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Abstract— Accurate crop type information is of paramount 

importance for decision makers. This paper focuses on refining 

rapeseed field detection. This goal is achieved by creating high 

accuracy rapeseed maps using Sentinel-1 (S1) time series and 

secondly, by developing different solutions for mapping the 

rapeseed fields when there are constraints in ground samples 

collection.  Proposed solutions include transferring a model 

developed over one year to other years with no re-training, and 

developing models with limited training samples. The research 

evaluates the performance of Random Forest (RF) and three deep 

learning (DL) algorithms: Long Short-Term Memory Fully 

Convolutional Network (LSTM-FCN), InceptionTime, and Multi-

layer Perceptron (MLP). All four algorithms were used to classify 

the S1 time series with a large number of ground samples from the 

same years for training and testing. Smaller sample sizes were then 

tested for the training phase (100, 300, 500 and 1000 samples in a 

study site of 800 km2). Model transferability is tested across years. 

The impact of S1 image count on transfer accuracy is examined. 

Additionally, the effect of the phenological shift in the rapeseed 

growth cycle of 15 and 30 days between the training and test years 

was also investigated. The findings demonstrate strong model 

performance when training and testing occur in the same year (F1-

score up to 95%). Within sample sizes of 300 to 1000, RF and 

InceptionTime stand out with high accuracy (F1-score>90%). 

When employing different years for training and testing with 

ample sample sizes, all four algorithms correctly classified 

rapeseed (F1-score between 85.5% and 92.7%). In cases of a 

reduced number of images, the performance of InceptionTime and 

LSTM-FCN decreased (16% decrease in the F1-score), while RF 

and MLP maintain their performance. Notably, RF outperforms 

DL algorithms with an F1 score of 89.1%. In the context of a 

phenological shift, only InceptionTime and LSTM-FCN 

demonstrated strong performance (F1-score between 87.7% and 

92.6%). 
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I. INTRODUCTION 

he aftermath of the COVID-19 pandemic and the war in 

Ukraine have exacerbated threats to global food security 

[1]. To avert this threat, the global community needs to 

expand the cultivation of key crops and improve agricultural 

efficiency, especially for multipurpose crops such as rapeseed, 

which is important not only for food security but also for oil and 

livestock production [2]. Based on the United States 

Department of Agriculture (USDA) report on rapeseed 

production by country in 2022, the top 7 rapeseed producers in 

the world are the European Union (EU), Canada, China, India, 

Australia, Ukraine and Russia [3]. Therefore, accurate 

information about the expansion of the rapeseed cultivation is 

important, not only for agricultural planning, but also for 

environmental and economic purposes [4]. 

Satellite imagery with different spatial, spectral and temporal 

resolutions facilitates the provision of crop information [5], [6]. 

However, using optical data, previous studies mentioned 

several challenges in detecting rapeseed, such as the similarity 

between the spectral response of some rapeseed phenological 

stages and other vegetation species, spectral mixing pixels of 

moderate resolution images, cloud contamination, and 

limitations in achieving training samples in extensive farms [7], 

[8]. To address these limitations, different methods and types of 

satellite imagery have been used so far. Phenology-based 

classification methods are mainly based on the difference 
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between the growth stages of rapeseed and other crops [9]. For 

example, the yellow color of rapeseed during the flowering 

stage has been widely used to detect rapeseed [2], [8], [10]. The 

Normalized Difference Yellow Index (NDYI) is known to be 

an effective index for mapping rapeseed using optical images 

[5], [8], [10]. In addition, the Ratio Oilseed Rape Colorimetric 

Index (RRCI) and the Normalized Rapeseed Flowering Index 

(NRFI) were developed respectively by Wang et al. [11]and 

Han et al. [10], based on the yellow color of rapeseed flowers. 

In the vast regions, where rapeseed planting dates vary, the 

availability of continuous time series images, covering all 

growth stages of rapeseed in all parts of the study area is crucial. 

The acquisition of optical images for the monitoring of rapeseed 

fields can be difficult in some regions given that this crop is a 

winter crop [12] and cultivated in countries with a prevalence 

of cloudy days [5]. Thus, Synthetic Aperture Radar (SAR) is a 

good alternative, providing enough image frequency with the 

advantage of non-dependency on weather conditions. Previous 

studies have confirmed the variation in the SAR backscatter 

signal following the phenological changes of rapeseed [10], 

[13], [14]. McNairn et al. [15] described how the accumulation 

of biomass and changes in the structure of rapeseed during the 

growth stages increase the SAR backscatter. This change in the 

SAR backscattering over rapeseed fields with biomass 

accumulation has also been reported in studies of Wisemann et 

al. [16], Yang et al. [17] and Lopes-Sanchez et al. [18]. In 

addition, unlike other crops, the random shape of rapeseed leads 

to a higher contribution of the rapeseed plant to the SAR 

backscatter than that of the soil [12]. Using SAR data, the 

potential of VH and VV/VH to detect the peak flowering period 

of rapeseed is also mentioned by Han et al. [10]. In addition, 

Fieuzal et al. [14] showed that the best results are achieved 

using the C-band rather than X and L bands.  Sentinel-1 (S1) C-

band SAR sensors have made crop mapping easier thanks to 

their high spatial and temporal resolutions and their availability 

in free and open access. S1 imagery provides weather-

independent data with a short revisit time (up to 6 days in 

Europe), which has made S1 images advantageous for crop 

growth studies. Because of these advantages, several studies 

have been carried out on rapeseed mapping using SAR imagery 

or using a combination of the optical and SAR images [2], [4], 

[10], [14],[19]–[22]. 

Although rapeseed mapping has been the subject of several 

studies, some other research arguments should be addressed, 

including the constraints of collecting ground samples of 

rapeseed fields every year due to temporal and financial 

constraints, the effect of the ground sample size on the accuracy 

of the classification, and the possibility to use a model 

developed using ground samples from one year on other years. 

This paper will reply to these concerns with the advantage of 

Artificial Intelligence (AI) methods as AI exhibits a high 

potential to compensate for the weaknesses of classical methods 

[23], [24]. The ability to learn from complex and large data 

sources allows AI methods to map multiple crop types from 

multi-temporal images over a large and diverse region [9], [24], 

[25]. In addition, the ability of AI methods to determine the 

importance of inputs in classification has made them more 

functional in time series analysis. From the various AI methods, 

machine learning techniques such as Random Forest (RF) are 

commonly used in crop mapping [4], [26], [27][28]. Using a 

random forest algorithm, Liu and Zhang [5] simulated the peak 

flowering date of rapeseed and Meng et al. [29] determined the 

best temporal period for rapeseed detection. However, deep 

learning (DL) methods are gaining interest in satellite image 

classification [23], [30]–[33]. These methods are able to learn 

in an end-to-end manner from the raw input data to perform 

image classification [30], [34]. The DL algorithms for remote 

sensing data are grouped as convolutional neural networks 

(CNNs) for spatial learning and recurrent neural networks 

(RNNs) for sequential data, such as time series [23]. To 

improve the vanishing gradient problem of RNNs, long short-

term memory (LSTM) networks using a forget gate have been 

developed. Recently, methods incorporating CNNs and 

LSTMs, such as convolutional LSTM (ConvLSTM), have been 

applied to remote sensing applications involving both spatial 

and temporal terms [35]. 

In this paper the advantage of four AI algorithms including 

Random Forest (RF), Long Short-Term Memory Fully 

Convolutional Network (LSTM-FCN), InceptionTime, and 

Multi-layer Perceptron (MLP), have been tested to facilitate the 

detection of rapeseed fields firstly by presenting algorithms that 

provide high accuracy rapeseed classification using only S1 

time series. Secondly, by developing different solutions for 

mapping the rapeseed fields when there are constraints on 

ground sampling, by using a model trained with ground samples 

from one year and then applying it to other years without having 

to retrain it, and by testing the use of small training sample size 

in the classification. Also, the effect of the phenological shift in 

the rapeseed growth cycle between the training and test years, 

and the effect of the number of images in the S1 time series on 

the accuracy of the transferability of models were investigated. 

The approaches proposed in this paper could enable users to 

detect the rapeseed fields regardless of the inaccessibility of the 

study site and to obtain the accurate classification of rapeseed 

over large regions. This paper is organized into six sections: 

introduction, study site and dataset, methods, results, 

discussion, and conclusions. 

II. STUDY AREA AND DATA SET 

A. Study area 

This study was carried out in the Charente-Maritime 

department in the west of France. The study area with a 

geographical extent of approximately 8000 km2 is presented in 

Fig. 1. It belongs to the oceanic climate zone, with about 1000 

mm of rainfall and 2000 hours of sunshine per year. The main 

crops grown in the area are Wheat, Maize and Sunflower. Table 

I shows the nine most abundant crops in the study area in the 

years 2018, 2019 and 2020, based on the French registry for 

agricultural plots (RPG, Registre Parcellaire Graphique). For 

each year, the proportion of each crop type relative to the total 

cultivated area in the study site is also provided. 
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Fig. 1. The location of the study site and an example of the distribution 

of rapeseed plots within the study site. 

 
TABLE I 

PROPORTION OF THE CULTIVATED AREA BY THE MAIN CROPS OUT OF THE 

TOTAL CULTIVATED AREA IN THE STUDY SITE FOR THE YEARS 2018, 

2019, AND 2020. 

Crop type 2018 

Area 

 (%) 

2019 

Area 

 (%) 

2020 

Area 

 (%) 

Soft winter wheat 21.6 23.0 15.1 

Maize 12.4 13.2 14.4 

Permanent prairie 10.8 10.8 11.2 

Sunflower 9.0 9.4 10.8 

Winter rapeseed 6.0 2.0 6.2 

Hard winter wheat 6.2 4.3 4.0 

Peas 2.4 2.4 3.2 

Winter barley 4.3 4.8 3.1 

Spring Barley 2.8 4.1 2.8 

B. Dataset 

1) Ground data: The ground samples were taken from the 

RPG data which is the database of the farmers’ declarations of 

agricultural plots in France. It contains the boundaries of each 

declared agricultural plot and information such as the crop type 

and the size of each plot. The RPG is available for download 

for the whole of France via 

(https://www.data.gouv.fr/en/datasets/registre-parcellaire-

graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-

leur-groupe-de-cultures-majoritaire/). To map the rapeseed 

fields in the current paper, the RPG data of the study years 

including 2018, 2019 and 2020 were used in order to create the 

large annual sample dataset for the training and testing. The 

cultivation period of rapeseed in the study area starts from 

September and ends in July of the next year. Therefore, for a 

growing season that starts from a sowing date in September 

2018 and an end with a harvesting date in July 2019, the RPG 

of 2019 was used as the ground sample because the year of 

harvest is taken into account in the RPG. Table II shows the 

total number of cultivated plots, the number of rapeseed plots, 

and the proportion of rapeseed plots in the total number of 

cultivated plots. 

2) SAR images: The time-series of C-band (5.405GHz) SAR 

images acquired by the Sentinel 1A (S1A) and Sentinel 1B 

(S1B) satellites were used. Both “ascending” (evening at 18:00 

UT) and “descending” (morning at 06:00 UT) acquisitions were 

utilized in the VV and the VH polarizations. The pixel spacing 

of S1 images is 10 m x 10 m. The data are freely available from 

the European Space Agency’s (ESA) website 

(https://scihub.copernicus.eu/dhus/#/home). The revisit time of 

the S1 constellation is six days, meaning that one image is 

available for each orbit every six days. In this study a dataset of 

all available orbits over the study area was collected. All the 

acquired images regardless of the orbit number were stacked in 

chronological order. Table II shows the total number of S1 

images acquired over the study site and the average number of 

images per month.  

Fig. 2 shows the temporal distribution and the overall 

coverage of the S1 orbits over the study site (each orbit has a 

unique acquisition time). The first acquisition in our study site 

is a “descending” image belonging to the orbit 81 (D81). The 

following image comes 24 hours later and is a descending 

acquisition as well from orbit 8 (D8). Then, the third acquisition 

comes 36 hours later as an ascending acquisition from orbit 30 

(A30). Six days after the first image, the cycle is repeated in the 

same way with a new image from D81 orbit. The hatched area 

in Fig. 2 represents the 3.5 days period that separates every 

bunch of three images (D81, D8, A30) from the next bunch. The 

incidence angles vary on our study site from 23° to 38° for the 

orbit 81 and from 32° to 48° for the two orbits 8 and 30. 

The S1 images were calibrated using the S1 toolbox 

developed by ESA. Calibration was a two-step process; the first 

step was the radiometric calibration, which converted a digital 

number into a backscatter coefficient 𝜎° in linear units. The 

second step was the geometric correction, which was the 

process of ortho-rectifying the images using a 30 m digital 

elevation model from the Shuttle Radar Topography Mission 

(SRTM). 

  For our dataset, which covers an area of 100 km x 100 km, the 

incidence angle varies by about 15°. In order to reduce the 

effect of the incidence angle, a possible solution would have 

been to normalize its effect. However, the normalization 

function can be different from one crop to another but also 

different for the same crop between the different parts of the 

growth cycle (bare soil, well-developed vegetation, etc.). 

Furthermore, it is not well known for each specific type of crop. 

When using a normalization function of the form cos(θ) [36] 

and a reference incidence angle of 35°, the variation in the radar 

signal due to the difference in the incidence angle is lower than 

1 dB (our dataset acquired with incidence angles between 23° 

and 48°). As the form of the normalization function is not well 

known and the variation of radar signal due to the incidence 

angle is smaller than the increase of the signal due to vegetation 

growth (several dB), we did not normalize by the radar 

incidence angle, thus leaving the rapeseed mapping algorithms 

to overcome small fluctuations in the radar signal due to a 

variation in the incidence angle. 

3) Sentinel-2 images (S2): Sentinel2 images were downloaded 

from the Theia website (https://www.theia-land.fr/). These 

images were used to calculate the NDVI values with the goal to 

only explain and interpret the temporal behavior of the S1 

signals over rapeseed fields. Thus, optical related information 

was not involved in the classification process.  

 

TABLE II 
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DATASET USED IN THIS STUDY 

Year 

Total 

number 

of plots 

Total 

number of 

Rapeseed 

plots 

Ratio of 

rapeseed 

plots in 

samples 

Total 

number 

of orbits 

Total 

number 

of images 

Number of 

images per 

month 

2018 80288 2639 3.29% 3 181 15 

2019 72506 1021 1.41% 3 163 14 

2020 97971 1519 1.55% 3 179 15 

 

 
Fig. 2.  Frequency of S1 images in “ascending” (A) and “descending” 

(D) for all orbits covering our study site. The hatched area represents 

the period with no S1 acquisitions. 

 

III. METHOD 

A. Temporal behavior of Sentinel-1 signals 

The temporal behavior of S1 over rapeseed fields was studied 

for the 2018, 2019 and 2020 growing seasons (the growing season 

starts in September and ends in July of the following year). For this 

study, an S1 dataset consisting of all three orbits (8, 30, 81) 

available over the study area was used. Since this work was 

conducted at plot scale, the average signal of all pixels in each plot 

was calculated to obtain a single representative value for each plot. 

The result of this process was two plot level time series (marked 

with a "p"), VVp and VHp 

B. Rapeseed fields mapping 

With the aim of evaluating the ability of AI algorithms for 

rapeseed fields mapping and proposing an algorithm to 

overcome some functional constraints in land cover 

classification, four AI algorithms were evaluated. One machine 

learning and three DL algorithms were used to detect the 

rapeseed fields from S1 time series. The flowchart of the 

methodology of this paper is presented in Fig. 3, and the codes 

are available at GitHub 1. Within the machine learning methods, 

RF was selected as a well-known method widely used in similar 

land cover classification approaches and providing acceptable 

classification results [28], [37], [38]. RF was used in this study 

as a baseline for accuracy of classification by different 

algorithms. Within the DL methods, Multi-layer Perceptron 

(MLP), which is a plain deep ANNs, and two ANNs algorithms 

tailored for time series analysis called Long Short-Term 

Memory Fully Convolutional Network (LSTM-FCN) [39] and 

InceptionTime [40] were selected. A more detailed description 

of the selected algorithms is provided in Section D of 

methodology. The Adam optimizer was used to train all three 

DL algorithms [25]. Parameters of Adam were fixed as: β1 = 

0.9, β2 = 0.999, ε = 1e-07. The learning rate and weight decay 

were set respectively to 1e-5 and 1e-6.  The batch size was set 

to 16 during training and a standard cross-entropy loss function 

was used.  The input data were the S1 time series in two 

 
1 https://github.com/cassiofragadantas/Colza_Classif 

channels at plot scale (VHp and VVp) covering three years 

(2018, 2019 and 2020). The classification process was 

performed with the aim of detecting the rapeseed fields, so two 

classes were used: rapeseed (positive class) and non-rapeseed 

(negative class). Non-rapeseed class consisted of other crops 

except rapeseed. Each classification was performed with 70% 

of the ground samples as training and 30% as test data, split 

randomly in 5 independent realizations. The classification was 

carried out in two main parts including rapeseed fields mapping 

using the same year for training and testing, and evaluating the 

transferability of the models obtained by each algorithm in each 

year onto other years. In each part, related factors that might 

affect the accuracy of the mapping were tested. 

1) Rapeseed fields mapping using the same year for training 

and testing: Rapeseed fields mapping using the same year for 

training and for testing was conducted using all four algorithms. 

To train the algorithms and test the models all ground samples 

mentioned in Table II (large annual sample dataset) were 

employed. 

2) Rapeseed fields mapping using smaller training sample 

size: The effect of the training sample size on the performance 

of the four algorithms in the detection of rapeseed fields was 

evaluated using the same year for training and for testing and 

four different sample sizes including 100, 300, 500 and 1000 

samples. The input time series were VV and VH time series at 

plot scale (VHp and VVp). The training samples were drawn by 

keeping the same ratio between positive and negative classes as 

found in the large annual sample dataset (imbalanced training 

data). For example, in the large dataset of the year 2018, the 

percentage of rapeseed and non-rapeseed samples was about 

3% and 97%, respectively. Therefore, with a training sample 

size of 1000, the number of rapeseeds fields in the training 

samples was around 30 and the number of non-rapeseed fields 

was around 970.  

3) Transferability of the models using different years for 

training and testing: The transferability of models was 

investigated by training the four algorithms using samples from 

one year and deploying the models on the other years. The large 

annual sample dataset shown in Table II was used as the base 

sample dataset. The transferability was investigated using six 

combinations of training and test data, including training using 

the samples of 2018 and testing with the samples of 2019 and 

2020, training using the samples of 2019 and testing with the 

samples of 2018 and 2020, and training using the samples of 

2020 and testing by the samples of 2018 and 2019.  

4) The effect of the number of images and the shift in the 

phenological cycle between the training and test years on the 

transferability of the models: 

a) Transferability of the models using a reduced number 

of S1 images (only one orbit): To investigate the effect 

of the number of S1 images in the time series (i.e., the 

time resolution), the transferability analysis described 

in the section B-3 of methodology was repeated using 

only S1 data of a single orbit (orbit 8) for the six 

training-test years’ combinations. The large annual 
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sample dataset presented in Table II was used as 

ground samples. 

b) Transferability of the models with a shift in the 

phenological cycle between training and test years: 

The phenological cycle of rapeseed can be different 

between two years on the same site if, for example, the 

climatic conditions (mainly temperature and rainfall) 

are different [22], [41]. This phenomenon could be 

observed more frequently due to climate change. This 

difference in the phenological cycle can also be 

observed between two different sites [41], [42]. The 

difference between sites and years could cause both 

the temporal shift and the difference in the duration of 

the growing cycle of rapeseed. In this article, only the 

temporal shift in the phenological cycle between 

training and test years has been investigated by 

considering the case of a shift of 15 days and another 

of 30 days. The shift in the phenological stages of 

crops over years (also over regions) could affect the 

accuracy of mapping using different years as training 

and test. This is important because, even between sites 

with similar climatic conditions (e.g. in Europe and 

even in France), sowing and harvesting of rapeseed 

take place at within +/- 1 month [43]. The 

transferability test of the models that were developed 

in the section B-3 of methodology was also carried out 

on the cases where the growth stages of rapeseed 

between the training year and test years do not align 

perfectly. The phenological shift in the growth stage 

of rapeseed was simulated in dataset of 2018, 

considered as the training year. The trained algorithm 

with the shifted dataset of 2018 was used to classify 

the dataset of 2020, considered as the test year. Two 

periods of phenological shift were simulated by 

removing days from the beginning of the training time 

series (the whole S1 time series was thus shifted by 15 

or 30 days). In order to obtain the same size for the 

training and test data sets, the days were removed from 

the last part of the test time series, which did not 

include the main phenological cycle of rapeseed. More 

precisely, after removing the days from the beginning 

of the training dataset, the same size for training and 

testing was achieved using the overlapping part of 

both time series. In this case, the large annual sample 

dataset shown in Table II was used. 

 

5) Performance assessment: To evaluate the results of 

the classification in each use case, the precision, recall and F1 

were applied. Table III shows the description and equation of 

these accuracy metrics. 

C) Algorithms 

1) Random Forest: Random Forest (RF) algorithm 

consists of several decision trees, where the results of trees are 

merged to create the final results [28], [44]. It is a meta-estimator 

that adapts multiple decision tree classifiers to multiple parts of 

the dataset, and applies the average of all parts to improve the 

accuracy of results and control over-fitting [45]. Although RF is 

not sensitive to the selection of hyperparameters [37], the 

accuracy of the results of the RF approach is related to the number 

of trees. The number of trees in this study was set as 100. Other 

parameters were set as default. 

2) Multi-layer Perceptron: Multilayer Perceptron (MLP) 

algorithm is the DL model that has the simplest and most 

traditional architecture, where neurons in each layer are connected 

to all neurons in the neighboring layers [35],[46]. The basic 

component of MLP includes several nodes with weights and 

biases in multiple fully connected layers [25]. In the MLP 

algorithm, the learning approach of the weights and biases within 

the networks to simulate the relationship between the input 

features and the output features is performed in a backpropagation 

manner [25]. Since MLP has the simplest architecture of ANNs, 

it was used as a basis to evaluate the performance of other ANNs 

algorithms. In the MLP algorithm, the number of hidden layers 

and neurons are defined as hyper-parameters. Since all the hidden 

layers are connected in MLP, more layers lead to higher 

complexity [25]. In this paper, a standard MLP architecture was 

used with 2 hidden layers containing 256 neurons each, plus the 

input and output layers. A batch normalization and a rectified 

linear unit (ReLU) non-linearity were used on the two hidden 

layers. Finally, a dropout rate of 0.5 was used during training. 

3) Long Short-Term Memory Fully Convolutional 

Network: Long Short-Term Memory Fully Convolutional 

Network (LSTM-FCN) is formed by adding the fully 

conventional networks (FCN), which take advantage of CNNs, 

with long short-term memory neural network (LSTM RNN), 

which is in the group of RNNs for time series classification [39] 

The methods that utilize the CNNs architecture are used for spatial 

learning whereas the RNNs architecture is utilized for sequential 

learning [23]. In the current study, one type of LSTM-FCN 

developed by Karim et al. [39] for multivariate time series 

classification was used to map rapeseed fields. In this algorithm, 

the squeeze and excitation block were added to the structure of the 

univariate model and the fully conventional blocks were increased 

to improve the accuracy of the results [39]. The advantage of this 

model is that it outperforms most state-of-the-art models with less 

preprocessing. The efficiency of this algorithm in analyzing 

complex multivariate time series classification, such as action 

recognition, and the possibility to deploy this algorithm on 

constrained systems was shown by Karim et al. [39]. The default 

model hyperparameters proposed by Karim et al. [39] were used 

in our experiments. 

4) InceptionTime: The InceptionTime algorithm was 

introduced by Fawaz et al.[40] for multivariate time series 

analysis. It is a collection of five deep learning models, each 

consisting of two residual blocks which, in turn, contain three so-

called Inception modules. The Inception modules apply multiple 

one-dimensional convolutional filters of different lengths to the 

input data, which allows the network to extract features from the 

time series at different scales. Because a single inception network 

may be subject to high deviations in its accuracy, an ensemble of 

networks with different weight initializations is used. Moreover, 

the common vanishing gradient problem for deep networks is 

tackled by the shortcut connections between residual blocks 

which allow for a direct gradient flow. When deploying this 

algorithm, the difference between the default and the best 
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hyperparameters is usually not significant [40]. Therefore, in this 

study, the hyperparameters were set as default. 

 

 
TABLE III 

THE DESCRIPTION AND THE EQUATION OF THE ACCURACY METRICS THAT ARE USED IN THIS STUDY. 

Metric Description Equation Reference 

Recall Recall shows the ability of the 

algorithm to detect all positive cases. 

It shows the proportion of the positive 

classes in the ground samples that are 

detected in the results. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

[47] 

Precision Precision shows the ability of the 

algorithm to return the correct results. 

Precision aims to show the proportion 

of the detected positive classes in the 

results that are actually correct. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

[48] 

F1 The weighted combination of 

precision and recall. 

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

[49] 

 

 

 
Fig. 3. Flowchart of method. 

 

IV. RESULTS 

A. Temporal behavior of Sentinel-1 signals 

Fig. 4a and 4b show the mean and standard deviation 

(represented by shading) of the S1 backscattering coefficient in 

VHp and VVp polarizations over rapeseed fields during the 

cultivation period of 2018, 2019, and 2020. Rainfall during this 

period in 2020 is presented using the secondary Y-axis in Fig. 4a 

and 4b. In this study area, the cultivation period starts from 

September and ends in July of the following year (Fig. 5). High 

amplitude and frequent variation in S1 signal at VV and VH 

polarizations are observed at the plot scale (Fig. 4a, 4b). As 

previous studies showed [8], [12], [14] this frequent variation in 

S1 backscatter is mainly due to precipitation altering the soil 

moisture values.  

The temporal behavior of both VHp and VVp polarizations 

shows four main phases. First, an increasing trend is seen between 

September and November (from -20.5 to 14 dB for VHp and from 

-12.5 to -7.5 dB for VVp. The values of both polarizations then 

remain stable between November and March. Next, the signal 

increases from March to reach its highest value at the beginning 

of June (about -10.5 dB in VHp and -6 dB in VVp). Then, both 

polarizations decrease from the middle of June till July where the 

value VHp and VVp falls below -16 and -10 dB respectively. It is 
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worth mentioning that the VHp shows a stronger vegetation 

growth dynamic than VVp with the different stages of the 

rapeseed phenological cycle. 

 

 

 

 

 

 

 
 (a)  

 

 

 
(b) 

 
Fig. 4. Sentinel-1 temporal behavior over rapeseed fields in 2018, 2019, and 2020. (a) VH at the plot scale (VHp), (b) VV at the plot scale 

(VVp), The mean values are represented by bold lines and the standard deviation by the shaded areas. The rainfall events in the cultivation 

period of rapeseed in 2020 is presented using the secondary Y-axis.  

 

 

Fig. 5. NDVI temporal behavior over rapeseed fields in 2018, 2019, and 2020. The NDVI-values were calculated from Sentinel-2 images (S2), 

downloaded from the Theia website (https://www.theia-land.fr/).  
 

https://www.theia-land.fr/
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B. Rapeseed fields mapping 

1) Rapeseed fields mapping using the same year for 

training and testing: In this section, the performance of the four 

considered algorithms to map the rapeseed fields in the case 

where the same year is used for the training and test phases was 

evaluated. The results of the accuracy assessment of rapeseed 

fields mapping using the four algorithms are shown in TABLE 

Ⅳ.  Accuracy metrics are presented in this table as an average 

value over all three years (Mean), the maximum value of each 

metric within three years (Max), and the minimum value within 

three years (Min). The results show that all algorithms have a 

mean F1 close to 95% However, InceptionTime gave the 

highest mean F1 values (95.7%). Moreover, smaller differences 

between the min and max of F1 are obtained with 

InceptionTime (0.3%), which shows the stability of the 

classification results across the years using this algorithm. In 

contrast, the highest differences between the min, and the max 

of F1 are obtained with the LSTM-FCN (2%), showing higher 

variation in the accuracy across years. Concerning the precision 

and recall, the highest precision is achieved by RF (97.4%), but 

it also showed the lowest recall (92.7%). Meanwhile, the 

smallest difference between recall and precision is achieved by 

InceptionTime and MLP. 

 
TABLE Ⅳ 

ACCURACY ASSESSMENT OF RAPESEED CLASSIFICATION 

USING OUR FOUR ALGORITHMS: MEAN = AVERAGE VALUE 

OF EACH METRIC OVER ALL THREE YEARS, MAX = 

MAXIMUM VALUE OF EACH METRIC WITHIN THREE YEARS, 

MIN = MINIMUM VALUE OF EACH METRIC. 

 

Metric Algorithm Mean  Min  Max  

F1% - 

Rapeseed 

RF 95.0 94.2 95.5 

MLP 95.5 95.1 95.8 

LSTM-FCN 95.3 94.0 96.0 

Inc-Time 95.7 95.5 95.8 

Precision % 

- Rapeseed 

RF 97.4 97.3 97.5 

MLP 95.5 95.2 95.7 

LSTM-FCN 95.9 95.4 96.6 

Inc-Time 95.3 94.7 95.7 

Recall % - 

Rapeseed 

RF 92.7 91.2 93.6 

MLP 95.5 95.1 95.8 

LSTM-FCN 94.6 92.7 96.3 

Inc-Time 96.1 95.8 96.5 

     

 

2) Rapeseed fields mapping using smaller training 

sample size: The effect of four training sample sizes including 

100, 300, 500 and 1000 on the accuracy of the rapeseed map is 

shown in TABLE Ⅴ. In this case, the classification was 

performed using small training samples in order to mime the 

ratio between the rapeseed and non-rapeseed classes as found 

in the large annual sample dataset (imbalanced training data). 

For example, in the large dataset of the year 2018, the 

percentage of rapeseed and non-rapeseed classes was 3% and 

97%, respectively, so in the case of classification of this year 

with the training sample size equal to 1000, the number of 

rapeseeds on training samples was 30 and non-rapeseed was 

970. In TABLE Ⅴ the average accuracy metrics of the three 

years 2018, 2019 and 2020 are presented (e.g., Mean-100 

samples is the average of each metric over three years of 

classification using 100 ground samples). TABLE Ⅴ shows that 

the Inception Time and RF provide higher accuracy metrics 

than the other algorithms. Both RF and Inception Time yielded 

F1 values greater than 90% when using a sample size greater 

than 300. In the case of 100 samples, these two algorithms 

respectively showed F1 values of 67.2% and 59.3%. For RF, 

the reason behind the lower F1 value with a sample size of 100 

is the lower recall value, and both lower precision and recall for 

the Inception Time. Therefore, both Inception Time and RF can 

produce accurate rapeseed maps using training sample size of 

300 samples or bigger, while in the case of 100 samples the 

accuracy of their results are not high (but still better than the 

two other algorithms). Among the ANNs algorithms, LSTM-

FCN presents the lowest accuracy between the two other 

algorithms (F1 value below 40% with a sample size smaller 

than 1000, and F1 value below 69% with 1000 samples). In 

addition, both the recall and precision of this algorithm are 

lower than 60% and 40% respectively when the sample size is 

less than 1000. Using the MLP, when the sample size increases 

from 100 to 1000, the mean F1 value increases from 14.7% to 

85.2% (F1 value of 54.0% and 65.6% with a sample size of 300 

and 500, respectively).  
TABLE Ⅴ 

THE EFFECT OF SAMPLE SIZE ON THE RAPESEED 

CLASSIFICATION ACCURACY 

Metric Algorithm 
Mean-

100 
sample 

Mean-

300 
sample 

Mean-

500 
sample 

Mean-

1000 
sample 

F1 % - 

Rapeseed 

 

 

 

RF 67.2 90.1 91.1 92.9 
MLP 14.7 54.0 65.6 85.2 
LSTM-

FCN 39.1 29.0 29.7 69.6 
Inc-Time 59.3 92.1 93.1 93.5 

Precision 

% - 

Rapeseed 

 

 

 

RF 97.8 96.5 97.1 97.2 
MLP 9.4 71.3 95.2 95.7 
LSTM-

FCN 43.4 59.6 59.1 93.2 

Inc-Time 
62.1 94.8 95.2 94.7 

Recall 

%-

Rapeseed 

RF 56.8 84.6 86.0 88.9 
MLP 52.4 45.1 51.9 77.2 
LSTM-

FCN 44.7 21.7 23.2 58.3 
Inc-Time 59.7 89.7 91.3 92.5 

 

3) Transferability of the models using different years for 

training and testing: The accuracy of rapeseed fields mapping 

using different years for training and testing was evaluated. 

This investigation is of some interest in the absence of ground 

sampling over the same territory for certain years. Thus, the 

possibility of creating the rapeseed map using the ground 

samples of the other years was tested. The transferability of the 

models was carried out using large sample sizes since results of 

section B-2 of results showed that LSTM-FCN and MLP did 

not give accurate results with smaller sample sizes. To evaluate 

the ability of the AI algorithms to map the rapeseed fields for 

each year using the ground sample of other years, six 

combinations of train and test data were created (train on one 
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year and apply on the remaining two years). The mean, 

maximum and minimum accuracy metrics of these 

combinations are presented in TABLE Ⅵ. As shown in this 

table, RF, MLP, LSTM-FCN, and InceptionTime yielded F1 

value greater than 85% (min-values) using different years of 

training and testing. These high values of F1 for the four tested 

models show that it is possible to transfer a model from one year 

to another for mapping rapeseed fields using S1 time series 

data. The comparison between the four algorithms shows that 

the InceptionTime provided mean F1 value higher than other 

algorithms. The smallest differences between the minimum and 

maximum of F1 were also achieved with the InceptionTime 

algorithm (4% difference between F1 min and max). This 

means that high accuracy was achieved with InceptionTime in 

all six combinations of training and test years. LSTM-FCN 

provided a mean F1 value of 89.3% which indicates that this 

algorithm was also capable of providing accurate rapeseed 

fields map for each year by training it using ground samples of 

the other years. MLP showed the lowest F1 values (mean F1 

equal to 85.5). On the other hand, RF obtained a mean F1 value 

of 87.1% but it showed the highest difference between the 

minimum and maximum of F1 value (13.7%). This difference 

for both MLP and RF algorithms was due to the low minimum 

recall (80.9% and 78.9% with MLP and RF respectively). 

Therefore, RF and MLP were less accurate in terms of 

transferability of the model from one year to another.  
 

TABLE Ⅵ 

ASSESSMENT OF RAPESEED CLASSIFICATION ACCURACY 

USING DIFFERENT YEARS FOR TRAINING AND FOR 

TESTING. MEAN = AVERAGE OF EACH METRIC FROM ALL 

SIX COMBINATIONS OF TRAINING AND TESTING YEARS, 

MAX = MAXIMUM VALUE OF EACH METRIC FROM THE SIX 

COMBINATIONS, MIN = MINIMUM VALUE OF EACH METRIC 

FROM THE SIX COMBINATIONS.  

 

Metric Algorithm Mean  Min  Max 

F1% - 

Rapeseed 

RF 87.1 79.1 92.8 
MLP 85.5 82.6 89.0 
LSTM-FCN 89.3 84.1 93.4 
Inc-Time 92.7 90.7 94.9 

Precision 

% - 

Rapeseed 

RF 98.2 97.3 99.2 
MLP 91.7 82.6 97.4 
LSTM-FCN 96.8 94.0 98.4 
Inc-Time 97.2 95.6 97.8 
RF 78.9 65.9 88.0 

Recall % - 

Rapeseed 
MLP 80.9 75.2 89.8 
LSTM-FCN 83.6 74.5 93.2 
Inc-Time 88.7 85.1 94.3 

 

To better appreciate the spatial accuracy of the transferability 

of the models, the rapeseed maps were created by Inception 

time (as the algorithm with the best accuracy outcome) was 

compared to the ground samples (RPG). Fig. 6 shows the 

rapeseed field map for 2019 using the ground samples of 2018. 

Fig. 7a and Fig. 7b illustrate respectively the rapeseed field 

maps for 2020 using the ground samples of 2018 and 2019. 

Also, the corresponding ground reference maps for 2019 and 

2020 are presented respectively by Fig. 6b and Fig. 7c. The 

rapeseed fields were mostly classified correctly compared to the 

reference data. The analysis of these maps shows that the 

rapeseed fields incorrectly classified as non-rapeseed have a 

small area. For the rapeseed map of 2019 using the ground 

samples of 2018, 6.5% of the rapeseed fields were misclassified 

as non-rapeseed, of which 51% had an area smaller than 0.5 ha 

and 18% an area between 0.5 and 1 ha. To map the rapeseed 

fields of 2020 from the ground samples of 2018, 5.1% of the 

rapeseed fields were incorrectly classified as non-rapeseed, of 

which 47% had an area smaller than 0.5 ha, and 26% an area 

between 0.5 and 1 ha. Finally, 6.7% of the rapeseed fields were 

misclassified in 2020 when the ground samples of 2019 were 

used, of which 37% had an area smaller than 0.5 ha and 32% an 

area between 0.5 and 1 ha. In conclusion, the misclassifications 

were therefore mainly occurred in the detection of rapeseed 

fields smaller than 1 ha (about 70% of the misclassification), 

which could be a consequence of the higher edge effect in small 

fields, as well as the lower number of S1 pixels used to calculate 

the mean of the backscatter signals due to the high speckle 

effect 
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Classification results Ground samples (RPG) 

 
(a)  

 
(b) 

 

 

 

 

 

 

 

 

 
(c) 

Fig 7. Comparison between rapeseed maps created by InceptionTime and ground samples (RPG) for a part of the study site, using 

different years for training and testing: (a) training 2018/test 2020, (b) training 2019/test 2020, (c) Ground samples of 2020. 

Rapeseed fields are colored green, other crops are colored grey 

4) The effect of number of images in time series and the 

shift in the phenological cycle between training and test years 

on Transferability of the models: Two important arguments 

about the transferability of the models were addressed, 

including the effect of the number of images in the S1 time 

series and the effect of the shift in the phenological stage of 

rapeseed between training and test years. 

a) Using a reduced number of S1 images (only one orbit): 

The effect of the number of S1 images on the 

transferability of models for mapping the rapeseed 

fields was assessed by considering only one orbit 

Classification results Ground samples (RPG) 

 
(a) 

 
(b) 

Fig 6. Comparison between rapeseed maps created by InceptionTime and ground samples (RPG) for a part of the study site, using 

different years for training and testing: (a) training 2018/test 2019, (b) Ground samples of 2019. Rapeseed fields are colored green, 

other crops are colored grey. 
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(orbit 8) out of the 3 orbits of our initial time series. 

This use case allows us to see whether, in the event of 

a reduction in the revisit time of S1 (failure of one of 

the two satellites, which is currently the case), the 

accuracy of the rapeseed fields classification remains 

good for the different algorithms.  

TABLE Ⅶ shows the performance of each algorithm 

using one and three orbits where the year 2018 is set 

as a training year and the years 2019 and 2020 were 

considered as the testing years The results in this table 

correspond to the average performance obtained over 

2019 and 2020. As TABLE Ⅶ shows, the 

performance of InceptionTime and LSTM-FCN 

decreased when only one orbit was used compared to 

the accuracy obtained using three orbits. In fact, the F1 

value using InceptionTime decreased from 94.1% with 

three orbits to 77.1% with only one orbit (17.6% 

reduction). Similarly, LSTM-FCN showed a reduction 

in F1 from 88.3% using three orbits to 72.1% using 

one orbit (16.2% reduction). Looking at the recall and 

precision, it can be seen that for InceptionTime the 

reduction occurred in both recall and precision, while 

for LSTM-FCN the reduction in recall caused the 

reduction in F1 compared to the use of three orbits. 

The reduction in the number of S1 images in the time 

series had less impact on the MLP and RF algorithms 

than that on the LSTM-FCN and InceptionTime where 

the reduction in F1 was of an order of 5% and 0.5% 

using one orbit instead of three orbits for MLP and RF, 

respectively. However, RF with an F1 value of 89.1% 

had better performance when compared to MLP with 

an F1 value of 80.0%. The lower precision (72.3%) 

compared to the recall (92.4%) caused the lower F1 

value using MLP when compared to RF. In 

conclusion, using one orbit of S1 time series, not only 

the performance of RF remains more than acceptable, 

it also outperforms the other three ANNs algorithms 

(MLP, LSTM-FCN, InceptionTime). 

 
TABLE Ⅶ 

EFFECT OF S1 ACQUISITION DENSITY ON THE 

ACCURACY OF RAPESEED FIELDS MAPPING. TRAINING 

WAS PERFORMED USING THE 2018 DATASET AND 

TESTING WAS PERFORMED ON THE 2019 AND 2020 

DATASETS. THE TWO CASES USED ARE DATA 

CORRESPONDING TO ORBIT 8 (ONE ORBIT) AND DATA 

CORRESPONDING TO ORBITS 8, 30 AND 81 (THREE 

ORBITS). THE RESULTS CORRESPOND TO THE AVERAGE 

PERFORMANCE OBTAINED OVER 2019 AND 2020. 

 

Metric Algorithm 

One orbit 

(2018/2019, 

2018/2020) 

Three orbits 

(2018/2019, 

2018/2020) 

F1 % - 

Rapeseed 

RF 89.1 94.1 

MLP 80.0 80.5 

LSTM-FCN 72.1 88.3 

Inc-Time 77.1 94.7 

Precision 

% - 

Rapeseed 

RF 93.9 97.4 

MLP 72.3 83.4 

LSTM-FCN 92.5 89.0 

Inc-Time 77.9 95.2 

Recall %- 

Rapeseed 

RF 84.9 90.8 

MLP 92.4 78.4 

LSTM-FCN 63.9 88.5 

Inc-Time 82.8 92.9 

 

b) Using a shift in the phenological cycle between 

training and test years:  TABLE Ⅷ shows the results 

of the accuracy assessment of the transferability of the 

models with the simulation of the 15-day and 30-day 

shifts in the phenological cycle of rapeseed in 2018 as 

training data without any modification in the 2020 

dataset as test. InceptionTime and LSTM-FCN 

provided the best accuracy among other algorithms 

with nearly similar accuracy metrics with and without 

the time shift. With a 15-days shift in the phenological 

cycle of rapeseed, the InceptionTime algorithm gave 

rapeseed fields map with F1 value equal to 92.6% (the 

F1 value of 94.3% for the same combination of years 

without shift). In the case of classification using 

InceptionTime with a 30-days shift, F1 reached 

89.3%. LSTM-FCN gave F1 values of 85.6% and 

84.7% for 15- and 30-days shift respectively (the F1 

value of 87.2% for the same combination of years 

without shift). On the other hand, lower performance 

was obtained for RF and MLP achieving F1 values of 

34.6% and 29.1% respectively for 15 days’ shift. For 

a 30 days’ shift, RF and MLP had F1 values lower than 

5%. In the case of 15 days shift the low value of recall 

(below 20%) caused the poor performance of both RF 

and MLP, whereas in the case of 30 days’ shift, both 

recall (close to 0%) and precision (55.8% and 18.9% 

for RF and MLP respectively) were low for these two 

algorithms. Thus, in the case of a phenological shift 

between the training year and the test year, RF and 

MLP were not able to produce accurate rapeseed fields 

map. However, LSTM-FCN and InceptionTime were 

capable of maintaining good accuracy in the presence 

of a phenological shift between the training and 

mapping years. 

 
TABELⅧ 

RESULTS OBTAINED BY APPLYING A TIME SHIFT OF 15 

AND 30 DAYS ON THE TRAINING DATASET OF 2018, 

WITHOUT MODIFYING THE TEST DATASET OF 2020. 

WITHOUT SHIFT = THE CURRENT PHENOLOGICAL CYCLE 

OF RAPESEED IN THE DATASETS USED FOR TRAINING 

AND TESTING. 
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Metric Algorithm 
Without 

shift 

15 days 

shift 

30days 

shift 

F1% - 

Rapeseed 

 

  

RF 95.0 34.6 0.2 

MLP 83.3 29.1 5.3 

LSTM-FCN 87.2 85.6 84.7 

Inc-Time 94.3 92.6 89.3 

Precision 

% - 

Rapeseed 

 

  

RF 97.4 97.9 55.8 

MLP 81.5 61.2 18.9 

LSTM-FCN 84.4 84.0 83.0 

Inc-Time 94.3 93.8 89.2 

Recall % - 

Rapeseed 

 

RF 92.7 21.3 0.1 

MLP 85.3 19.3 3.1 

LSTM-FCN 94.3 91.9 85.8 

Inc-Time 94.3 91.7 89.6 

V. DISCUSSION 

A. S1 temporal behavior 

The S1 backscatter analysis (Fig. 4a and 4b) showed that the 

radar signal at plot scale is affected by rainfall events, especially 

in the early growth stage when the vegetation cover is not very 

dense and the effect of the soil surface condition is greater than 

the effect of the vegetation cover 

 The temporal behavior of  VHp and VVp over rapeseed fields 

showed four phases which are related to the four main 

phenological stages of rapeseed [4], [12], [50]. However, the 

fluctuation of the VHp channel is stronger with the growth 

cycle of rapeseed. This was expected, as the VH is well known 

to be more sensitive to the vegetation cover and its geometrical 

structure than the VV polarization which is more sensitive to 

the soil moisture[51]. During the leaf production between 

September and November, both polarizations increase 

according to biomass growth [14], [20]. When the rapeseed 

growth rate is low due to the cold weather between November 

and March the value of VHp and VVp is stable. During the 

rapid spring growth of rapeseed between March and June, there 

is a strong increase in VHp and VVp, corresponding to the stem 

elongation, inflorescence emergence, and fruit development 

[4], [12]. According to Mercier et al. [20] and Veloso et al. [12], 

the peak in signal is due to the higher biomass, as well as taller 

rapeseed and randomly oriented branches, resulting in higher 

backscatter due to the double bounce effect. With the onset of 

senescence in June and July, both VHp and VVp decrease 

strongly due to the lower water volume in the top layer of 

rapeseed and higher soil contribution than the vegetation 

contribution in the S1 backscattering signal (higher S1 signal 

penetration) [20]. The unique behavior of the S1 time series 

according to the phenological cycle of rapeseed, especially the 

high peak in May and early June is valuable for rapeseed fields 

mapping as shown in this study and previous studies [8], [12]. 

Therefore, methods such as the DL algorithms, which are based 

on the end-to-end learning from the input data, can take 

advantage of this behavior of S1 signals to distinguish the 

rapeseed fields.  

B)  Rapeseed mapping 

Although the mapping of rapeseed fields was carried out in 

previous studies, this paper has addressed several functional 

arguments to facilitate the detection of rapeseed fields. Firstly, 

by presenting the algorithms capable of producing the rapeseed 

maps using a S1 time series with a high accuracy and secondly 

by developing different solutions for producing the rapeseed 

fields map when there are not enough ground samples. In this 

aim, four algorithms were used to classify the S1 time series, 

including a machine learning algorithm, called RF, and three 

DL algorithms, namely MLP, LSTM-FCN and InceptionTime. 

RF is a well-known method in remote sensing applications due 

to its high performance [28],[37], [38]. Therefore, as in 

previous studies such as the one by Zhong et al. [25], RF 

provides the baseline for all other classifications in the current 

paper. In addition, MLP, which is a public simple deep ANNs, 

and LSTM-FCN and InceptionTime, which are specialized for 

time series analysis, were also used for the classification of 

rapeseed fields. Our results showed how AI algorithms offer 

specific advantages for remote sensing applications. These 

advantages are discussed in this section. 

1) Application of AI in rapeseed fields mapping: All four 

algorithms including RF, MLP, LSTM-FCN and 

InceptionTime gave high accuracy metrics when detecting 

rapeseed fields utilizing an S1-derived time series, using 

samples from the same year for training and for testing (mean 

F1 value close to 95%). Among the four algorithms that were 

applied in this paper, InceptionTime showed the best 

performance in classifying the rapeseed fields using training 

and testing data from the same year compared to the RF, MLP, 

LSTM-FCN. Not only did InceptionTime provide the highest 

F1 value (95.7%), it also provided the most stable performance 

across the different tested years. Fawaz et al. [40] mentioned 

that InceptionTime has less variation in results thanks to the 

application of multiple inception networks in its architecture.  

By using only S1 time series better results were obtained in 

this paper compared to Mercier et al. [20] who reported lower 

accuracy (kappa value of 0.63) by classifying rapeseed fields 

using only S1 time series and an incremental method developed 

by Mercier et al. [52]. In fact, previous papers have either used 

optical images alone or some combination of radar and optical 

images to achieve high accuracy for rapeseed detection [19], 

[53]. This paper provides a high accuracy using only S1 time 

series, which reduces the image processing and data analysis 

time. Waldhoff et al.[54] integrated ASTER, Landsat-5-8, IRS-

P6, SPOT-6/7 and RapidEye images for mapping the rapeseed 

fields in western Germany and obtained an F1 value of 86.2% 

using the Multi-Data Approach (MDA) proposed by Bareth 

[55]. Han et al. [22] achieved F1 values between 0.84 and 0.91 

using a combination of S1 and S2 data from 33 countries using 

the pixel- and phenology-based method. One of the strength 

points of the current study is thus the ability to obtain the 

optimal rapeseed mapping accuracy relying only on one 

satellite data source (the S1 time series) which is in free and in 

open access mode. 

2) Solutions to ground sampling constraints: The 

difficulties of ground sampling due to time and budget 

constraints, poor accessibility to the study area as well as the 

absence of historical training samples for each year have been 

mentioned in similar remote sensing applications for land cover 
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mapping [56]–[58]. Based on the results of the current paper 

two solutions could be proposed to mitigate the above-

mentioned constraints. 

Our first solution to the ground sampling constraints is to 

develop a model over one year and apply it to other years 

without having to train it again. The results of the current study 

showed that using all the four algorithms, it is possible to 

accurately detect the rapeseed fields, using different years for 

training and for testing. InceptionTime showed the best 

performance when compared to the other algorithms by 

providing the highest F1 (92.7%), as well as the smallest 

difference between minimum and maximum of accuracy 

metrics (over our six combinations of training and test years). 

This means that the InceptionTime algorithm can use what it 

learns in each year to accurately classify the next or previous 

year. The F1-score obtained in the current study with 

InceptionTime (92.7%) is higher than methods used in previous 

studies to classify the time series using historical data for 

training. In Lin et al. [56], F1 value was 88% and 85% for 

mapping respectively corn and soybeans using Sentinel-2 and 

Landsat optical time series. In addition, classification using 

InceptionTime which learns the backscatter of rapeseed directly 

from the satellite images is not as complicated as the decision 

boundary-based approaches which select thresholds for each 

crop from the historical samples and apply them to the target 

year [38], [58]–[60]. Meanwhile, LSTM-FCN also showed the 

capability of producing accurate rapeseed fields map for each 

year using the ground samples of other years for training with a 

mean F1 value of 89.3%. Looking at the results of RF, despite 

the high mean value of F1 equal to 87.1%, this algorithm 

performs less well when compared to the previously mentioned 

ANNs algorithms in the case of temporal transfer due to 13.7% 

difference between the minimum and maximum of F1 values. 

Meanwhile, MLP had the worst performance with the lowest F1 

value among other algorithms in the transfer classification 

(mean F1 of 85.5%).  

In order to be sure about the possibility of obtaining high 

accuracy results with our first solution to ground sampling 

constraints (creating the rapeseed map using the ground 

samples of the other years), it is worth addressing two important 

arguments, including the effect of the shift in the phenological 

cycle of rapeseed between training and test years, and the effect 

of the number of images in the S1 time series. The results 

obtained with 15-days and 30-days shift in the rapeseed growth 

cycle between training and test datasets showed that using 

InceptionTime and LSTM-FCN, it remains possible to classify 

the rapeseed fields with an F1 value higher than 84.7% when 

there is a shift of up to 30 days between the training and test 

years (F1 value higher than 85.6% for a shift of 15 days). 

However, the F1 value of InceptionTime was 5% higher than 

LSTM-FCN. On the other hand, RF and MLP had poor 

accuracy (F1 value less than 35% and 5% respectively for a 

shift of 15 and 30 days) and thus they cannot be used in the case 

of temporal transfer when there is shift in growth cycle of 

rapeseed between the training and test year. These findings 

provide functional advantages that facilitate the procurement of 

information about rapeseed which is a strategic crop in the 

global trade and plays an important role in global food security. 

Indeed, thanks to the temporal transferability of InceptionTime 

and LSTM-FCN, even with a 30 days shift in the growth cycle 

between training and test data, it is still possible to get accurate 

information on rapeseed cultivation areas in the main rapeseed 

producing countries regardless of challenging conditions (for 

example the war in Ukraine) which cause inaccessibility to 

large cultivation areas. In addition, these results show that it is 

possible to map the rapeseed from ground samples of previous 

years (same region) or collected on other regions in the same 

agro-climatic zone, where the shift in the growth stage of 

rapeseed is lower than 30 days. From a functional point of view, 

the rapid retrieval of information on the area of cultivation is 

always important for the decision makers [20], [61]. So, the 

classification of time series using the ground samples collected 

in the previous years with a shift of less than 30 days would be 

worthwhile. Furthermore, as the phenological period is delayed 

in cold regions compared to warmer regions, the possibility of 

temporal transfer algorithms is a crucial argument for the 

accurate classification of rapeseed over large regions or in the 

case of climate change [4]. 

On the other hand, when the number of images in time series 

was reduced, the performance of the classification with 

InceptionTime and LSTM-FCN decreased for transferability of 

model of around 16% (77.1% and 72.1% respectively) whereas 

the performance of RF and MLP did not decrease significantly. 

However, RF gave an F1 value of 89.1% which was higher than 

all the ANNs algorithms. Therefore, a reduction in the revisit 

time of S1 reduces the accuracy of InceptionTime and LSTM-

FCN. Thus, in the case of large reduction in the number of 

images in the time series, RF will be the best choice to use when 

training and testing using different years without phenological 

shift. 

Our second solution to the ground sample constraints is to 

propose a method that gives accurate results even when using a 

small training sample size. Therefore, the effect of training 

sample size on the performance of the AI classifiers was 

evaluated using four sizes of ground samples, including 100, 

300, 500, and 1000. The results obtained in the case of small 

sample size showed that RF and InceptionTime classify the 

rapeseed with high accuracy metrics when the training sample 

size is greater than 300 (F1-score higher than 90). However, 

when using only 100 samples, InceptionTime did not perform 

better than F1 value of 59.3. The accurate classification 

performed by InceptionTime using sample sizes greater than 

300 showed the lower effect of sample size on the performance 

of which confirms the stability of the results of this algorithm 

compared to the other two ANNs. Although DL is known as a 

method that requires a large training dataset, Fawas et al. [40] 

mentioned that providing the accurate results using the small 

sample size by InceptionTime as another advantage of 

assembling the several inception networks in this algorithm. In 

the case of a sample size of 100, RF gave an F1 value 7% higher 

than InceptionTime. RF as a machine learning model, provides 

F1 values between 90% and 92% using the sample sizes larger 

than 300 samples (300, 500, and 1000), which shows that when 

the number of samples increases, no great improvement occurs 

in the accuracy of classification by RF. On the contrary, the 

performance of LSTM-FCN and MLP decreased dramatically 

using the sample size smaller than 1000, therefore, these two 
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algorithms are not recommended for rapeseed classification in 

the case of small sized samples.  

In summary, taking into account the effect of the 

phenological cycle shift, the number of S1 images, and the size 

of training samples on the ability of our four algorithms to 

provide a solution to the constraints concerning the ground 

samples, TABLE Ⅸ illustrates the recommended algorithms 

for each use case. It is possible to use all algorithms in the case 

of the temporal transfer when there is no shift in the training 

and test data. InceptionTime can be used in all tested cases, 

although its performance is not the highest for the case of 100 

samples, and temporal transfer with a smaller number of S1 

images. RF could be used for all tested cases except when there 

is phenological shift. LSTM-FCN is useful for temporal transfer 

even when there is a shift in the phenological cycle. But, MLP 

can only be used in the case of 1000 samples or temporal 

transfer without phenological shift. This means that MLP 

cannot be widely used as a functional algorithm in the case of 

sample size constraints. This can be due to its simple ANNs 

architecture.   

 

 

  

  
TABLE Ⅸ 

THE RECOMMENDATION ON THE USE OF OUR FOUR ALGORITHMS ACCORDING TO THE CONSTRAINTS IN THE 

FIELD SAMPLES ( = HIGH RECOMMENDATION,  = MEDIUM RECOMMENDATION,  = NO RECOMMENDATION) 

 Temporal transfer Small sample size 

Without 

shift 

15 days 

shift 

30 days 

shift 

Reduction of the 

number of S1 

images 

100 

samples 

300 

samples 

500 

samples 

1000 

samples 

RF         

MLP           

LSTM-FCN           

InceptionTime           
 

 

VI.CONCLUSION 

This paper presents an assessment of artificial intelligence 

algorithms for mapping rapeseed fields using S1 time series 

data. The accuracy of rapeseed mapping was assessed for four 

algorithms considering (1) the effect of the sample size for 

training, (2) the ability to deploy a model trained on one year 

on other years (3) the effect of the number of available S1 

images in the time series and finally (4) the effect of a possible 

phenological shift between studied years. 

In the case where large databases (nearly 100,000 samples) 

used for training, this paper demonstrated that RF, 

InceptionTime, LSTM-FCN and MLP were capable of 

accurately mapping the rapeseed fields using only S1 SAR time 

series using the same year for training and for testing (F1 score 

between 95.0% for RF and 95.7% for InceptionTime). 

However, using a smaller sample size (but no less than 300 

samples), RF and InceptionTime gave better results (F1 score 

higher than 92.0% for InceptionTime and 90.0% for RF) 

compared to the LSTM-FCN and MLP (F1 score higher than 

29.0% for LSTM-FCN and 53.9% for MLP). It was also shown 

that all four algorithms were able to produce an accurate map 

of rapeseed fields in the case of temporal transfer when the 

training and test data were selected from different years (F1 

score between 85.5% for MLP and 92.7% for InceptionTime). 

The number of S1 images in the time series is an important 

dimension for temporal transferability, especially for the two 

ANNs algorithms that are specialized in time series analysis 

(InceptionTime, LSTM-FCN), because the accuracy of 

classification using these two algorithms dropped down when 

the number of images in the time series decreased (a decrease 

of 16.9% for InceptionTime, 15.9% for LSTM-FCN). 

However, RF performed well even when the number of images 

in the time series decreased (F1 score of 87.1% with three 

orbits, and 85.1% with one orbit). In the case of a phenological 

shift between years, only InceptionTime and LSTM_FCN (F1 

score about 89.3% with InceptionTime and 84.6% with LSTM-

FCN for phenological shift of 30 days) achieved good accuracy 

in rapeseed field mapping, whereas RF and MLP were not 

suitable for the case of a phenological shift between the training 

year and the mapping year. It is worth noting that in this paper, 

the default parameter values for the algorithms were used with 

the aim to have a unique baseline for the comparability of the 

performance of the algorithms in each scenario. However, 

tuning of the algorithms can be applied in further studies. 

Indeed, adjusting these parameters based on the data could 

improve the model's performance and ensure optimal results. In 

addition, to tackle more challenging transfer scenarios between 

training and test datasets, an interesting avenue for future work 

would be to apply more robust training techniques (e.g., with 

data augmentation) and account for domain changes beyond 

time lags. The findings of this paper are not only useful for 

remote sensing researchers, but they also facilitate the detection 

of rapeseed fields for other stakeholders such as policy makers 

and insurance companies, even with the constraints of 

collecting ground samples for each year. 
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