
complexity of a graph G, denoted by ipco (G), is the minimum integer k such that there
exists a vertex v ∈ V (G) satisfying the following property: the vertices of any isometric path
P of G can be covered by k many v-rooted isometric paths.

A consequence of Dilworth’s theorem is that for any graph G, ipacc (G) = ipco (G) (see
Lemma 7). We will give a polynomial-time algorithm to compute ipco (G), and therefore
ipacc (G) for an arbitrary undirected graph G. This achieves (B). Finally, to achieve (C), we
consider the following three seemingly unrelated graph classes, namely, δ-hyperbolic graphs,
(theta, prism, pyramid)-free graphs and outerstring graphs, and show that their isometric
path complexity is bounded by a constant.

δ-hyperbolic graphs: A graph G is said to be δ-hyperbolic [20] if for any four vertices
u, v, x, y, the two larger of the three distance sums d (u, v) + d (x, y), d (u, x) + d (v, y) and
d (u, y) + d (v, x) differ by at most 2δ. A graph class G is hyperbolic if there exists a constant
δ such that every graph G ∈ G is δ-hyperbolic. This parameter comes from geometric group
theory and was first introduced by Gromov [20] in order to study groups via their Cayley
graphs. The hyperbolicity of a tree is 0, and in general, the hyperbolicity measures how much
the distance function of a graph deviates from a tree metric. Many structurally defined graph
classes like chordal graphs, cocomparability graphs [13], asteroidal-triple free graphs [14],
graphs with bounded chordality or treelength are hyperbolic [8, 22]. Moreover, hyperbolicity
has been found to capture important properties of several large practical graphs such as
the Internet graph [25] or database relation graphs [30]. Due to its importance in discrete
mathematics, algorithms, metric graph theory, researchers have studied various algorithmic
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Figure 1 Inclusion diagram for graph classes. If a class A has an upward path to class B, then A

is included in B. Constant bounds for the isometric path complexity on graph classes marked with *
are contributions of this paper.

aspects of hyperbolic graphs [8, 15, 10, 16]. Note that graphs with diameter 2 are hyperbolic,
which may contain any graph as an induced subgraph.

(theta, prism, pyramid)-free graphs: A theta is a graph made of three vertex-disjoint
induced paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b of lengths at least 2, and such that
no edges exist between the paths except the three edges incident to a and the three edges
incident to b. A pyramid is a graph made of three induced paths P1 = a . . . b1, P2 = a . . . b2,
P3 = a . . . b3, two of which have lengths at least 2, vertex-disjoint except at a, and such that
b1b2b3 is a triangle and no edges exist between the paths except those of the triangle and
the three edges incident to a. A prism is a graph made of three vertex-disjoint induced
paths P1 = a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3 of lengths at least 1, such that a1a2a3 and
b1b2b3 are triangles and no edges exist between the paths except those of the two triangles.
A graph G is (theta, pyramid, prism)-free if G does not contain any induced subgraph
isomorphic to a theta, pyramid or prism. A graph is a 3-path configuration if it is a theta,
pyramid or prism. The study of 3-path configurations dates back to the works of Watkins
and Meisner [31] in 1967 and plays “special roles” in the proof of the celebrated Strong
Perfect Graph Theorem [11, 18, 27, 29]. Important graph classes like chordal graphs, circular
arc graphs, universally-signable graphs [12] exclude all 3-path configurations. Popular graph
classes like perfect graphs, even hole-free graphs exclude some of the 3-path configurations.
Note that, (theta, prism, pyramid)-free graphs are not hyperbolic. To see this, consider a
cycle C of order n. Clearly, C excludes all 3-path configurations and has hyperbolicity Ω(n).

Outerstring graphs: A set S of simple curves on the plane is grounded if there exists a
horizontal line containing one endpoint of each of the curves in S. A graph G is an outerstring
graph if there is a collection C of grounded simple curves and a bijection between V (G) and C

such that two curves in S intersect if and only if the corresponding vertices are adjacent in G.
The term “outerstring graph” was first used in the early 90’s [23] in the context of studying
intersection graphs of simple curves on the plane. Many well-known graph classes like chordal
graphs, circular arc graphs [19], circle graphs (intersection graphs of chords of a circle [17]), or
cocomparability graphs [13] are also outerstring graphs and thus, motivated researchers from
the geometric graph theory and computational geometry communities to study algorithmic
and structural aspects of outerstring graphs and its subclasses [4, 5, 6, 21, 24]. Note that, in
general, outerstring graphs may contain a prism, pyramid or theta as an induced subgraph.
Moreover, cycles of arbitrary order are outerstring graphs, implying that outerstring graphs
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are not hyperbolic.
It is clear from the above discussion that the classes of hyperbolic graphs, (theta, prism,

pyramid)-free graphs, and outerstring graphs are pairwise incomparable (with respect to the
containment relationship). We show that the isometric path complexities of all the above
graph classes are small.

1.1 Our contributions
The main technical contributions of this paper are as follows. First we prove that the
isometric path complexity can be computed in polynomial time.

▶ Theorem 2. Given a graph G with n vertices and m edges, it is possible to compute
ipco (G) in O(n2m) time.

Recall that, the above theorem and Lemma 7 imply that for any undirected graph G,
ipacc (G) can be computed in polynomial time. Then we show that the isometric path
complexity remains bounded on hyperbolic graphs, (theta, pyramid, prism)-free graphs, and
outerstring graphs. Specifically, we prove the following theorem.

▶ Theorem 3. Let G be a graph.
(a) If the hyperbolictiy of G is at most δ, then ipco (G) ≤ 4δ + 3.
(b) If G is a (theta, pyramid, prism)-free graph, then ipco (G) ≤ 71.
(c) If G is an outerstring graph, then ipco (G) ≤ 95.

To the best of our knowledge, the isometric path complexity being bounded (by con-
stant(s)) is the only known non-trivial property shared by any two or all three of these
graph classes. Theorem 3 shows that isometric path complexity (equivalently isometric path
antichain cover number), as recently introduced graph parameters, are general enough to
unite these three graph classes by their metric properties. We hope that this definition
will be useful for the field of metric graph theory, for example by enabling us to study
(theta,prism,pyramid)-free graphs and outerstring graphs from the perspective of metric
graph theory.

We provide a unified proof for Theorem 3(b) and 3(c) by proving that the isometric path
complexity of (t-theta, t-pyramid, t-prism)-free graphs [28] (see Section 4 for a definition) is
bounded by a linear function of t. Due to the above theorems, we also have as corollaries
that there is a polynomial-time approximation algorithm for Isometric Path Cover with
approximation ratio (a) 4δ + 3 on δ-hyperbolic graphs, (b) 73 on (theta, prism, pyramid)-free
graphs, (c) 95 on outerstring graphs, and (d) 8t + 63 on (t-theta, t-pyramid, t-prism)-free
graphs.

To contrast with Theorem 3, we construct highly structured graphs with small treewidth
and large isometric path complexity. A wheel consists of an induced cycle C of order at least 4
and a vertex w /∈ V (C) adjacent to at least three vertices of C. The three path configurations
introduced earlier and the wheel together are called Truemper configurations [29] and they
are important objects of study in structural and algorithmic graph theory [1, 18].

▶ Theorem 4. For every k ≥ 1,
(a) there exists a (pyramid, prism, wheel)-free graph G with tree-width 2, hyperbolicity at

least ⌈ k
2 ⌉ − 1 and ipco (G) ≥ k.

(b) there exists a (theta, prism, wheel)-free graph G with tree-width at most 3, hyperbolicity
at least ⌈ k

2 ⌉ − 1 and ipco (G) ≥ k.
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(c) there exists a (theta, pyramid, wheel)-free graph G with hyperbolicity at least ⌈ k
2 ⌉ − 1 and

ipco (G) ≥ k.

Organisation: In Section 2, we recall some definitions and some results. In Section 3,
we present an algorithm to compute the isometric path complexity of a graph and prove
Theorem 2. In Section 4, we prove Theorem 3. In Section 5, we prove Theorem 4. We
conclude in Section 6. Proofs of lemma and observations marked with (*) are provided in
the main version of the paper.

2 Definitions and preliminary observations

In this section, we recall some definitions and some related observations. A sequence of
distinct vertices forms a path P if any two consecutive vertices are adjacent. Whenever we fix
a path P of G, we shall refer to the subgraph formed by the edges between the consecutive
vertices of P . The length of a path P , denoted by |P |, is the number of its vertices minus
one. A path is induced if there are no graph edges joining non-consecutive vertices. A path
is isometric if it is a shortest path between its endpoints. For two vertices u, v of a graph G,
d (u, v) denotes the length of an isometric path between u and v.

In a directed graph, a directed path is a path in which all arcs are oriented in the
same direction. For a path P of a graph G between two vertices u and v, the vertices
V (P ) \ {u, v} are internal vertices of P . A path between two vertices u and v is called a
(u, v)-path. Similarly, we have the notions of isometric (u, v)-path and induced (u, v)-path.
The interval I(u, v) between two vertices u and v consists of all vertices that belong to an
isometric (u, v)-path. For a vertex r of G and a set S of vertices of G, the distance of S

from r, denoted as d (r, S), is the minimum of the distance between any vertex of S and
r. For a subgraph H of G, the distance of H w.r.t. r is d (r, V (H)). Formally, we have
d (r, S) = min{d (r, v) : v ∈ S} and d (r, H) = d (r, V (H)).

For a graph G and a vertex r ∈ V (G), consider the following operations on G. First,
remove all edges xy from G such that d (r, x) = d (r, y). Let G′

r be the resulting graph. Then,
for each edge e = xy ∈ E(G′

r) with d (r, x) = d (r, y) − 1, orient e from y to x. Let −→
Gr be

the directed acyclic graph formed after applying the above operation on G′. Note that this
digraph can easily be computed in linear time using a Breadth-First Search (BFS) traversal
with starting vertex r. The following definition is inspired by the terminology of posets (as
the graph −→

Gr can be seen as the Hasse diagram of a poset).

▶ Definition 5. For a graph G and a vertex r ∈ V (G), two vertices x, y ∈ V (G) are antichain
vertices if there are no directed paths from x to y or from y to x in −→

Gr. A set X of vertices
of G is an antichain set if any two vertices in X are antichain vertices.

▶ Definition 6 ([7]). Let r be a vertex of a graph G. For a subgraph H, Ar (H) shall denote
the maximum antichain set of H in −→

Gr. The isometric path antichain cover number of −→
Gr,

denoted by ipacc
(−→

Gr

)
, is defined as follows:

ipacc
(−→

Gr

)
= max {|Ar (P ) | : P is an isometric path} .

The isometric path antichain cover number of graph G, denoted as ipacc (G), is defined as
the minimum over all possible antichain covers of its associated directed acyclic graphs:

ipacc (G) = min
{

ipacc
(−→

Gr

)
: r ∈ V (G)

}
.
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For technical purposes, we also introduce the following definition. For a graph G and a
vertex r of G, let ipco

(−→
Gr

)
denote the minimum integer k such that any isometric path P

of G can be covered by k r-rooted isometric paths (The notation reflects that it is a dual
notion of ipacc

(−→
Gr

)
). Using Dilworth’s Theorem we prove the following important lemma.

▶ Lemma 7. For any graph G and vertex r, ipco
(−→

Gr

)
= ipacc

(−→
Gr

)
. Therefore, ipco (G) =

ipacc (G).

Proof. Let r be a vertex of G such that any isometric path of G can be covered by ipco
(−→

Gr

)
r-rooted isometric paths. Let P be an arbitrary isometric path of G. Since two vertices of an
antichain of −→

Gr cannot be covered by a single r-rooted path and P is covered by ipco
(−→

Gr

)
r-rooted path, we deduce |Ar (P ) | ≤ ipco

(−→
Gr

)
. This is true for any isometric path P of G.

Hence, ipacc
(−→

Gr

)
≤ ipco

(−→
Gr

)
. Conversely, consider a vertex r ∈ V (G). By definition of

ipco
(−→

Gr

)
, there is an isometric path P that cannot be covered by (ipco

(−→
Gr

)
− 1) r-rooted

isometric paths. By Dilworth theorem, P contains an antichain of −→
Gr of size ipco

(−→
Gr

)
.

Hence |Ar(P )| ≥ ipco
(−→

Gr

)
and ipacc

(−→
Gr

)
≥ ipco

(−→
Gr

)
. The second part of the lemma

follows immediately. ◀

We also recall the following theorem and proposition from [7].

▶ Theorem 8 ([7]). For a graph G, if ipacc (G) ≤ c, then Isometric Path Cover admits
a polynomial-time c-approximation algorithm on G.

▶ Proposition 9 ([7]). Let G be a graph and r, an arbitrary vertex of G. Consider the
directed acyclic graph −→

Gr, and let P be an isometric path between two vertices x and y in G.
Then |P | ≥ |d (r, x) − d (r, y) | + |Ar (P ) | − 1.

Proof. Orient the edges of P from y to x in G. First, observe that P must contain a set E1 of
oriented edges such that |E1| = |d (r, y) − d (r, x) | and for any

−→
ab ∈ E1, d (r, a) = d (r, b) + 1.

Let the vertices of the largest antichain set of P in −→
Gr, i.e., Ar (P ), be ordered as a1, a2, . . . , at

according to their occurrence while traversing P from y to x. For i ∈ [2, t], let Pi be the
subpath of P between ai−1 and ai. Observe that for any i ∈ [2, t], since ai and ai−1

are antichain vertices, there must exist an oriented edge
−→
bici ∈ E(Pi) such that either

d (r, bi) = d (r, ci) or d (r, bi) = d (r, ci) − 1. Let E2 = {bici}i∈[2,t]. Observe that E1 ∩ E2 = ∅
and therefore |P | ≥ |E1| + |E2| = |d (r, y) − d (r, x) | + |Ar (P ) | − 1. ◀

3 Proof of Theorem 2

In this section we provide a polynomial-time algorithm to compute the isometric path
complexity of a graph. Let G be a graph. In the following lemma, we provide a necessary and
sufficient condition for two vertices of an isometric path to be covered by the same isometric
r-rooted path in −→

Gr for some vertex r ∈ V (G).

▶ Lemma 10. Let r be a vertex of G. If P = (u = v0, . . . , vk = v) is an isometric (u, v)-path
with d (r, u) ≤ d (r, v) then there exists an isometric r-rooted path containing u, v in −→

Gr(P )
if and only if d (vi+1, r) = d (vi, r) + 1 for all i ∈ {0, . . . , k − 1}.
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Proof. If d (vi+1, r) = d (vi, r) + 1 for every i ∈ {0, . . . , k − 1} then the path obtained by
concatenating an isometric (r, u)-path and the path P is an isometric r-rooted (r, v)-path
containing u, v in −→

Gr(P ). Now suppose that there exists an isometric r-rooted path containing
u, v in −→

Gr(P ), i.e., d (r, v) − d (r, u) = d (u, v) . Then, along any path from u to v, we need
to traverse at least d (u, v) edges increasing the distance to r. Since P is an isometric
(u, v)-path, it contains exactly d (u, v) edges. Hence, d (r, vi+1) = d (r, vi) + 1 for every
i ∈ {0, . . . , k − 1}. ◀

3.1 Notations and preliminary observations
We now introduce some notations that will be used to describe the algorithm and prove its
correctness. Consider three vertices r, x, v of G such that x ̸= v. Let Pr

↘ (x, v) denote the
set of all isometric (x, v)-paths P containing a vertex u that is adjacent to v and satisfies
d (r, u) = d (r, v) − 1. Analogously, let Pr

→ (x, v) denote the set of all isometric (x, v)-paths
P containing a vertex u that is adjacent to v and satisfies d (r, u) = d (r, v) and let Pr

↗ (x, v)
denote the set of all isometric (x, v)-paths P containing a vertex u that is adjacent to v

and satisfies d (r, u) = d (r, v) + 1. Observe that the set of isometric (x, v)-paths is precisely
Pr

↘ (x, v) ∪ Pr
→ (x, v) ∪ Pr

↗ (x, v) and that some of these sets may be empty.
Given a path P , we denote by |Sr (P ) | the minimum size of a set of isometric r-rooted

paths covering the vertices of P . We denote by γr
↘(x, v) and βr

↘(x, v) respectively the
minimum of |Sr (P ) | and |Sr (P − {v}) | over all paths P ∈ Pr

↘ (x, v). More formally,

γr
↘(x, v) = max

{
|Sr (P ) | : P ∈ Pr

↘ (x, v)
}

,

βr
↘(x, v) = max

{
|Sr (P − {v}) | : P ∈ Pr

↘ (x, v)
}

.

Note that if Pr
↘ (x, v) is empty, we have γr

↘(x, v) = βr
↘(x, v) = 0. We define similarly

γr
↗(x, v), βr

↗(x, v), and γr
→(x, v):

γr
↗(x, v) = max

{
|Sr (P ) | : P ∈ Pr

↗ (x, v)
}

,

βr
↗(x, v) = max

{
|Sr (P − {v}) | : P ∈ Pr

↗ (x, v)
}

,

γr
→(x, v) = max {|Sr (P ) | : P ∈ Pr

→ (x, v)} .

Finally, let γr(x, v) = max
{

γr
↘(x, v), γr

→(x, v), γr
↗(x, v)

}
be the maximum of |Sr(P )| over all

isometric (x, v)-paths P . In our algorithm, we will need also to consider the case where v = x

as an initial case. For practical reasons, we let γr(x, x) = γr
↘(x, x) = γr

→(x, x) = γr
↗(x, x) = 1

and βr
↘(x, x) = βr

↗(x, x) = 0. Based on the above notations and Lemma 7, we have the
following observation.

▶ Observation 11. For any graph G and any vertex r of G, we have ipco
(−→

Gr

)
= ipacc

(−→
Gr

)
=

maxx,v γr(x, v) and ipco (G) = ipacc (G) = minr maxx,v γr(x, v).

Observation 11 implies that to compute the isometric path complexity of a graph it is
enough to compute the parameter γr(x, v) for all r, x, v ∈ V (G) in polynomial time. In the
next section, we focus on achieving this goal without computing explicitly any of the sets
Pr

↘ (x, v), Pr
→ (x, v) or Pr

↗ (x, v). (Note that the size of these sets could be exponential in
the number of vertices of the graph).

3.2 An algorithm to compute γr(x, v)
Throughout this section, let r and x be two fixed vertices of G. We shall call r as the “root”
and x as the “source” vertex. The objective of this section is to compute the parameter
γr(x, v) for all vertices v ∈ V (G).
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In the sequel, since we always refer to a fixed root r and source x, we omit r and x

and use the shorthand γ(v) for γr(x, v). We do the same with the notations γ↗(v), γ→(v),
γ↘(v), β↗(v), and β↘(v) that also refer to fixed vertices r and x In the following lemmas,
we shall provide explicit (recursive) formulas to compute γ↗(v), γ→(v), γ↘(v), β↗(v), and
β↘(v). Using these formulas, we will show how to compute γ(v) for all v ∈ V (G) in a total
of O(|E(G)|)-time.

▶ Observation 12. If r is the root vertex, x the source vertex, and v is distinct from x, then

β↘(v) = max{γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v) − 1},

β↗(v) = max{γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v) + 1}.

▶ Lemma 13 (*). If r is the root vertex, x the source vertex, and v is distinct from x, then
γ→(v) = max{1 + γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v)}.

▶ Lemma 14 (*). If r is the root vertex, x the source vertex, and v is a vertex distinct from x,
then γ↘(v) = max{max{γ↘(u), γ→(u), β↗(u)+1} : u ∈ I(x, v)∩N(v); d (r, u) = d (r, v)−1}

▶ Lemma 15 (*). If r is the root vertex, x the source vertex, and v is a vertex distinct from x,
then γ↗(v) = max{max{γ↗(u), γ→(u), β↘(u)+1} : u ∈ I(x, v)∩N(v); d (r, u) = d (r, v)+1}.

Now we provide a BFS based algorithm to compute the above parameters. Let r

and x be fixed root and source vertices of G, respectively. For a vertex u ∈ V (G), let
D(u) = {γ(u), γ↗(u), γ→(u), γ↘(u), β↗(u), β↘(u)}. Clearly, the set D(x) can be computed
in constant time. Now let Xi be the set of vertices at distance i from x. Clearly, the sets Xi

can be computed in O(|E(G)|)-time (using a BFS) and X0 = {x}. Let i ≥ 1 be an integer
and assume that for all vertices u ∈

⋃i−1
j=0 Xj , the set D(u) is already computed. Let v ∈ Xi

be a vertex. Then due to the formulas given in Observation 12 and Lemmas 13–15, the set
D(v) can be computed by observing only the sets D(u), u ∈ N(v) ∩ Xi−1. Hence, for all
vertices v ∈ V (G), the sets D(v) can be computed in a total of O(|E(G)|) time. Hence, we
have the following lemma.

▶ Lemma 16. For a root vertex r and source vertex x, for all vertices v ∈ V (G), the value
γr(x, v) can be computed in O(|E(G)|) time.

We can now finish the proof of Theorem 2. Let G be a graph with n vertices and m

edges. For a root vertex r, by applying Lemma 16, for every source x ∈ V (G), it is possible
to compute ipco

(−→
Gr

)
= maxx,v γr(x, v) in O(nm) time. By repeating this for every root

r ∈ V (G), it is possible to compute ipco (G) = minr ipco
(−→

Gr

)
in O(n2m) time.

4 Proof of Theorem 3

First we prove Theorem 3(a). We recall the definition of Gromov products [20] and its
relation with hyperbolicity. For three vertices r, x, y of a graph G, the Gromov product of
x, y with respect to r is defined as (x|y)r = 1

2 (d (x, r) + d (y, r) − d (x, y)). Then, a graph
G is δ-hyperbolic [9, 20] if and only if for any four vertices x, y, z, r, we have (x|y)r ≥
min {(x|z)r , (y|z)r} − δ.

Let G be a graph with hyperbolicity at most δ. Due to Lemma 7, in order to prove
Theorem 3(a), it is enough to show that ipacc (G) ≤ 4δ + 3. Aiming for a contradiction,
let r be a vertex of G and P be an isometric path such that |Ar (P ) | ≥ 4δ + 4. Let
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u v

c

c′

Figure 2 An example of a 4-fat turtle. Let C be the cycle induced by the black vertices, P be
the path induced by the white vertices. Then the tuple (4, C, P, c, c′) defines a 4-fat turtle.

a1, a2, . . . , a2δ+2, . . . , a4δ+4 be the vertices of Ar (P ) ordered as they are encountered while
traversing P from one end-vertex to the other. Let x = a1, z = a2δ+2, y = a4δ+4. Let Q

denote the (y, z)-subpath of P . Observe that, |Ar (Q) | ≥ 2δ + 2. Then we have (x|y)r ≥
min {(x|z)r , (y|z)r} − δ. Without loss of generality, assume that (x|z)r ≤ (y|z)r. Hence,

(x|y)r ≥ (x|z)r − δ

d (x, r) + d (y, r) − d (x, y) ≥ d (x, r) + d (z, r) − d (x, z) − 2δ

d (y, r) − d (x, y) ≥ d (z, r) − d (x, z) − 2δ

d (y, r) − d (z, r) + 2δ ≥ d (x, y) − d (x, z)
d (y, r) − d (z, r) + 2δ ≥ d (y, z)

d (y, z) ≤ |d (y, r) − d (z, r)| + 2δ.

But this directly contradicts Proposition 9, which implies that d (y, z) ≥ |d (y, r) − d (z, r)|+
|Ar (Q)| − 1 ≥ |d (y, r) − d (z, r)| + 2δ + 1. This completes the proof of Theorem 3(a).

Now, we shall prove Theorems 3(b) and 3(c). First, we shall define the notions of
t-theta, t-prism, and t-pyramid [28]. For an integer t ≥ 1, a t-prism is a graph made of three
vertex-disjoint induced paths P1 = a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3 of lengths at least t,
such that a1a2a3 and b1b2b3 are triangles and no edges exist between the paths except those
of the two triangles. For an integer t ≥ 1, a t-pyramid is a graph made of three induced
paths P1 = a . . . b1, P2 = a . . . b2, P3 = a . . . b3 of lengths at least t, two of which have lengths
at least t + 1, they are pairwise vertex-disjoint except at a, such that b1b2b3 is a triangle and
no edges exist between the paths except those of the triangle and the three edges incident to
a. For an integer t ≥ 1, a t-theta is a graph made of three internally vertex-disjoint induced
paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b of lengths at least t + 1, and such that no edges
exist between the paths except the three edges incident to a and the three edges incident to b.
A graph G is (t-theta, t-pyramid, t-prism)-free if G does not contain any induced subgraph
isomorphic to a t-theta, t-pyramid or t-prism. When t = 1, (t-theta, t-pyramid, t-prism)-free
graphs are exactly (theta, prism, pyramid)-free graphs.

Now, we shall show that the isometric path antichain cover number of (t-theta, t-pyramid,
t-prism)-free graphs are bounded above by a linear function on t. We shall show that, when
the isometric path antichain cover number of a graph is large, the existence of a structure
called “t-fat turtle” (defined below) as an induced subgraph is forced, which cannot be present
in a ((t − 1)-theta, (t − 1)-pyramid, (t − 1)-prism)-free graph.

▶ Definition 17. For an integer t ≥ 1, a “t-fat turtle” consists of a cycle C and an induced
(u, v)-path P of length at least t such that all of the following hold: (a) V (P ) ∩ V (C) = ∅,
(b) For any vertex w ∈ (V (P ) \ {u, v}), N(w) ∩ V (C) = ∅ and both u and v have at least
one neighbour in C, (c) For any vertex w ∈ N(u) ∩ V (C) and w′ ∈ N(v) ∩ V (C), the
distance between w and w′ in C is at least t, (d) There exist two vertices {c, c′} ⊂ V (C)
and two distinct components Cu, Cv of C − {c, c′} such that N(u) ∩ V (C) ⊆ V (Cu) and
N(v) ∩ V (C) ⊆ V (Cv).
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w b
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c

(= a2t+13)
x

c1

a

c2

T (c1, c2)≥ t

≥ t≥ t

Q (r, b)
Q (r, u)

Figure 3 Illustration of the notations used in the proof of Lemma 20.

The tuple (t, C, P, c, c′) defines the t-fat turtle. See Figure 2 for an example.

In the following observation, we show that any (t-theta, t-pyramid,t-prism)-free graph
cannot contain a (t + 1)-fat turtle as an induced subgraph.

▶ Lemma 18 (*). For some integer t ≥ 1, let G be a graph containing a (t + 1)-fat turtle as
an induced subgraph. Then G is not (t-theta, t-pyramid, t-prism)-free.

In the remainder of this section, we shall prove that there exists a linear function f(t)
such that if the isometric path antichain cover number of a graph is more than f(t), then G

is forced to contain a (t + 1)-fat turtle as an induced subgraph, and therefore is not (t-theta,
t-pyramid,t-prism)-free. We shall use the following observation.

▶ Observation 19 (*). Let G be a graph, r be an arbitrary vertex, P be an isometric (u, v)-
path in G and Q be a subpath of an isometric (v, r)-path in G such that one endpoint of
Q is v. Let P ′ be the maximum (u, w)-subpath of P such that no internal vertex of P ′ is a
neighbour of some vertex of Q. We have that |Ar (P ′) | ≥ |Ar (P ) | − 3.
▶ Lemma 20. For an integer t ≥ 1, let G be a graph with ipacc (G) ≥ 8t + 64. Then G has
a (t + 1)-fat turtle as an induced subgraph.

Proof. Let r be a vertex of G such that ipacc
(−→

Gr

)
is at least 8t + 64. Then there exists

an isometric path P such that |Ar (P ) | ≥ 8t + 64. Let the two endpoints of P be a and
b. (See Figure 3.) Let u be a vertex of P such that d (r, u) = d (r, P ). Let P (a, u) be
the (a, u)-subpath of P and P (b, u) be the (b, u)-subpath of P . Both P (a, u) and P (b, u)
are isometric paths and observe that either |Ar (P (a, u)) | ≥ 4t + 32 or |Ar (P (b, u)) | ≥
4t + 32. Without loss of generality, assume that |Ar (P (b, u)) | ≥ 4t + 32. Let Q (r, b) be
an isometric (b, r)-path in G. First observe that u is not adjacent to any vertex of Q (r, b).
Otherwise, d (u, b) ≤ 2 + d (r, b) − d (r, u), which contradicts Proposition 9. Let P (u, w)
be the maximum (u, w)-subpath of P (b, u) such that no internal vertex of P (u, w) is a
neighbour of Q (r, b). Note that P (u, w) is an isometric path and w has a neighbour in
Q (r, b). Applying Observation 19, we have the following:

▷ Claim 21. |Ar (P (u, w)) | ≥ 4t + 29.

Let Q (r, u) be any isometric (u, r)-path of G. Observe that w is not adjacent to any
vertex of Q (r, u). Otherwise, d (u, w) ≤ 2+d (r, u)−d (r, w), which contradicts Proposition 9.
Let P (z, w) be the maximum (z, w)-subpath of P (u, w) such that no internal vertex of
P (z, w) has a neighbour in Q (r, u). Observe that P (z, w) is an isometric path, and z has a
neighbour in Q (r, u). Again applying Observation 19, we have the following:
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▷ Claim 22. |Ar (P (z, w)) | ≥ 4t + 26.

Let a1, a2, . . . , ak be the vertices of Ar (P (z, w)) ordered according to their appearance
while traversing P (z, w) from z to w. Due to Claim 22, we have that k ≥ 4t + 26. Let
c = a2t+13 and Q (r, c) denote an isometric (c, r)-path. Let T (r, c1) be the maximum subpath
of Q (r, c) such that no internal vertex of T (r, c1) is adjacent to any vertex of P (z, w).
Observe that neither z nor w can be adjacent to c1 (due to Proposition 9). Morevoer, if c1 is
a vertex of P (z, w) then we must have c1 = c.

▷ Claim 23 (*). Let x be a neighbour of c1 in P (z, w), X be the (x, b)-subpath of P (u, b)
and Y be the (x, u)-subpath of P (u, b). Then |Ar (X) | ≥ 2t + 11 and |Ar (Y ) | ≥ 2t + 11.

Let T (c1, c2) be the maximum (c1, c2)-subpath of T (c1, r) such that no internal vertex of
T (c1, c2) is adjacent to a vertex of Q (r, b) or Q (r, u). We have the following claim.

▷ Claim 24 (*). The length of T (c1, c2) is at least t + 3.

The path T (c1, c2) forms the first ingredient to extract a (t + 1)-fat turtle. Let z1 be the
neighbour of z in Q (r, u) and w1 be the neighbour of w in Q (r, b). We have the following
claim.

▷ Claim 25 (*). The vertices w1 and z1 are non adjacent.

Now we shall construct a (w1, z1)-path as follows: Consider the maximum (w1, w2)-
subpath, say T (w1, w2), of Q (r, b) such that no internal vertex of T (w1, w2) has a neighbour
in Q (r, u). Similarly, consider the maximum (z1, z2)-subpath, say T (z1, z2), of Q (r, u) such
that no internal vertex of T (z1, z2) is a neighbour of w2. (Note that it is possible that
z2 = w2 = r.) Let T be the path obtained by taking the union of T (w1, w2) and T (z1, z2).
Observe that z2 must be a neighbour of w2 and T is an induced (w1, z1)-path. The definitions
of T and P (z, w) imply that their union induces a cycle Z. Here we have the second and
final ingredient to extract the (t + 1)-fat turtle.

Suppose that c2 has a neighbour in T . Let T ′ be the maximum subpath of T (c1, c2) which
is vertex-disjoint from Z. (Note that if c1 = c or c2 ∈ {w2, z2} (e.g. when c2 = w2 = z2 = r),
T (c1, c2) may share vertices with Z.) Due to Claim 24, the length of T ′ is at least t + 1. Let
e1 and e2 be the end-vertices of T ′. Observe the following.

Each of e1 and e2 has at least one neighbour in Z.
Z−{z, w} contains two distinct components C1, C2 such that for i ∈ {1, 2}, N(ei)∩V (Z) ⊆
V (Ci).
For a vertex e′

1 ∈ N(e1) ∩ V (Z) and e′
2 ∈ N(e2) ∩ V (Z), the distance between e′

1 and e′
2

is at least t + 1. This statement follows from Claim 23.

Hence, we have that the tuple (t + 1, Z, T ′, z, w) defines a (t + 1)-fat turtle. Now consider
the case when c2 does not have a neighbour in T . By definition, c2 has at least one neighbour
in Q (r, u) or Q (r, b). Without loss of generality, assume that c2 has a neighbour c3 in
Q (r, u) such that the (z2, c3)-subpath, say, T ′′ of Q (r, u) has no neighbour of c2 other than
c3. Observe that the path T ∗ = (T ′ ∪ (T ′′ − {z2})) is vertex-disjoint from Z and has length
at least t + 1. Let e1, e2 be the two end-vertices of T ∗. Observe the following.

Each of e1 and e2 has at least one neighbour in Z.
Z−{z, w} contains two distinct components C1, C2 such that for i ∈ {1, 2}, N(ei)∩V (Z) ⊆
V (Ci).
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For a vertex e′
1 ∈ N(e1) ∩ V (Z) and e′

2 ∈ N(e2) ∩ V (Z), the distance between e′
1 and e′

2
is at least t + 1. This statement follows from Claim 23.

Hence, (t + 1, Z, T ∗, z, w) is a (t + 1)-fat turtle ◀

Proof of Theorem 3(b): Lemma 7, 18 and 20 together imply Theorem 3(b).

▶ Lemma 26 (*). Any outerstring graph is (4-theta, 4-prism, 4-pyramid)-free.

Proof of Theorem 3(c): Lemma 7, 18, 20, and 26 together imply Theorem 3(c).

5 Proof of Theorem 4

We shall provide a construction for every k ≥ 4, this implies the statement of Theorem 4 for
any k ≥ 1. First we shall prove Theorem 4(a). For a fixed integer k ≥ 4, first we describe
the construction of a graph Xk as follows. Consider k + 1 paths P1, P2, . . . , Pk+1 each of
length k and having a common endvertex a. For i ∈ [k + 1], let the other endvertex of Pi be
denoted as bi. Moreover, for i ∈ [k + 1], let the neighbours of a and bi in Pi be denoted as a′

i

and b′
i, respectively. For i ∈ [k], introduce an edge between bi and bi+1. The resulting graph

is denoted Xk and the special vertex a is the apex of Xk. See Figure 4(a). For a fixed integer
k ≥ 4, consider the graph Xk and for each i ∈ [k], introduce an edge between bi and b′

i+1.
Let Yk denote the resulting graph and the special vertex a is the apex of Yk. See Figure 4(b).
For a fixed integer k ≥ 4, consider the graph Yk and for each {i, j} ⊆ [k], introduce an edge
between a′

i and a′
j . Let Zk denote the resulting graph and the special vertex a is the apex of

Zk. See Figure 4(c). We prove the following lemmas.

▶ Lemma 27 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies
of Xk and identifying the two apex vertices. Then G is a wheel-free, (pyramid, prism)-free
graph with treewidth 2, hyperbolicity at least ⌈ k

2 ⌉ − 1 and ipacc (G) ≥ k.

▶ Lemma 28 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies of
Yk and identifying the two apex vertices. Then G is a wheel-free, (theta, prism)-free graph
with treewidth 3, hyperbolicity at least ⌈ k

2 ⌉ − 1, and ipacc (G) ≥ k.

▶ Lemma 29 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies of
Zk and identifying the two apex vertices. Then G is a wheel-free, (theta, pyramid)-free graph
with hyperbolicity at least ⌈ k

2 ⌉ − 1 and ipacc (G) ≥ k.

Lemma 7, 27, 28, 29 imply Theorem 4.

6 Conclusion

In this paper, we have introduced the new graph parameter isometric path complexity. We
have shown that the isometric path complexity of a graph with n vertices and m edges can be
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computed in O(n2m)-time. It would be interesting to provide a faster algorithm to compute
the isometric path complexity of a graph. We have derived upper bounds on the isometric path
complexity of three seemingly (structurally) different classes of graphs, namely hyperbolic
graphs, (theta,pyramid,prism)-free graphs and outerstring graphs. An interesting direction
of research is to generalise the properties of hyperbolic graphs or (theta,pyramid,prism)-free
graphs to graphs with bounded isometric path complexity.

Note that, in our proofs we essentially show that, for any graph G that belongs to one
of the above graph classes, any vertex v of G, and any isometric path P of G, the path P

can be covered by a small number of v-rooted isometric paths. This implies our “choice of
the root” is arbitrary. This motivates the following definition. The strong isometric path
complexity of a graph Gis the minimum integer k such that for each vertex v ∈ V (G) we have
that the vertices of any isometric path P of G can be covered by k many v-rooted isometric
paths. Our proofs imply that the strong isometric path complexity of graphs from all the
graph classes addressed in this paper are bounded. We also wonder whether one can find
other interesting graph classes with small (strong) isometric path complexity.

Our results imply a constant-factor approximation algorithm for Isometric Path Cover
on hyperbolic graphs, (theta, pyramid, prism)-free graphs and outerstring graphs. However,
the existence of a constant-factor approximation algorithm for Isometric Path Cover on
general graphs is not known (an O(log n)-factor approximation algorithm is designed in [26]).
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