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Abstract
A reduced-order code based on a Garlerkin modal expansion of the pressure oscillations is presented to
predict high frequency combustion instabilities in liquid rocket engines. Models to account for acoustic
damping are proposed, such as nozzle, thermal or viscous losses. A combustion source term modeling
the fuel inflow modulation of a coaxial injection unit through a flame transfer function is derived. A first
application is made on the NPCC test bench, retrieving LES data with a nonlinear representation of the
damping. Then the BKD combustor of DLR is simulated, and first comparisons with LES results are
proposed.

1. Introduction

High-frequency combustion instabilities, also called thermoacoustic instabilities, have been a recurring challenge in
the design of liquid rocket engines (LRE) since the beginning of the space era.1, 2 These instabilities arise from a cou-
pling between the combustion chamber acoustics, the injection dynamics and the flames unsteady heat release. This
coupling results in pressure oscillations and modifications of the thermal loading that reduce the engine’s propulsive
performances and may lead to its destruction.3 Due to the large number of phenomena potentially involved, combus-
tion instabilities are still not fully understood and fairly difficult to predict. Consequently, many studies on flame and
injection behaviors are carried out either on laboratory test benches4 or representative rocket engines5 using experi-
ments and high-fidelity simulations.6, 7 However, theses simulation tools are ill-suited for predesign stages, requiring
too much time and resources. Reduced-order approaches8 are thus gaining an increasing interest, enabling to rapidly
test multiple configurations and loading points. Still, these methods require more modeling efforts than large eddy
simulations (LES).

Therefore, in collaboration with CNES and ArianeGroup, the EM2C laboratory is developing the StaHF9 (Sta-
bility High Frequency) code, based on a Galerkin modal expansion of the pressure oscillations on the acoustic eigen-
modes10 of the system, reviewed in Sec. 1. Models converting the flame responses into pressure fluctuations have been
derived along with excitation terms.9, 11 To extend the StaHF capacities and perform simulations with fewer adjustment
parameters, the modeling of the leading acoustic damping phenomena are proposed in Sec. 2, as viscous, thermal, noz-
zle and injection plate losses or nonlinear energy transfer between modes. Also, the previous flame response models
are completed with a model for of the annular fuel modulation in Sec. 3. Applications are made on a cold flow test
bench, the NPCC,11 in Sec. 4 and on the BKD5 combustor from DLR in Sec. 5.

2. Reduced-Order Modeling

Reduced-order modeling (ROM) aims at describing the main couplings involved in thermoacoustic instabilities with
a simplified set of physical relations, decreasing the numerical resources required.8 Several approaches have been
applied to thermoacoustic instabilities, as the use of Green’s functions,12 the decomposition in an acoustic network
with Riemann invariant,13 or linearized solvers, as Helmholtz or LEE solvers.14 The method chosen for StaHF is a
Galerkin expansion,9, 10 that permits to handle the complexity of the engine geometry and to separate the temporal
aspect from the spatial modal structure while working in temporal space.

Copyright© 2023 by First Author. Posted on line by the EUCASS association with permission.
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2.1 Modal expansion of pressure oscillations

StaHF relies on a modal expansion10 of the pressure oscillations p′(x, t), also called Galerkin approach. The oscillations
are projected onto the acoustic eigenmodes Ψn(x) of the engine so that

p′(x, t) =
∞∑

n=1

ηn(t)Ψn(x), (1)

with ηn the temporal evolution of the nth mode and Ψn its spatial structure. It is supposed that the modes (Ψn)n≥0
form an orthogonal base, verifying ∫

V
ΨnΨmdV = Λnδnm with Λn =

∫
V
Ψ2

ndV, (2)

with Λn the norm of the nth mode. This approach enables to isolate the temporal component of the oscillations
from the spatial one

γ p̄∇.
(

1
ρ̄
∇Ψm

)
+ ω2

mΨm = 0 (3a)

∇Ψm.n = 0 or Ψm = 0 on the boundaries (3b)

where γ is the specific heat ratio, ρ̄ the mean density, p̄ the mean pressure and ωm = 2π fm the mode’s frequency.
Eq. 3 is solved here using the Helmholtz solver AVSP14 from Cerfacs, but it can be also solved analytically for simple
geometries or using another acoustic tool. Eq. 3b is the boundary condition, where homogeneous Neumann or Dirichlet
conditions can be applied. The formulation of Eq. 3 ensures the modes’ orthogonality.

2.2 Modal amplitude differential equation

We start the development with from the conservation equations and the perfect gas equation of state that write

∂ρ

∂t
+ ∇.ρu = 0, (4)

ρ

(
∂u
∂t
+ u.∇u

)
= −∇p, (5)

ρT
(
∂s
∂t
+ u.∇s

)
= q̇, (6)

p = ργes/cv , (7)

where T is the temperature, u = (ux, uy, uz) the velocity, s the entropy, q̇ the heat release rate and cv the specific
heat of the mixture at constant volume. A linear decomposition of the magnitudes is performed, so that for instance p
is decomposed as p(x, t) = p̄(x, t) + p′(x, t), with p̄ the temporal average and p′ the fluctuations. Combining the four
equations,10 it comes the reactive acoustic equation:

∂2 p′(x, t)
∂t2 − γ p̄∇.(

1
ρ̄
∇p′(x, t)) = (γ − 1)

∂q̇′

∂t
(8)

that can be projected onto the modal base to obtain a differential equation verified by each mode15, 16

η̈m(t) + ω2
mηm(t) +

1
Λm

∫
S

c̄2 p′∇Ψm.n − c̄2Ψm∇p′.ndS =
γ − 1
Λm

∫
V

∂q̇′

∂t
ΨmdV + S . (9)

The third term of the LHS is a boundary term, noted hereafter S m
Z , that can be rearranged to account for an

impedance boundary condition. The first term of the RHS is the combustion source term, noted S m
comb, representing the

coupling between the unsteady heat release and the pressure fluctuations. The last term S represents complementary
source terms that will be added when modeling other mechanisms. Further models are proposed below, by modeling the
heat release q̇′ using acoustic quantities, by using the boundary term or by adding contributions into the conservation
equation.16
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3. Modeling of the damping phenomena

The source terms developed to account for acoustic losses are briefly reviewed in this section.

3.1 Viscous and thermal losses

The viscous and thermal acoustic losses are often considered as negligible for liquid rocket engine applications, but
often discussed for other applications like solid rocket boosters.17 This is why a specific model is needed for StaHF to
evaluate these losses for particular test benches, to confirm whether these losses can be neglected or not. Therefore, we
seek to provide StaHF with models that allow the evaluation of viscous and thermal acoustic losses for all the acoustic
modes used in the projection set.

Viscous losses

The viscous losses arise from a no-slip condition at the wall interface. To satisfy the u′.n condition, the acoustic
velocity takes a certain profile in the acoustic viscous boundary layer thickness δmnu, expressed as18

δmnu =

(
2ν
ωm

)1/2

, (10)

with ν being the kinematic viscosity. The velocity writes19

u′(x, y, t) = ux(x)
[
exp

(
−

y
(1 + j)δmnu

)
cos

(
ωmt −

y
δmnu

)
− cos (ωmt)

]
, (11)

with y the normal coordinate at the wall, ux the transverse velocity at the plane, and u′ the acoustic velocity along
the x axis of a mth harmonic motion. The velocity gradient between the bulk region and the wall leads to a shear stress,
and consequently dissipation by friction.

The viscous stress tensor τ is kept in the derivation of the acoustic equation, and the modes are obtained with
a zero velocity boundary condition. The modal differential Eq. 9 becomes, dropping the combustion source term and
keeping the boundary term integral10

η̈m(t) + ω2
mηmt(t) −

1
Λm

∫
S

c̄2Ψm(xs)∇p′.n(xs, t)dS = −
1
Λm

∫
V

γ p̄∇.
(

1
ρ̄
∇.τ′(x)

)
Ψm(x)dV. (12)

A boundary condition is applied on the gradient of the acoustic pressure field to convert the no-slip condition
into a shear stress at walls:10

∇p′.n(xs, t) =
(
∇.τ′.n(xs, t)

)
. (13)

After some manipulations,10, 16 it comes that the source term associated with the viscous losses at the walls is

S m
ν = −

1
Λm

∫
S

c̄2
(
ωmν

2

)1/2 1
ω2

m
(∇tΨm)2dS η̇m, (14)

Thermal losses

Thermal losses are due to the isothermal wall condition, with acoustic oscillations considered as adiabatic. This
adiabatic condition for acoustics is verified when λa, the acoustic wavelength, satisfies19 λa > 2πDth/c, where Dth is
the thermal diffusivity. As for the acoustic velocity, there is a temperature gradient between the wall surface and the
acoustic temperature oscillations outside the boundary layer. Thus an oscillating heat flux appears, leading to thermal
losses linked with the acoustic thermal boundary layer thickness defined as

δmth =

(
2Dth

ωm

)1/2

. (15)

A similar approach to the one developed for viscous losses is proposed to account for thermal losses. Thermal
effects are modeled keeping the dissipation term ∇.q f = −∇. (λth∇T ′) in the derivation of Eq. 9, with λth = Dthρ̄cp the
thermal conductivity so that

η̈m(t) + ω2
mηmt(t) =

1
Λm

∫
V

(γ(x) − 1)
∂∇.q f

∂t
(x, t)Ψm(x)dV. (16)
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Then the temperature Laplacian is linked to the pressure variations,19, 20 to transform the oscillating temperature
component into a pressure oscillation leading to10, 16

S m
th = −

1
Λm

∫
S

(γ − 1)
(Dthωm

2

)1/2

Ψ2
mdS η̇m. (17)

The viscous and thermal losses are implemented in StaHF and validations on pipes and boxes (not shown here)
show good agreement with theoretical formulations.18

3.2 Nozzles losses

The nozzle losses are accounted for using an impedance boundary condition applied at the nozzle throat. The impedance
is supposed to be a complex number and depend of the frequency, allowing to model non-compact nozzles. Therefore,
Z = R + jX with R the resistance and X the reactance. The boundary source term of Eq. 9 can be rearranged using the
boundary relation in the frequency domain

Ẑ(xs, ω) =
p̂(xs)
ρ̄c̄û(xs).n

, (18)

with xs located on the boundary, and the relation between the pressure and the velocity

∇p′.n = − jωρ̄u′.n, (19)

leading to the source term16

S m
Z = −

R(ωm)
Λm|Z(ωm)|2

∫
SO

c̄(xs)Ψ2
m(xs)dS η̇m(t) +

X(ωm)ωm

Λm|Z(ωm)|2

∫
SO

c̄(xs)Ψ2
m(xs)dS ηm(t). (20)

This relation is valid for |R| > 1, but a similar source term can be obtained for |R| < 1.16 Validation steps are
made on 2D geometries showing good agreement with analytic and numerical solutions (not shown here). However,
for an impedance close to 1, the model does not correctly reproduce the asymptotic behavior. Nevertheless, the model
gives an approximation of the nozzle losses for a reduced computational times, and is adapted to the Garlerkin approach
where modes must remain orthogonal. Another more complex method has been proposed by Laurent,8 using a dual
base approach.

3.3 Turbulence acoustic interaction

The turbulence acoustic interaction is characterized by at least two main phenomena. An acoustic wave impinging
a turbulent zone, as a turbulent jet, or propagating through a turbulent medium undergoes energy losses due to the
absorption of acoustic energy by the turbulence, and also a scattering effect. The scattering effect redirects part of
the incident acoustic perturbation towards other frequencies and directions of propagation.21–23 The acoustic energy
is not actually lost because the energy remains acoustic, but the initial wave is weakened. The other phenomenon is
absorption by turbulence. Passing through the turbulent medium, the acoustic wave stretches the vortices, that tend to
bounce back to their initial state dissipating the energy.23–26 The acoustic energy is lost through the deformation of the
vorticies, and converted into turbulent kinetic energy. Noir23 and Howe26 also mentioned that only eddies smaller than
the acoustic wavelength contribute to the energy absorption, which is relevant to the combustion instability framework.
The acoustic wavelength is of the size of the combustor and the eddies are much smaller, of the order of the injection
unit radius and smaller. In this configuration, the acoustic frequency is large compared to the characteristic frequency
of the turbulence, so that between two acoustic fluctuations, the vortices have the time to dissipate the energy gained
during their deformation by the acoustic wave.

Term responsible for the absorption

The formulation of the term in the energy balance responsible for the turbulence acoustic interaction can be
found using a triple decomposition27 of the velocity as done by Reynolds,25 where u = ū + u′ + ũ, ū being the
mean component, u′ the turbulent divergence-free velocity and ũ the acoustic irrotational component. Using temporal
averaging and phase averaging on the conservation equations, energy balances on u′.u′ and ũ.ũ can be derived. The
term Π,

Π = ⟨u′iu
′
j⟩
∂ũi

∂x j
, (21)

4
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is common in both acoustic and turbulent velocity balance equations, associated with an exchange of energy
between the turbulence and the acoustics. ⟨.⟩ is the phase averaging process. The term Π is identified as responsible
for the absorption of acoustic waves by vortices. The damping coefficient can then be written as

σturb = −
1

2Ea
ρ̄

∫
V

⟨u′iu
′
j⟩
∂ũi

∂x j
dV. (22)

Extension of the Crow model for non-frozen turbulence

The model of Crow24 is chosen for the reduced-order application, since it covers low and high frequency ranges
and supposes a non-frozen turbulence.16 The model is written to account for a particular acoustic velocity ũm(x, t)
where the modal expansion can be performed. It comes that

Π =
12π

5
u′2(x)
c̄2(x)

ft(x)
1 + ft(x)

fm|ũm(x)|2, (23)

with fm the acoustic frequency and ft = ϵ/(u′2ωm) a reduced frequency, ϵ being the turbulence dissipation rate.
Using the acoustic velocity as

|ũm| =
1
ρ

1
ω2

m
|η̇m||∇Ψm|, (24)

and the acoustic energy

Ea = 2
∫

V

1
2
ρ̄|ũm|

2dV, (25)

so that the damping rate is

σturb =
12π
10

∫
V

u′2(x)
c̄2(x)

ft
1+ ft

fm
ρ̄2 |∇Ψm|

2dV∫
V

1
ρ̄
|∇Ψm|

2dV
. (26)

This formulation enables to account for the mode structure. However, it demands an estimation of the velocities
RMS and of the dissipation rate that are obtained using prelimiary numerical computations.

3.4 Perforated plate losses

Perforated plates are widely used in industrial combustors and aeronautical combustion chambers to damp acoustic
oscillations.28, 29 The hypothesis made in this work is that the injection plate acts as a perforated plate when it comes
to acoustic damping. The plate schematized in Fig. 1 is considered. Holes are of diameter 2a, uniformly spaced from a
distance of d, h is the thickness of the plate and the length of the back cavity is L. A bias flow u0 goes through the plate,
which is the bulk flow in the longitudinal direction. The flow through an orifice creates a jet and the acoustic wave
destabilizes the jet shear layer creating periodically vorticies. This vorticity production absorbs some of the acoustic
energy, weakening the acoustic wave.30–32 For a detailed overview of the subject, please refer to Scarpato’s articles.31, 32

combustion chamber
dome

injection line

2a

u0

L

acoustic at
frequency fm

fluctuating outlet velocity
with vorticies creation

Figure 1: Representation of an injection line in the injection plate, with incoming acoustic waves.
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The Rayleigh conductivity30 of the plate that links the fluctuating pressure p̃2 − p̃1 difference applied to the plate
to the volume flow rate q̃ through the injection unit is, considering the plate thickness33

KR =
jωmρ̄q̃
p̃2 − p̃1

= 2a
(

1
γ − jδ

+
2h
πa

)−1

, (27)

with γ − jδ that is found using the relation

γ − jδ = 1 +
π
2 I1 (S t) e−S t − jK1 (S t) sinh (S t)

S t

[
π
2 I1 (S t) e−S t + jK1 (S t) cosh (S t)

] (28)

where I1 is the modified Bessel function of first kind and K1 is the modified Bessel function of second kind. It
depends on the Strouhal number S t = ωma/u0. The plate is characterized by a porosity σ = πa2/d2. The Helmholtz
number characterizing the back cavity influence is He = ωmL/c̄, and the Mach number is M = u0/c. The impedance of
the plate representing the conversion of the acoustics in vortices is

Z = j
(
π

2
S t

M
σ

1
γ′ − iδ′

−
1

tan(He)

)
. (29)

To use this impedance into the reduced order formalism, we propose to use the boundary source term in Eq. 20,
leading to

S m
plate = −

Re(Z)
Λm|Z|2

c̄η̇m(t)
Nin f∑
n=1

Ψ2
m(xn)d2. (30)

4. Flame response models

Several combustion terms are developed to account for the different loading applied to the flames. The Spray Dynamic
Modeling9 allows to model the heat release due to the oscillating motion of the flames that follow the velocity acoustic
field. Then, the pressure response model11 accounts for the effect of the oscillating pressure on the flame.

4.1 Response of a coaxial injection unit

For an application to liquid rocket engines with coaxial injections, a model specific to the response of a coaxial in-
jection unit to pressure oscillations is needed. Near velocity nodes, the flames are experiencing important pressure
fluctuations at the outlet of the injection units leading to acoustic velocity fluctuations within the injectors, modulating
the inflow velocity. This modulation produces perturbations for both the oxygen inner jet and fuel outer ring, increas-
ing the turbulent mixing through vortices creation that are convected along the flame. Numerical simulations of such
configurations has been performed34, 35 and led to the determination of Flame Transfer Functions (FTF) and saturation
levels that could be used to obtain a Flame Describing Function. A model describing the physical phenomena has been
of flame perturbation and stretching due to the vortex convection along the flame has been proposed by Nez.34 Figure 2
represents a coaxial injection units with section changes in the injection line as in the BKD combustor.5 Two response
models are needed, one for the inner jet and one for the outer ring. Because waves going though the injector to the fuel
dome are not reflected by the section change within the outer ring, the perturbation within the dome at the inlet and in
the combustion chamber at the outlet can be supposed decoupled. Therefore, the inflow acoustic velocity fluctuations
can be evaluated as

u′f uel(xre f ) = −
p′(xre f )
ρ̄ f uelc̄ f uel

. (31)

However, because of the configuration of the inner oxygen jet, there are reflection within the line. This phe-
nomena is taken into account by the Helmholtz solver when computed the acoustic modes so that the oxygen acoustic
inflow fluctuations can be computed using the modes’ gradient in the longitudinal direction.

Fuel inflow modulation

The inflow modulation of the fuel stream is supposed to directly impact the unsteady heat release per surface
area due to local turbulent mixing enhancement. The fuel velocity fluctuation in the longitudinal direction is supposed
to depend solely on the longitudinal abscissa and is written as

6
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combustion chamberno reflexion
in the fuel

injection line

inflow velocity
modulation

due to acoustic
fluctuations

reflexion in 
the LOx

injection line

Fuel
dome

LOx
dome

Figure 2: Coaxial injection unit of a typical LRE combustor similar to the BKD configuration with inflow velocity
modulation due to acoustic fluctuations.

u′f uel(x, t) = ū f uel(x)α(x, t) sin
(
ωmt − κ(x)x

)
, (32)

with ū f uel the averaged axial velocity in the annular jet, α the local modulation amplitude and the wavenumber
κ(x) = ωm/ū f uel(x). A proportionality is assumed between the local heat release rate and the local velocity:

q̇′l(x, t)
q̇l0(x)

≈
u′f uel(x, t)
ū f uel(x)

, (33)

where q̇l0(x) is the linear heat release. Therefore

q̇′l(x, t) = α(x, t)q̇l0(x) sin
(
ωmt − κ(x)x

)
. (34)

The local amplitude is set to the amplitude of modulation at the outlet xre f , where the flame is positioned, as
α(x, t) = α(xre f , t). Equation 34 is then solved numerically and a FTF is obtained, linking the total unsteady heat
release of the flame Q̇′, that is

Q̇′(t) =
∫
V

q̇′(x, t)dV (35)

with the inflow velocity fluctuations at the injection unit outlet u′f uel(xre f ), as

Q̇′(t)/ ¯̇Q
u′(xre f , t)/ū(xre f )

= FT F(G,Φ) (36)

with G the gain and Φ the phase. The phase Φ corresponds to a time lag τ and the gain G to an interaction index
n. Manipulations on the combustion source term using Eq. 31, Eq. 35 and Eq. 36 lead, considering N f flames, to a
source term expressed as:

S m
f uelmod(t) =

1
Λm

N f∑
i=1

 (γ(xre f ,i) − 1)ni(ωm) ¯̇Qi

ū(xre f ,i)

M∑
n=1

η̇n(t − τi(ωm))
(ρ̄c̄) f uel

Ψn(xre f ,i)Ψm(xre f ,i)

 . (37)

For the particular application to the BKD test bench (see Sec.6), the profiles of linear heat release q̇l0(x) along
the flame length and of the fuel velocity ū f uel(x) is shown in Fig. 3 and the FTF obtained numerically, for two typical
loading points T65 and T131,7 are shown in Fig. 4. A validation step of the implementation of Eq. 37 is made
by computing the phase shift between the velocity and the heat release, and by comparing the amplitudes, on a 2D
geometry, with a single flame. One can conclude that StaHF is correctly able to handle the FTF formulation.

5. Application to the NPCC test bench

5.1 NPCC overview

The NPCC test bench, for New Pressurized Coupled Cavities, was designed at EM2C laboratory,11 as a cold flow
experiment constituted of a dome and a chamber linked by three injection units. It has the possibility to change

7
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Figure 3: Linear heat release rate (left) and axial fuel velocity (right) of a BKD injection unit, with respect to the
reduced distance x/d from the injection plate, and with d the injector diameter.
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Figure 4: Gain and phase for the typical operating points T65 and T131 for the BKD combustor, obtained by the
numerical resolution of Eq. 32.

the injection units head losses by adding diaphragms at the injectors’ inlets. This results in the modification of the
chamber/dome coupling. The exhaust chamber comprises two nozzles, upper and lower, and a very high amplitude
modulator (VHAM),9 which is a rotating toothed wheel that successively closes the upper and lower nozzles. This
external modulation allows to drive acoustic oscillations within the chamber and excite targeted eigenmodes. Then it
is possible to study how the dome responds to pressure fluctuations in the chamber and so to establish modeling of the
injection dynamics. There is no combustion in the present case. Fig. 5 presents the NPCC geometry. It is possible to
use different kinds of rotating wheels, depending on which phenomenon needs to be underlined. The fully perforated
wheel allows exciting the cavities with a ramp of frequency so that by looking at the pressure response from sensors,
one can deduce the eigenfrequencies experimentally. Also, it can drive and sustain the eigenmodes if the VHAM
runs at the correct frequency. The second wheel, a half perforated one, gives some relaxation time for the pressure to
decrease. Thus, one can estimate the damping coefficient of a specific mode by looking at the exponential decrease of
pressure signals.

Gonzalez-Flesca11 provided the experimental measurements of the pressure oscillations in the dome and in the
chamber when the VHAM excites the 1T, 1T1L and 1T2L modes. Using the half-perforated wheel, the global acoustic
damping coefficient was also estimated. Later, Marchal36 retrieved the experimental results with a 3D LES of the test
bench.

The VHAM has been modeled using the reduced order framework9 so that the corresponding source term is

S m
VHAM =

ṁmod

2Λm
ωec̄2 (Ψm(x1) − Ψm(x2)) sin (ωet) , (38)

with ṁmod the modulated mass flow rate, ωe the excitation frequency and x1 and x2 the position of the nozzles.
The value of ṁmod differs from the total mass flow rate measured in the experiment (3.1g.s−1), since leaks are present
near the nozzle that reduce the modulated mass flow rate to ṁmod ≈ 0.84g.s−1 as shown in Marchal.36

The acoustic modes and frequencies are computed using the AVSP14 solver, for a mean pressure p̄ = 3.5bar,
a mean density ρ̄ = 4.14kg.m−3 and temperature T̄ = 293K. Fig.5 shows the 1T, 1T1L and 1T2L modes with the
corresponding frequencies. The numerical results obtained by Marchal36 are also shown on Fig. 5. Agreement between
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Figure 5: New Pressurized Coupled Cavities (NPCC) test bench.11 It runs cold flow, the air passes from the dome to the
chamber through 3 injection units with variable head losses and exits via two nozzles that are successively closed by a
rotating toothed wheel (Very High Amplitude Modulator) to impose a specific acoustic excitation frequency. Pressure
sensors are deployed along the test bench.

LES and experiment is very good, so that LES can also be used for comparison with ROM.

0 1

p' [
bar

]

t [ms]

1T mode - HFc1 sensor
experimental
LES

2 3 4 5-0.2

0.2

0.0

-0.1

0.1

1226 Hz 1469 Hz 2036 Hz

0 1

p' [
bar

]

t [ms]

1T1L mode - HFc1 sensor
experimental
LES

2 3 4 5-0.2

0.2

0.0

-0.1

0.1

0 1

p' [
bar

]

t [ms]

1T1L mode - HFc1 sensor
experimental
LES

2 3 4 5-0.2

0.2

0.0

-0.1

0.1

Figure 6: 1T, 1T1L and 1T2L modes’ structure and frequency, computed using the AVSP solver, for a sound speed of
c̄ = 343m.s−1, along with experimental11 and LES36 results of each mode excitation.

A continous modulation of the three proposed acoustic modes is performed, by imposing ωe = ωm, and compar-
isons are made with experimental9 and LES36 results in the following part of this section.

5.2 Evaluation of the damping coefficients

First of all, an evaluation of the damping phenomena reviewed in Sec. 3 is made. The viscous and thermal losses
are computed using Eq. 14 and Eq. 17 with a viscosity ν = 4.82 × 10−6m2.s−1 and a thermal diffusivity Dth =

12.0 × 10−6m2.s−1. Formulations accounting for the near-wall turbulence influence are availabale,16 but in the present
application, the turbulence intensity is too weak to increase the viscous and thermal losses. The representative
impedance to be applied at the nozzles’ outlet is computed using the ANOZZLE37 solver, supposing a chocked outlet,
that gives the impedance with respect to the frequency. Then, Eq. 20 is applied at the outlet. Using the LES carried
out by Marchal,36 an estimation of the RMS velocity and of the turbulent dissipation rate is made within the domain,
and the formulation Eq. 26 is used to quantify the turbulence acoustic interaction. Finally, the conversion of acoustics
into vorticies at the injection units’ outlet is evaluated using a = 3mm, d = 50mm, L = 58mm, u0 = 10m.s−1. Table 1
gives the damping rates for each phenomenon. The viscous and thermal losses are preponderant, the nozzles losses are
negligible mainly due to the small section of the nozzles, the acoustic turbulence interaction is also negligible and the
perforated plate losses are not negligible but modest.

5.3 Linear hypothesis application

For each mode, the StaHF differential equation writes, in a simple form,

η̈m(t) + 2σmη̇m(t) + ω2
mηm(t) = S m

VHAM , (39)

9
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Table 1: Damping rates (s−1) associated with each damping phenomenon modeled, for the 1T, 1T1L and 1T2L modes.

Frequency Thermal Viscous Nozzle Turbulence Perforated
losses losses losses interaction plate losses

1T 1226.0 Hz 3.45s−1 3.45s−1 10-3s−1 10-8s−1 0.40s−1

1T1L 1468.8 Hz 4.48s−1 4.78s−1 10-3s−1 10-8s−1 0.46s−1

1T2L 2036.3 Hz 5.19s−1 5.89s−1 10-3s−1 10-8s−1 0.19s−1

withσm the sum of all the contribution given in Table 1. The damping is linear and the limit cycle is a competition
between the damping coefficient σm and the VHAM modulation. The result of the StaHF simulation are compared to
the experimental results in Fig. 7 and Fig. 8. Fig. 7 shows on the left the total signal along the experimental limit cycle
amplitude, and on the right a focus on a 5ms window where the two signals are superimposed. It can be seen that StaHF
shows a correct amplitude, very satisfying for a reduced-order code without any adjusment parameters. However, the
shape of the experimental curve is not reproduced. This particular shape is caused by the nonlinear nature of the 1T
modulation for this amplitude of modulation. As shown by Marchal,36 the modulation amplitude is strong enough
to trigger a nonlinear acoustic response. There is a steepening of the acoustic wave,10 as a shock formation, and
the pressure signal is no longer a pure harmonic signal composed of solely the 1T contribution but feature several
subharmonics. This steepening explains the shape of the signal. A nonlinear representation of the damping is therefore
proposed in the next section.

The 1T1L and 1T2L modulations are also performed, and the comparisons with experiments are given in Fig.
8. The signals show a more classical sinusoidal form. It was pointed out that these modulations are less subject to
a nonlinear acoustics behavior, and the fundamental mode is the dominating one, with only a limited response of the
harmonics. As for the 1T case, the 1T1L and 1T2L limit cycle amplitudes are well retrieved by the reduced order
model.
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Figure 7: Comparison of the 1T mode pressure response between the reduced-order simulation and the experimental
results, using a linear damping formulation.

time (ms)

p
re

ss
u
re

 (
b
ar

)

0

0.1

-0.1

0.2

-0.2

0

1 2 3 4 5

time (ms)

1T1L mode

p
re

ss
u
re

 (
b
ar

)

0

0.1

-0.1

0.2

-0.2

0

1 2 3 4 5

StaHF
Expe

StaHF
Expe

1T2L mode

Figure 8: Comparison of the 1T1L (left) and (1T2L) mode pressure response between the reduced-order simulation
and the experimental results, using a linear damping formulation.

10



A. FOUGNIE, T. SCHMITT AND S. DUCRUIX

5.4 Modeling the nonlinear acoustics

In this part , the impact of acoustic nonlinearities on the fundamental mode damping is modeled. The modeling is based
on the theoretical work depicted in Garrett38 and Hargrove.39 This work shows that the velocity amplitude evolution
|Cn| of the harmonics of a propagating wave due to nonlinear effects can be properly described by the following relation:

|Cn| =
2

nσ
Jn(σ), (40)

with Jn the nth Bessel function and σ a scaled distance.38 Focusing on the fundamental mode, assuming that
relevant damping occurs at the inception point (position were the shock is formed), it is possible to express the pressure
amplitude derivative (thus the damping) in terms of pressure fluctuation amplitude:

dAp

dt
= −Γω

p′2

4ρ̄c̄
, (41)

where Ap is the amplitude of the mode in terms of pressure and Γ is the Grüneisen parameter. It leads to the
StaHF equation with nonlinear damping term:

η̈m(t) + 2σmη̇m(t) + 2βm|ηm(t)|η̇m(t) + ω2
mηm(t) = S m

VHAM , (42)

with βm the nonlinear coefficient found as

βm =
1

0.64
Γωm

4ρ̄c̄2 . (43)

with Γ = 6/5 for air and the coefficient 1/0.64 arises from the extraction of the mode amplitude from the
harmonic signal used in StaHF. Fig. 9 shows the total signal and a 2ms windowed view of the StaHF results along
with the LES prediction. The LES is the computed signal that has been filtered around the 1T frequency to isolate the
fundamental mode, which in this case is the 1T mode. Note that on the reduced-order computation, the thermal losses
have been set aside since the LES uses an adiabatic wall condition. The results are found to be in very good agreement
with the reference, suggesting the model properly captures the physical phenomenon. Harmonics source terms are not
accounted for for the moment and are the subject of current researches.
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Figure 9: Comparison of the 1T mode pressure response between the reduced-order simulation and the LES fitted
results, using a nonlinear damping formulation.

6. Application to the BKD test bench

The BKD combustor5 is a reduced-scale LOx/H2 liquid rocket engine equipped with 42 shear injection units operated at
DLR Lampoldshausen. We propose to apply the ROM methodology to the T65 and T1317 loading points. The injection
mass flow rates of propellant and oxygen temperature are the same for both loading points, with ṁLOx = 5.8kg.s−1,
ṁH2 = 5.8kg.s−1 and TLOx = 107.6K. The temperature of hydrogen is however different: TH2 = 65K for the T65
case and TH2 = 131.7K for the T131 case. From experiment measurements,40 it is expected that case T131 features a
dominating 1T mode, while case T65 features a dominating 2T mode.

The mean sound speed field is extracted from LES7 and eigenmodes are computed using the AVSP solver.14

Table 2 gives the frequency found for the 1T, 1T1L, 1T2L, 2T, 3T and 1R modes for both loading points and Fig. 10

11



ROM FOR THE PREDICTION OF HFCI IN LRE: COAXIAL INJECTION RESPONSE AND ACOUSTIC DAMPING
MODELING

shows the spatial shape of these modes. The shapes are quite similar for both T65 and T131, this is why they are not
shown for T131.

Table 2: Frequencies (Hz) of the 1T, 1T1L, 1T2L , 2T, 3T and 1R modes of the BKD for the T65 and T131 loading
points, with the AVSP solver.

1T 1T1L 1T2L 2T 3T 1R
T65 9582 Hz 11732 Hz 12823 Hz 15722 Hz 21163 Hz 21613 Hz
T131 10568 Hz 12164 Hz 13254 Hz 17108 Hz 23229 Hz 23661 Hz

1T1L mode 1T2L mode

2T mode 3T mode 1R mode

1T mode

Figure 10: 1T, 1T1L, 1T2L, 2T, 3T and 1R modes of the BKD combustor5 computed with AVSP14 for the T65 case.7

The modes frequencies are compared to the ones observed in the LES using the pressure PSD.7 Figure 11 shows
the PSD based on numerical simulations7 and the frequencies of the 1T, 2T, 3T and 1R modes found with AVSP. The
frequencies are well-retrieved, especially for the 1T and 2T modes.
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Figure 11: PSD of the pressure temporal signal from LES7 for T65(left) and T131(right) cases, and AVSP results
(dashed lines).

To evaluate the damping contribution of each phenomenon described in of Sec. 3, the viscosity ν and thermal
diffusivity Dth are also extracted from the LES.7 The impedance applied at the nozzle outlet is obtained using the
ANOZZLE tool,37 supposing a non-compact nozzle. Tables 3 and 4 show the damping coefficients obtained. The
interaction with the turbulence is set to 0 since the different evaluations made here indicate that this phenomenon is
probably negligible. The viscous losses are more important than the thermal losses, and the nozzle losses grow when
longitudinal components are presents.The particular behavior of the viscous losses with respect to the mode is due to
the level of acoustic in the injection lines. For instance, for the 1T mode of T131, the acoustics in the injection lines
is more important, compared to the acoustic in the chamber, than for the T65. Therefore, the total wall surface of the
injection lines being more important than the wall surface of the chamber, the modes experiencing higher response in
the injectors have more viscous losses. The perforated plate losses have been evaluated for the H2 injectors, supposing
no reflection in the dome. The damping obtained is important, but it is interesting to note that it is modest, on one hand,
for the 2T mode of T65 and on the other hand, for the 1T mode of T131. It is explained by the acoustic mode intensity
in the chamber compared to the intensity in the injection lines.
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The growth rate associated with each combustion terms is also evaluated. The pressure response leads to growth
rates, because the heat release is in phase with the acoustic. But it is not enough to counter-balance the damping
phenomena alone. The coaxial response source term modeled with the FTF and the profiles of Fig. 4 acts, for most
modes, as a positive source term.

The balance between the damping and the combustion terms is also given. For both loading points, the damping
exceed largely the destabilizing effects, so that all the modes are stable. Some phenomena have not been modeled, as
the transverse flames motion9 or the coaxial LOx inflow modulation that could trigger instabilities.

Table 3: Damping and growth rates (s−1) for the BKD T65 case, obtained with StaHF.

damping combustion
viscous thermal nozzle turbulence perforated pressure H2 coaxial balance
losses losses losses interaction plate response modulation

1T 367.6 10.0 10-2 0 4456.5 -3619.4 -810.8 403.9
1T1L 101.7 8.4 41.2 0 1506.0 -1481.7 -162.8 54.0
1T2L 73.0 8.7 357.2 0 1457.7 -1424.9 -257.1 571.8

2T 1703.1 20.4 10-3 0 30.7 -2.9 0.5 1751.8
3T 1856.7 23.9 10-2 0 75.4 -262.7 -20.9 1672.4
1R 1103.7 18.4 64.2 0 1082.7 -1626.7 -230.3 476.1

Table 4: Damping and growth rates (s−1) for the BKD T131 case, obtained with StaHF.

damping combustion
viscous thermal nozzle turbulence perforated pressure H2 coaxial balance
losses losses losses interaction plate response modulation

1T 1351.4 15.7 10-2 0 323.6 -292.8 -19.5 1378.4
1T1L 70.0 8.2 102.2 0 2118.6 -1337.9 -257.0 704.1
1T2L 90.1 9.1 421.2 0 2911.9 -1785.9 -181.8 1464.6

2T 383.2 14.2 10.9 0 6147.3 -3809.2 559.4 3305.8
3T 727.0 18.7 139.2 0 6500.0 -3127.7 -668.8 3588.4
1R 666.2 13.9 9.2 0 6229.5 -2573.0 -667.3 3678.5

7. Conclusion

A reduced-order strategy based on a modal decomposition of the pressure oscillations has been presented. Models
to account for some of the acoustic damping phenomena has been developed, as the viscous and thermal losses, the
nozzle losses, the turbulence acoustic interaction or the perforated plate losses. A combustion model has been derived
in order to include a flame transfer function into the low order code.

A first application to the NPCC test bench shows good agreements with the experiments. A nonlinear damping
model is proposed to explain the particular shape of the 1T mode. Using this nonlinear damping representation, the
LES filtered at the excitation frequency results are retrieved.

Then, the T65 and T131 loading points of the BKD combustor are simulated and compared with LES results.
Results shows that the damping rates evaluated exceed the growth rates. Therefore we believe that further models have
to be included into the simulation, as the traverse flames motion or the unsteady heat release due to the inflow LOx
modulation.
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