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A mathematical model for meniscus cartilage regeneration

We propose a continuous model for meniscus cartilage regeneration triggered by two populations of cells migrating and (de)differentiating within an artificial scaffold with a known structure. The described biological processes are influenced by a fluid flow and therewith induced deformations of the scaffold. Numerical simulations are done for the corresponding dynamics within a bioreactor which was designed for performing the biological experiments.

Introduction

A meniscus can be defined as a crescent-shaped fibro-cartilaginous tissue that is responsible for the structural integrity of the knee. Meniscus tears are among the most common injuries in persons doing contact sports. They can lead to severe cartilage degeneration and therewith associated with severe chronic knee pain, stiffness and immobility. Numerous patients finally have to face a total knee replacement. There is a recent trend in orthopedic surgery to promote healing by regeneration and repair rather than replacing the damaged tissue, in order to avoid late degeneration. Accordingly, there is a strong need for a better understanding of the biological processes inside the meniscus tissue, and regenerative meniscus substitutes are increasingly coming into focus. In such substitutes, living cells are combined with suitable biochemical and physicochemical factors and subjected to engineering methods. Often, such scaffolds possess a nonwoven-type structure that mimics the biological tissue. For proper functioning, the generated tissues require certain mechanical and structural properties.

Whereas meniscus tissue engineering has recently attracted much interest, mathematical models for the dynamics of involved phenomena are relatively scarce. Hallmark issues of meniscus regeneration relate to degradation of engineered fibers, migration/differentiation of stem cells into/within the scaffold, and production of tissue by chondrocytes. Several factors are thereby believed to play an essential role, prominently the stem cell (de)differentiation triggered by mechanical stress [START_REF] Altman | Cell differentiation by mechanical stress[END_REF], tissue stiffness [START_REF] Mousavi | Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model[END_REF], topography of the scaffold [START_REF] Ghasemi-Mobarakeh | Structural properties of scaffolds: Crucial parameters towards stem cells differentiation[END_REF], or by chemical cues present in the extracellular space [START_REF] Freymann | Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-β3 on cell recruitment and re-differentiation[END_REF]. We are not aware of any continuous settings addressing meniscus repair from the said perspective; [START_REF] Geris | Angiogenesis in bone fracture healing: A bioregulatory model[END_REF] proposed a pure macroscopic model in a related context, accounting for biochemical, but not for mechanical influences and not being able to capture the topography of underlying tissue. Most continuum approaches feature reaction-diffusion-(transport) equations (RD(T)Es) for the evolution of macroscopic cell densities interacting with chemical cues (chemotaxis) and/or tissue (haptotaxis). Yet other macroscopic formulations use a multiphase approach where the cell populations are seen as components of a mixture also containing fluid(s) and/or tissue, possibly also soluble matter (acting as chemical cues), and which relies on mass and momentum balance for each of the involved phases, supplemented with appropriate closure laws, see e.g. [START_REF] Barocas | An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance[END_REF][START_REF] Lemon | Travelling-wave behaviour in a multiphase modelof a population of cells in an artificial scaffold[END_REF]; the review [START_REF] Klika | An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology[END_REF] of multiphase cartilage mechanical modeling explicitly excludes descriptions of cell behavior involved in the process. A connection between multiphase models and RDTE systems for (tumor) cell migration and spread in the extracellular matrix has been proved for any space dimension in [START_REF] Kumar | Multiphase modelling of glioma pseudopalisading under acidosis[END_REF].

This work is organized as follows: in Section 2 we state the PDE-ODE system for the dynamics of two cell populations involved in cartilage expression, along with those of the soluble and insoluble signals in the extracellular space. Section 3 is concerned with numerical simulations of this system and its extensions to a model also accounting for the fluid effects and the deformations of the meniscus, which is seen as a poroelastic material. A coupling strategy for the mechanical and the biological building blocks of our model is furthermore presented, along with numerical results in Subsection 3.3. not infer resorbtion by the cells and whose fibers are impregnated with hyaluron, that acts as a (nondiffusing) chemoattractant for the ADSCs:

∂tc1 = a1∆c1 -∇ • (b1c1∇h) -∇ • (b2c1∇k) -α1(k, S)c1 + α2(k, S)c2 + βc1 (1 -c1 -c2 -k) , (1) 
∂tc2 = ∆c2 + α1(k, S)c1 -α2(k, S)c2, (2) 
∂th = -γ1hc2 + c2 1 + c2 , (3) 
∂tk = -δ1c1k + c2, (4) 
where c1 is the density of ADSCs which differentiate into and interact with chondrocytes c2 producing cartilage k and h is the density of hyaluron. All parameters are assumed to be positive; α1(k, S) and α2(k, S) are uniformly bounded functions of k and S, where S represents a quantity related to the mechanical stress exerted on the cells. The above equations are already nondimensionalized. The domain Ωp ⊂ R d , d ≤ 3 is bounded, with a smooth boundary. The boundary conditions are of the zero-flux type

- ∂c1 ∂ν + b1c1 ∂h ∂ν + b2c1 ∂k ∂ν = ∂c2 ∂ν = 0 on ∂Ωp × (0, T ), ( 5 
)
where ν is the outward unit normal on the boundary of Ωp. The initial conditions are:

c1(x, 0) = c10(x), c2(x, 0) = c20(x), h(x, 0) = h0(x), k(x, 0) = k0(x), x ∈ Ωp. ( 6 
)
This macroscopic formulation of space-time cell population dynamics provides a preliminary, phenomenological description of putatively essential physiological processes related to cell proliferation, differentiation, and motility, as well as dynamics of tissue. It is in fact a simplified version of the macroscopic system

∂tc1 -∇∇ : (D1c1) + ∇ • χ(B(h, k))D1∇B(h, k)c1 = -α1(k, S)c1 + α2(k, S) ω1 ω2 c2 + βc1 (1 -c1 -c2) (7) ∂tc2 -∇∇ : (D2c2) = α1(k, S) ω2 ω1 c1 -α2(k, S)c2 (8) 
supplemented with the two macroscopic ODEs (3), ( 4) for h and k. Thereby, ∇∇ : (D) = ∇ • (∇ • Dc + D∇c) represents myopic diffusion, whereby the diffusion coefficient D encodes the orientation distribution of scaffold fibers. The quantity B(h, k) is an affine function of h and k. System ( 7), ( 8) can be obtained upon starting from lower scales and performing a parabolic upscaling, similarly to e.g., [START_REF] Conte | Mathematical modeling of glioma invasion and therapy approaches via kinetic theory of active particles[END_REF][START_REF] Conte | Mathematical modeling of glioma invasion: Acid-and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy[END_REF]. More details will be available in a forthcoming work.

Numerical methods

At the macroscopic scale, the meniscus tissue is a poroelastic medium that can be modeled by Biot's equations

ρs∂ttη p -∇ • σp(η p , pp) = 0, (9a) 
∂t 1 M pp + ∇ • (αη p ) + ∇ • up = 0, (9b) 
for the displacement field η p (x, t) and the pressure pp(x, t) in a domain Ωp ⊂ R d , with additional boundary and initial conditions. Here, ρs stands for the solid phase density while M and α are Biot's modulus and coefficient, respectively. The stress tensor σp is given by an appropriate constitutive equation and the fluid flux satisfies Darcy's law

up = -K(∇p -ρ f g)/µ, (10) 
with permeability matrix K, fluid phase density ρ f , and viscosity µ. Given suitable material properties and geometry data, model (9a)-(9b) can be solved by the Finite Element Method (FEM), as demonstrated in [START_REF] Lubomierski | Entwicklung eines Finite-Elemente-Modells der Menisken und deren angrenzenden Strukturen[END_REF]. For the active biological processes inside the tissue, however, a more detailed description is required, that takes the temporal change of the solid and fluid phases as well as the material properties of collagen gel into account. In [START_REF] Barocas | An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance[END_REF], such a model is proposed based on fractional volumes for solid and fluid phases and a Maxwell-type constitutive equation. Aside from the basic equations of mass and momentum, an additional evolution equation expresses the spreading of cells into the structure, as given by system (1)-( 4).

Overall, this results in a complex coupled problem in which the cell densities appear as additional unknowns. The goal of this section is to propose a loosely coupling strategy to connect the Biot-Darcy system to the cell densities evolution and we therefore present 3D results (d = 3) on both models, which have been implemented using FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF] in parallel with PETSc [3].

Simulations of the macroscopic advection-diffusion-reaction equations

We proceed with direct simulations of the model ( 1)-( 4) on the scaffold, denoted Ωp. Its numerical scheme should be locally mass conservative, thus we have decided to employ a first order Non-symmetric Interior Penalty discontinuous Galerkin (NIP dG) scheme in space [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]. We define a mesh T h of Ωp and seek solutions c1 and c2 in the broken polynomial space

P 1 d (T h ) given by P 1 d (T h ) := {u ∈ L 2 (Ωp) | ∀T ∈ T h , v | T ∈ P 1 d (T )
}, whereas we are looking for h and k on the classical P 1 d (Ωp) FE space. We have used 88 634 degrees of freedom, and a time step ∆t = 0.1. Multiplying by test functions (νc1, νc2, ν h , ν k ) and integrating over Ωp, system (1)-( 4) becomes

                     (∂tc1, νc1) + (a1∇c1, ∇νc1) + ([c1], {a1∇νc1})Γ -([νc1], {a1∇c1})Γ -(v c1, ∇νc1) + ((vc1) ↑ , [νc1]) ∂Ωp + (α1c1 -α2c2 -βc1(1 -c1 -c2 -k), νc1) + (η[c1], [νc1])Γ = 0, (∂tc2, νc2) + (∇c2, ∇νc2) + ([c2], {∇νc2})Γ -([νc2], {∇c2})Γ -(α1c1 -α2c2, νc2) + (η[c2], [νc2])Γ = 0, (∂th, ν h ) + (γ1 h c2, ν h ) -( c 2 1+c 2 , ν h ) = 0, (∂tk, ν k ) + (δ1 k c1, ν k ) -(c2, ν k ) = 0, c1(0) = c 0 1 , c2(0) = c 0 2 , h(0) = h0, (11) 
where ∇ refers to the broken gradient, Γ represents all the interfaces of the mesh, η is the penalization parameter, v = b1∇h + b2∇k, (•, •) refers to the L 2 (Ωp) inner product, (•) ↑ is the upwind flux, and [•] and {•} refer to jumps and means. The nonlinear system [START_REF] Ghasemi-Mobarakeh | Structural properties of scaffolds: Crucial parameters towards stem cells differentiation[END_REF] has then been implicitly discretized in time and solved with a Newton algorithm.

Bioreactor simulations

The application of mechanical loads was investigated as an important stimulus for cell growth [START_REF] Altman | Cell differentiation by mechanical stress[END_REF]. A major challenge lies in the numerically efficient coupling of the processes at the cell level with the macroscopic behavior and the mechanical properties of the tissue. The scaffold is integrated in a 3D printed perfusion chamber which is embedded in a bioreactor. The latter enables mechanical stimulation via an alternating fluid passing through the perfusion chamber tubes, releasing the pressure. From a numerical standpoint, it can be modeled by Biot-Darcy equations (9a)-(9b) in Ωp, coupled to a nonstationary Stokes problem in Ω f (corresponding to the tubes of the perfusion chamber), where the whole spatial domain is Ω = Ω f ∪ Ωp. See in Figure 2 the domain decomposition. We have used a Nitsche's penalization approach that allows to impose the interface conditions between the free fluid part in the tubes and the tissue [START_REF] Bukac | Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach[END_REF] and have adapted it to our boundary conditions.

• In the free fluid region denoted Ω f , we denote by n f the outward unit normal vector to the boundaries

Γ f = ∂Ω ∩ Ω f = ΓI ∪ Γ f,W ∪ Γin ∪ Γout,
where ΓI represents the interface between Ω f and Ωp. The velocity-pressure couple (u f , p f ) satisfies the unsteady Stokes equations

ρ f ∂tu f -∇ • σ f (u f , p f ) = 0, and ∇ • u f = 0, in Ω f , (12) 
for the fluid stress tensor given by σ f (u f , p f ) := -p f I + 2µD(u f ), with D(u f ) = 1 2 (∇u f + ∇u T f ) and where ρ f stands for the fluid phase density. We complete [START_REF] Grosjean | The non-intrusive reduced basis two-grid method applied to sensitivity analysis[END_REF] by the following boundary conditions: u f = 0, on Γ f,W , σ f n f = -pin(t) n f and u f × n f = 0, on Γin, and σ f n f = 0, on Γout. • In the tissue Ωp, Γp = ∂Ω ∩ Ωp = Γp,W ∪ ΓI . With λp and µp the Lamé parameters, the poroelastic stress σp is defined by: σp(ηp, pp) = σe(ηp) -αppI, and σe(ηp) = λp(∇ • ηp) I + 2µpD(ηp), [START_REF] Hecht | New development in FreeFem++[END_REF] and it is subject to (9a),(9b) and [START_REF] Geris | Angiogenesis in bone fracture healing: A bioregulatory model[END_REF] with pp = 0, on Ωp,W , and η p = 0, on Ωp,W .

We set first all variables to 0 and consider a referential fixed domain. Combining with Nitsche's penalization (9a)-(9b)-( 10) and ( 12), we arrive to a complex formulation as given in [START_REF] Bukac | Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach[END_REF] that we have implemented in parallel with (P1b, P 1 ,RT 0,P 0 ,P 1 ) elements for the solutions (u f , p f , up, pp, ηp). In figures 2 and 3 are illustrated results with a time step ∆t = 0.1 and the parameters presented in table 1, which are obtained from literature [START_REF] Hori | Mechanical properties of the fibrous tissue found at the bone cement interface following total joint replacement[END_REF][START_REF] Silberstein | Elastic-plastic behavior of non-woven fibrous mats[END_REF]. The pressure boundary condition at the entrance of the perfusion chamber is set to pin(t) = pmax sin(π t). 

Coupling strategy

We aim at incorporating the mechanical stimulus into [START_REF] Ghasemi-Mobarakeh | Structural properties of scaffolds: Crucial parameters towards stem cells differentiation[END_REF] in order to study its impact on the densities of the cells. We therefore propose a loosely coupling inspired by previous studies [START_REF] Andreykiv | Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells[END_REF] where the stimulus S is defined as the sum of the strain and the fluid velocity in which scaling constants are used for each stimulus. The authors showed that S would encourage chondrocyte differentiation and cartilage synthesis if it fell between two values, Smin and Smax. We thus propose a mapping between σp and the rates α1 and α2, which become dependent on time, space and on stress. Our first results with this strategy exhibit the impact of mechanical stimulus. The tissue displacements induced by the bioreactor fluid seem not to be negligible (Figure 3). Moreover, Figure 5 shows that the cell densities (especially that of chondrocytes) respond to the stress magnitude. Finally, Figure 5 illicits that although it infers little changes over time, the chemoattractant (hyaluron) absorbed into the tissue at the start of the experiment is crucial for the ADSCs. Given how time-consuming the coupled simulations are, using a reduced order model technique [START_REF] Grosjean | The non-intrusive reduced basis two-grid method applied to sensitivity analysis[END_REF] would be a viable option to enable calibration from in-vitro experiments. It will also be conducive when handling a more complex model explicitly accounting for the structure of the scaffold. 

Figure 1

 1 Figure 1: Stress/rates mapping

Figure 2 :

 2 Figure 2: Pressure (MPa) and velocity glyphs (of u f and u p /Φ) after 9 iterations. For visualization, the velocity field on Ω p has been magnified by a factor 5 × 10 7 .

Figure 3 :Figure 4

 34 Figure 3: Displacement (mm) and velocity u p /Φ (mm.s -1 ) after 9 iterations (upper and lower panels, resp.)

Figure 5 :

 5 Figure 5: After 300 iterations, with α 1 = α 2 constants (up) and with α 1 (σ p ) = α 2 (σ p ), affine functions stress-dependent (down).

Table 1 :

 1 Poroelasticity and fluid parameters

	Maximum fluid pressure (MPa) p max	10	Dynamic viscosity (MPa.s) µ f	1 × 10 -9
	Poroelastic wall density (kg/m 3 )	ρ p	1.1 × 10 3	Permeability (m 4 /N s)	κ	1E-14
	Fluid density (kg/m 3 )	ρ f	10 3	Initial porosity (%)	Φ	0.8
	Young's modulus (MPa)	E	80	Mass storativity (MPa -1 )	1 M	6.89 × 10 1
	Poisson's ratio	ν	0.167	Biot-Willis constant	α	1.0

Table 2 :

 2 Values of model parameters

Model setupWe consider a first model for the dynamics of adipose derived stem cells (ADSCs) differentiating into and interacting with chondrocytes, under chemical and mechanical environmental influences. Chondrocytes produce cartilage and hyaluron, also uptaking the latter. The cells migrate, differentiate, and proliferate inside an artificial scaffold with given topology, which does 1 Felix-Klein-Institut für Mathematik, RPTU Kaiserslautern-Landau, Kaiserslautern, 67663, Deutschland
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