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Highlights:  13 

- We monitored crop choices, weather and groundwater level in 205 irrigable farms for each 14 

cropping season for 10 years 15 

- Crop species were clustered into crop categories based on water requirement 16 

- We used Sequence Analysis to build a typology of crop categories sequences per season 17 

- Tactical adaptations to variations in water availability varied across farm types  18 

- Diversity of possible crop categories was pivotal for farming system. 19 

 20 

Abstract: 21 

CONTEXT 22 

Altering cropping choice is a potentially effective lever to cope with unreliable water resources, but 23 

given the multiple factors driving crop choices, assessing if farmer actually use it specifically for this 24 

objective remains difficult. 25 

OBJECTIVE 26 
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We aimed at analyzing whether and how irrigated farmers choose crop categories with different water 27 

requirements to cope with limited water resources in peninsular India. 28 

METHODS 29 

We monitored, during 10 years, crop choices, weather, and groundwater for the three cropping 30 

seasons in 205 irrigable farms in the Berambadi watershed, in southern India. We categorized crops 31 

according to their seasonal water requirement. We performed Sequence Analysis and Agglomerative 32 

Hierarchical Clustering of crop categories choices for each cropping season over 10 years to build farm 33 

typologies of strategic crop category choice. For each type, we correlated the variations in crop 34 

category choices to variations in rainfall and groundwater availability, to identify tactical adaptations. 35 

Finally, the succession of farm strategies across seasons allowed us to identify and characterize the 36 

main strategical pathways followed by farmers, each of them linked with specific tactical adaptations. 37 

RESULTS AND CONCLUSIONS 38 

Sequence analysis of crop category choices revealed different types of crop category sequences, 39 

reflecting farmer’s different strategies, which were not significantly linked with groundwater 40 

availability.  However, within each type, correlations between variations in water availability and crop 41 

categories highlighted specific tactical adjustments. We identified five main pathways across the three 42 

cropping seasons, including combining long-cycle irrigated crop and other crop categories, specializing 43 

in short-cycle irrigated crops over two or three seasons, specializing in rainfed crops or abandoning 44 

agriculture.  45 

SIGNIFICANCE 46 

The opportunity for farmers to choose their crop among a range of species encompassing a large range 47 

of water requirements allow them to base their system resilience on a large diversity of strategies and 48 

tactics. This suggests that some farmers empirically estimate the water balance of their cropping 49 

systems at seasonal scale to take tactical decision. Providing them with science-based tools to refine 50 

this estimation could therefore help them taking better decisions. This also implies that modelling 51 

farmer decisions must account for their diversity. Maintaining or increasing the capacity of farmer’s to 52 

cultivate a broad range of crop with different seasonal water requirement is important for farming 53 

system resilience, and should therefore be part of the agenda of policy makers for agricultural or 54 

environmental regulations.    55 

 56 
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 58 

1. Introduction 59 

 60 

Altering crop choice and increasing crop diversity are among the possible efficient levers that can 61 

contribute to the adaptation of agriculture to declining water resources (Howden et al., 2007; Lin, 62 

2011; Babaeian et al., 2021; IPCC, 2022), This is particularly the case in India, which relies heavily on 63 

groundwater for irrigation (Shah, 2009) and where the fast decline of groundwater resources (Fishman 64 

et al., 2011) is threatening agricultural productivity and food security (Bhattarai et al. 2021). Due to its 65 

importance for water balance and groundwater recharge (Anuraga et al., 2006), shift in crop choices 66 

is expected to be a major lever for adapting to shrinking and uncertain water resources and changes 67 

in rainfall patterns in India (Kumar et al., 2020). However, very few studies in India have been devoted 68 

to studying changes in cropping patterns with changes in water resources, and in situations of declining 69 

groundwater levels they have found either little or no cropping pattern adaptation (Tripathi and 70 

Mishra, 2017; Patil et al., 2019; Blakeslee et al., 2020; Bhattarai et al. 2021), a decline of water-71 

intensive crop (Fishman et al., 2011) or a counterintuitive shift to water-intensive crops (Shiferaw et 72 

al., 2008). 73 

This lack of conclusive studies might be partly due to the difficulty to gather relevant time-series of 74 

crop choice, which must be collected at the farm level (Leenhardt et al., 2012a). Crop rotations can be 75 

retrieved from existing public databases (Nowak et al., 2022; Upcott et al., 2023), remote sensing (Mas 76 

et al., 2019; Biarnès et al., 2021 ; Zhang et al., 2022), or extensive surveys at household level. 77 

Econometric analyses can reveal how actors adapt to long-term changes in mean climate (Mendelsohn 78 

and Massetti, 2020) and many studies highlight the complexity of the decision-making process involved 79 

in crop choice, which depends on a broad range of factors such as market information, operational 80 

cost, labour availability, credit facilities, pest control, weed control, and land tenure status (e.g. 81 

Moniruzzaman, 2015). However, disentangling this complex process to assess the importance of 82 

climate or water resources variations in the decision remains a challenge (Labeyrie et al., 2021).  83 

A difficulty lies in the dual nature of crop choice. The theoretical framework elaborated by farmers' 84 

decision-making modelers (Risbey et al., 1999) distinguishes between strategic decisions, which 85 

engages the farm on a long term (several years) and tactical decisions, which are taken at yearly or 86 

seasonal scale. Crop choice belong to these two categories, as at the strategic level farmers decide on 87 

a cropping system in the long term, in accordance with the farm objectives and structure, available 88 

resources and general context, while at the tactical level, yearly or seasonally, they can decide to alter 89 

they crop choices, based on short term signals (Risbey et al., 1999; Robert et al., 2016a). As a 90 
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consequence, the cropping pattern analysis needs to be carried out at the same time between farms 91 

(to identify different strategies) and in time (to identify tactical adaptations specific to each strategy). 92 

Classically, statistical analysis of crop time series involves retrieving probabilities of crop successions, 93 

using for example Markov chains, in order to infer a predictive model of land use (e.g. Salmon-94 

Monviola et al., 2012; Dupuis et al., 2022). However, such an approach is not well adapted for 95 

comparing farms in space and therefore to distinguish strategic and tactical decisions. Sequence 96 

analysis (SA) is a promising method for such an objective, as it allows to quantify the similarities of 97 

qualitative sequences both longitudinally (across years) and transversally (across farms). SA was 98 

originally introduced in computer science (Levenshtein, 1966) and later in genetics to study DNA and 99 

RNA sequences (Levitt, 1969). Today, SA is common in several disciplines analyzing ensembles of time 100 

series such as marketing (Silberer, 2012), economics (Le Goix et al., 2019), social sciences, medicine, 101 

and history analysis (Salonen et al., 2020), but to our knowledge, it has never been used for studying 102 

cropping systems. 103 

Another difficulty, which is more specific to the case of smallholders’ agriculture in the tropics, is linked 104 

with the high diversity of cultivated crop species (including crop associations). To simplify the system, 105 

many authors (e.g. Patil et al., 2019; van Zonneveld et al., 2020) cluster these species into crop 106 

categories that are assumed to represent “functional” groups. This allows to develop models in which 107 

functional groups are an important filter in crop choice decision-making (Dury et al., 2012). Modelers 108 

define filter criterion of functional groups according to various factors that can be agronomic (Dogliotti 109 

et al., 2003), or related to resource requirements (Robert et al., 2018). Then, other filters allow to 110 

select the crop species depending on many other criterions within the possible range of options. Based 111 

on this rationale, in order to specifically study the impact of water resource on cropping choice, this 112 

clustering could be based explicitly on the estimation of seasonal crop water requirement, which has 113 

been identified as one of the main factor driver crop choice decision in Indian farms (Robert et al, 114 

2016b). Daily crop water requirement depend on several factors related to phenology (which drives 115 

the transpiration demand), rooting depth (which drives access to soil water) and stress tolerance (Allen 116 

et al., 1998). Crops with deep roots and good stress tolerance are usually cultivated with no or only 117 

occasional irrigation and can be categorized as “rainfed”; while among strictly irrigated crops, the most 118 

determining factor controlling seasonal irrigation requirement is the duration of their cultural cycle 119 

(Brouwer and Heibloem, 1986) which can therefore be used to classify them. 120 

The objective of this paper is to test the hypothesis that in a water-limited context, seasonal crop water 121 

requirement is a primary factor driving crop choice, and therefore that analyzing sequences of crop 122 

categories based on crop water requirement can help reveal strategic and tactical farmer’s decisions. 123 

For this, we analyzed farmers’ cropping patterns using a 10-years’ time series of monthly observations, 124 
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including crop choice and groundwater table level, on a panel of 205 irrigable farms in the Berambadi 125 

watershed in southern India, where weather variability combined with the recent development of 126 

borewells and irrigated agriculture led to an high pressure on groundwater resources. We categorized 127 

crop species according to their water requirement and used sequence analysis (SA) on crop category 128 

sequences to build a typology of farms with different patterns of crop categories, and we explored if 129 

these categories could be interpreted in terms of farmer’s strategies. Then, for each farm type, we 130 

analysed year to year variations of crop categories and explored if these variations could be interpreted 131 

in terms of tactical adaptations to variations in water resource availability.  132 

 133 

2. Material and methods  134 

2.1. Study area  135 

The Berambadi watershed (Figure 1) is situated in the southwest of India (11°43’00” to 11°48’00” N, 136 

76° 31’00” to 76° 40’00” E) and covers an area of 84 km². It belongs to the Kabini Critical Zone 137 

Observatory (Sekhar et al., 2016; SNO M-tropics, https://mtropics.obs-mip.fr/), part of the OZCAR 138 

research infrastructure (Gaillardet et al., 2018). The bedrock is a granitic gneiss and the aquifer, typical 139 

of hard rock granitic areas (Wyns et al., 2004), is composed of two layers, one fissured layer of a few 140 

meters thickness at the surface of the fresh bedrock, with high hydraulic conductivity but low porosity 141 

and one weathered layer (gneissic saprolite) with low hydraulic conductivity but large porosity (Boisson 142 

et al., 2015) with a thickness of about 15 m (Braun et al., 2009). Two main soil types are found, 1–2 m 143 

deep red soils (Ferralsols and Chromic Luvisols) on the hillslopes and 2 m deep black soils (Vertisols 144 

and Vertic intergrades) mostly in the valley bottoms (Barbiero et al., 2010; Gomez et al., 2019). 145 

Daily weather data were available from the Maddur meteorological station in the East part of the area 146 

(Figure 1). The climate of the area is tropical sub-humid (aridity index P/PET= 0.7), with average rainfall 147 

and PET of 800 mm/year and 1100 mm/year respectively (Sekhar, et al., 2016). The monsoon regime 148 

determines three distinct cropping seasons of roughly 4 months each: (i) Kharif, which comprises the 149 

Southwestern monsoon period; (ii) Rabi, the Northeastern monsoon period and the winter season; 150 

and (iii) Summer, the hot and dry season.   151 

The cultivation of irrigated crops in the watershed started in the early 1990s and increased since then 152 

thanks to intensive groundwater pumping (Sekhar et al. 2011; Sharma et al, 2018). Individual borewells 153 

have been largely encouraged by public policies that provided farmers with subsidies and free 154 

electricity for groundwater irrigation (Fischer et al., 2022). This dynamic has led to groundwater over-155 

exploitation, with considerable impacts on ecosystems (Buvaneshwari et al., 2017; 2020) and socio-156 

economic development (Fischer et al., 2022), which, in the absence of collective management, 157 
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threatens the viability of irrigated agriculture in the area (Landy et al., 2021). The decrease in 158 

groundwater table level disconnected groundwater table from river beds, turning main permanent 159 

rivers into ephemeral streams (Srinivasan et al., 2015; Buvaneshwari et al., 2017). In hard rock aquifers, 160 

pump yields are small and often insufficient to fully satisfy the needs of water-intensive crops on large 161 

surfaces (Fishman et al. 2011), and they vary in time with water table level as hydraulic conductivity 162 

decreases sharply with depth (Boisson et al., 2015; Collins et al., 2020).  In Berambadi, farmers reported 163 

not only that their borewells might dry up but also that the pump yield varies with years or seasons 164 

(Robert et al, 2017a).  165 

Farmers in Berambadi own on average 1.2 ha of land, either on one or several independent pieces of 166 

land, called “farms” in English and “jeminu” in Kannada (local language). The size of a farm can vary 167 

greatly (from 0.1 to several hectares) but typically it is about half a hectare, which for each season can 168 

be either dedicated to a single crop or divided into several plots for growing different crops depending 169 

on farmer's preference and strategy and on its access or not to groundwater. An extensive household 170 

survey carried out in 2014 (Robert et al., 2017a) show that crop choice depends on a large variety of 171 

socio economic factors, such as caste, education, farm size, market prices, labour availability, contract 172 

opportunities, grain stocks, farm distance to local market or a main road, but also on expected water 173 

availability (seasonal rainfall and borewell yield). Interestingly, for a large majority of irrigable farms, 174 

cropping systems include a mix of irrigated and non-irrigated crops. Specific farmer’s interviews 175 

focused on decision rules suggests that priority is given to crops with large water requirement: first 176 

long-cycle crops, then short-cycle irrigated crops and finally other short-cycle crops with little or no 177 

irrigation requirement (Robert et al., 2017b). However, these declarative qualitative statements 178 

inform little on the importance of water availability on the final crop choice.  179 

Thus, we conducted an inductive approach (Goddard & Melville, 2004), to explore whether and how 180 

water variability has an effect on the cropping decision by analyzing crop choices over a 10y period. To 181 

minimize the effects of factors specific to crop species, we explored farmers' choices of functional crop 182 

categories based on their irrigation requirements, estimated with the FAO method (Brouwer and 183 

Heibloem, 1986). We classified the crops species into three main crop categories: (i) rainfed crops (R) 184 

do not require irrigation and, in Berambadi, their cycle span over only one season (mostly Kharif or 185 

Rabi); (ii) short-cycle crops (SC) are strictly irrigated crops, with a cycle spanning over only one season 186 

(Kharif or Rabi or Summer); (iii) long cycle crops (LC) are strictly irrigated crops, with a cycle spanning 187 

over two or three seasons, making their cumulative water requirement higher than the previous ones.  188 

 189 

2.2. Data acquisition, curation and preprocessing 190 
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 191 

We set up an intensive data monitoring at 205 farms comprising at least one borewell in working 192 

condition, distributed across the Berambadi watershed (Figure 1), over 10 years (March 2010 to March 193 

2020). The sampling was designed to explore the spatial variability of groundwater table level, but not 194 

specifically to be representative of the farm diversity over the area. Monitoring consisted of monthly 195 

visits to each of these farms to measure the water table at the borewell and record all crop species 196 

present.  197 

We measured the groundwater level with a manual piezometric level sensor (skinny dipper device, 198 

Haron instruments) at least 3h after switching off the pump. Indeed, pumping induces a local decline 199 

in water table depth (drawdown), and point measurements during pumping periods are impossible to 200 

interpret. After switching off the pump, the local water table level tend to come back to the “static 201 

level”, which represent the hydraulic head outside the radius of influence of the borewell. The time 202 

taken to reach the static level depends on local aquifer transmissivity, and we checked in a range of 203 

wells that 3 hours was enough to recover at least 90% of the local groundwater level drawdown due 204 

to daily pumping. Therefore our measurements were reasonable approximation of the groundwater 205 

static level. The survey was still manageable as electricity for pumping is freely provided by the 206 

government to farmers only for a few hours per day (6h/day, split into 3h in the night and 3h in the 207 

day from 2010 to 2015, and 7h/day split into 3h in the night and 4h in the day since 2015). Qualitative 208 

information was also gathered about the status of the monitored borewell (dry, abandoned, clogged, 209 

pump failure…). We estimated pump yield by measuring with a chronometer the time needed to fill a 210 

25-L bucket. The yield value for each well was taken as the average of 3 measurements carried out at 211 

a 30-minute interval, with the first measurement at least 30 minutes after starting the pump. We 212 

measured pump yield in September 2012 (N=117) and May 2017 (N=80). The second survey was 213 

carried out because, compared to 2012, groundwater levels had declined dramatically and it allowed 214 

us to explore a wider range of water table depths.  215 

We observed the crops present in farm monthly. When there was more than one plot in the farm, all 216 

the different crops and/or fallows present were noted. Recording the area and location of each crop 217 

species within the farm would have been too time consuming, as the number and size of plots often 218 

varies from one season to the other. Therefore, we cannot interpret the data in terms of crop rotations 219 

but only in terms of the occurrence of crop species on a farm. For data curation (Figure S1), we first 220 

discarded from the database the farms (N=17) having had dried borewells or pump failure during more 221 

than 30% of the study period, as we were interested in irrigable farms (N=188). To fill the gaps in the 222 

groundwater levels time series, we interpolated the levels of the previous and following months in the 223 
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same farm. The dataset comprised 36 different crops species. We discarded those present in less than 224 

2% of all the observation per season (N=5). For the remaining ones (N=31), we reconstructed their 225 

dominant cultural cycle (season(s) of sowing/planting, cycle duration), using our observations and 226 

expert knowledge (Table S1). Missing values due to short gaps in observations for individual farms 227 

were filled in by taking into account crops present in the previous and following months and cultural 228 

cycles.  229 

Finally, these qualitative data were prepared for statistical exploration. We allocated each crop to one 230 

of the three crop categories (R, SC and LC) mentioned in section 2.1 (Table S1) and we added a category 231 

for fallow (no-crop, noted NC). We allocated each crop within the time series to the season when it 232 

was sowed or planted (Kharif crops if sowed from March to June, Rabi crops if sowed from July to 233 

October, and Summer crops if sowed from November to February). As several crops categories can be 234 

sown on the same plot during a given season, we aggregated the different crop categories sown or 235 

planted on the same farm in the same season of the same year, into a new variable called “state” (in 236 

the analysis method). Each state corresponds either to a single crop category or a combination of 237 

several crop categories. Eight distinct values of states were identified in the database (Table 1).  238 

We decided to consider the succession of states across years for individual farms for each season 239 

independently. Indeed, variations of crop categories from one season to the next can be due to 240 

agronomic or climatic constraints (e.g. most long-cycle crops are sown in Kharif, rainfed crops are 241 

barely possible in Summer). Such seasonal variations would have introduced “noise” if we had carried 242 

out the analysis on sequences including all the seasons. Moreover, farm surveys suggest that farmers 243 

are taking their decisions on crop choice at the beginning of each of the three seasons (Robert el al., 244 

2017b) regardless of the crop choice made in the previous season. We therefore created three datasets 245 

(one for each season) of interannual state sequences for each farm. 246 

 247 

2.3. Statistical analysis 248 

 249 

We carried out the data analysis in three steps, which will be detailed in the next sub-sections.  250 

First, we used Sequence Analysis to quantify pairwise sequence dissimilarities, then Agglomerative 251 

Hierarchical Clustering (AHC), in order create group of farms based on sequence similarity. Our 252 

objective was to build a typology of state sequences across farms, which would reflect different 253 

strategies of crop category choice per season. In a second step, we explored whether, for each of the 254 

types of state sequences previously identified for each season, indicators of availability of rainfall and 255 
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groundwater were correlated with variations in year-to-year crop categories choices, which would 256 

reflect tactical adaptations to year to year variations of water availability. Finally, we built a farm 257 

typology based on the combination of the seasonal types, illustrating the diversity of farmer’s 258 

strategies and tactical responses to variations in water resources.  259 

 260 

2.3.1. Typology of sequences by season 261 

 262 

In the SA method, a sequence is a set of longitudinal data and each sequence is composed of a 263 

succession of states (the states correspond to what is observed) in individual farms. In our study, a 264 

state corresponds to the choice of either one crop category or a combination of two or three crop 265 

categories (Table 1) - observed on the farm, for a given season and a given year. Note that sometimes 266 

there is no choice to make for a given farm in a given season, as the land is already occupied by a long-267 

cycle crop. This explains why the number of farms “making choices” varied across years and across 268 

seasons. The SA methods consists in the quantification of the dissimilarities between individual 269 

sequences, in other words it is a quantification of how far two sequences are. To calculate the 270 

dissimilarities between the sequences, several metrics can be used the most commonly used being the 271 

Longest Common Subsequence (LCS), the Longest Common Prefix of two sequences  (LCP) and the 272 

Optimal Matching distances (OM) (Elzinga, 2008). As our objective is to identify similar cropping 273 

patters, we chose LCS that corresponds in our case to the longest common subsequence of crop 274 

categories over the ten years data. We ran SA using the R TraMineR package (Gabadinho et al., 2011), 275 

which includes a broad range of functionalities. We used the length of the longest common sub-276 

sequence (LCS) between two sequences x and y, and derived a dissimilarity measure expressed by the 277 

formula:     278 

d(x,y) = A(x,x) + A(y,y) - 2A(x,y) 279 

where d(x,y) corresponds to the distance between x and y,  A(x,y) is the length of the longest common 280 

subsequence between x and y. If A(x,y)=0, the dissimilarity between the two sequences is maximal. If 281 

A(xx)=A(yy)=A(x,y), x and y are identical. 282 

Then we performed an agglomerative hierarchical clustering (AHC) in order to group the farms with 283 

the most similarities. The AHC successively groups the closest farms into clusters, which then are 284 

grouped into larger clusters of higher rank based on their factorial coordinates (Omran et al. 2007). 285 

We used the Ward’s minimum-variance aggregation method for minimizing intra-cluster variance and 286 

maximizing variance between clusters (Kaufman and Rousseeuw 2009). AHC is represented by a 287 
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dendrogram which illustrates the classification obtained at each successive rank of the analysis. The 288 

number of farm types of each AHC clustering was chosen to enable a sound interpretation of results 289 

and adequate differentiation between types of crop categories choice for each season (Baccar et al., 290 

2018).   291 

For each type, we also calculated via descriptive statistics the distribution of crop categories. For 292 

visualization of each type by season, among the wide range of possibilities available in the TraMineR 293 

package, we plotted the time series across years of the proportion of each state within the group of 294 

farms belonging to the type. These plots, considered globally, allow to highlight the dominant states 295 

across the farms within the considered type, and also to visualize year to year variations in the 296 

proportion of dominant states across farms. Finally, we calculated an index of crop category diversity, 297 

as the percentage of states comprising more than one crop category within a given farm for the same 298 

season across years. Please note that this is not a biodiversity index, as there can be a large diversity 299 

of crop species (with similar water requirements) within a single crop category (Table S1), but rather 300 

an indicator of the prevalence of decisions of simultaneously implanting crops with different water 301 

requirements within a same farm. 302 

  303 

2.3.2 Correlation between water availability and types of crop categories choice  304 

 305 

For each farm type, we conducted correlation analyses between the year to year variations of crop 306 

categories and indicators of water availability, using the R FactoMineR package (Lê et al., 2008). In 307 

addition, we performed correlations between the diversity index and water availability in order to 308 

assess if diversification is a tactical adaptation to water variability.  309 

We assumed that observed groundwater levels and rainfall can be used as proxies for water 310 

availability. For groundwater availability, we averaged, for each farm and year, the groundwater levels 311 

observed during the first 2 months of the season and the previous month, assuming that decisions of 312 

crop category are made during this 3-month period. For rainfall, we tested independently the monthly 313 

rainfall for the first two months of the season and for the last two months of the previous season for 314 

the considered year, and only the months for which significant correlation between rainfall and crop 315 

categories choice were found were retained in the analysis. 316 

2.3.3 Pathways of crop categories choice across seasons 317 

 318 
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The annual pathway of each farm was obtained by grouping the crop category choices according to 319 

the three seasons. We then gathered together farms with the same pathway and ranked these 320 

pathways according to their frequency. Finally, we interpreted the most frequent pathways as 321 

reflecting different general strategy across farms, with specific tactical adjustments linked with year-322 

to-year variations in water availability.  323 

 324 

3. Results 325 

 326 

3.1. Characterization of water resource availability 327 

 328 

Yearly rainfall (Figure S2) shows a large year-to-year variation, with the occurrence of severe drought 329 

years (2012, 2016, 2017) and an exceptionally rainy year (2018). Average monthly rainfall exceeds 330 

monthly PET for 5 to 6 months (Figure S3), which explains why two cycles of rainfed crops are possible 331 

in the region. The rainiest months (August and October) are also the ones displaying the largest 332 

variability, suggesting that crop water stress can occur even during the core of the rainy season. In 333 

Summer, rainfall is almost absent while PET is the highest, therefore crops can only be grown with 334 

irrigation. 335 

Groundwater levels for the 188 farms across the 10-year monitoring period illustrate the dynamic 336 

behavior of the aquifer (Figure 2), with large seasonal water table level variations, and marked 337 

interannual trends - with a general downward trend from 2010 to 2018 followed by a dramatic increase 338 

in 2018 and 2019, leading to an average groundwater level slightly shallower at the end than at the 339 

beginning of the period. This highlights the fact that hard rock aquifers are highly dynamic, and that a 340 

few years of good groundwater recharge can completely offset the progressive decline observed 341 

during dry and average years. Although the standard deviation remained quite large throughout the 342 

period (about 13 m), reflecting the large spatial variability of groundwater levels, all the wells followed 343 

the same general trend, suggesting a good connectivity of the aquifer within the catchment. In 344 

addition, groundwater levels displayed large seasonal variations linked with groundwater recharge. On 345 

seasonal average (Figure S4), groundwater level was the deepest in Kharif with high interannual 346 

variability.  347 

Pump yields were very sensitive to variations in groundwater table level (Figure 3), with a steep 348 

decrease of discharge rates with decreasing groundwater level in the first 20 m below ground, and a 349 

moderate decrease below this threshold. This high sensitivity of well yields to groundwater table level 350 
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suggests that the large interannual and seasonal variations of water table level observed during the 351 

study period have induced large variations in water availability for irrigation both in the short and long 352 

term. However, for a given range of groundwater level depth, pump yields can differ largely across 353 

borewells (see standard deviation in Figure 3). 354 

3.2. Seasonal choices of crop categories 355 

 356 

3.2.1. Kharif season  357 

 358 

In Kharif season, we identified four types of farms with a relatively even distribution between types. 359 

Each type had a specific pattern and a dominant crop category (Table 2). K1 was dominated by irrigated 360 

long-cycle crops (LC) but irrigated short-cycle crops (SC) were also very frequent. K2 was largely 361 

dominated by SC. K3 was dominated by fallow (NC) but the distribution of crop categories was more 362 

even. K4 was largely dominated by rainfed crops (R).  Time series shows that the proportion of states 363 

for each group of farms varies a lot from one year to the other for all types (Figure 4a). The diversity 364 

index show significant difference between farm types (Figure 4b). In particular, for the K1 type, very 365 

high value of diversity index indicates that while LC were dominant throughout the studied period, 366 

they were most of the time cultivated in combination with other crop categories, mostly SC. This 367 

suggests that cultivating simultaneously crops with different water requirement is a general strategy 368 

for this farm type. To the contrary, the other three types displayed smaller values for the diversity 369 

index (decreasing from K2 to K4), the general strategy is rather to cultivate crops with the similar water 370 

requirement in a given year, but possibility shifting for a crop category to another from one year to the 371 

other. 372 

Average groundwater table levels were not significantly different between farm types (Figure 4c), and 373 

therefore our hypothesis that groundwater availability drives the general strategy for crop category 374 

choice was not validated.   375 

However crop category choices displayed large year-to-year variations, which were partly explained 376 

by variations in water availability (Table 3). Variations in groundwater availability affected farm types 377 

differently: it was negatively correlated with the decision to leave the plot fallow (NC) for K1 and K2 378 

and with the decision to grow R for K4, and positively with the decision to grow LC for K2 and K4. The 379 

amount of rainfall in April, which is critical for land preparation at the end of the dry season, showed 380 

strong correlations with crop category choices: it was strongly correlated with the decision to grow LC 381 

for all farm types and to grow SC for K3 and K4. The diversity index displayed only weak correlations 382 

with groundwater level (K3) and April rains (K3 and K4), which suggests that the decision to grow or 383 
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not different crop categories simultaneously on the same farm in Kharif season was more a general 384 

strategy than a tactical adaptation to the conditions at the time of the sowing decision.  385 

3.2.2. Rabi season  386 

 387 

In the Rabi season, there were only a few occurrences of LC as they are mostly planted in Kharif season 388 

in the region. We identified two types of farms (Table 2): R1 was largely dominated by SC while R2 was 389 

slightly dominated by NC with an almost equal proportion of R.  390 

Time series shows that the proportion of states across farms varied less across years than during the 391 

Kharif season, especially in the case of R1 (Figure 5a). The diversity index (Figure 5b) was low for both 392 

farm types and mostly driven by the combination of SC and R.  As for kharif season, the average 393 

groundwater table level was not significantly different between the two types, suggesting that 394 

groundwater availability was not a driving factor of the general strategy (Figure 5c). 395 

In Rabi season, year to year variations of crop category choices were mostly not correlated with the 396 

variations in groundwater availability, except for the decision to cultivate or not in the case of R1 farms 397 

(Table 3). The occurrence of good rains in the month preceding the crop category choice decision (July) 398 

influenced differently farmers of the R1 type, who cultivated more frequently LC – although it 399 

remained marginal - and the farmers of R2 type, who cultivated more frequently rainfed crops. In both 400 

cases, the intensity of July’s rains was correlated with the diversification index, suggesting that a 401 

replenished soil water reservoir at the beginning of the Rabi season was an opportunity for trying 402 

different crop categories, but mostly in combination. In the case of R2, the amount of rainfall in the 403 

early Rabi season (August) was strongly correlated with fallow (negatively) and rainfed crops 404 

(positively), suggesting that this factor was crucial in determining the crop category choice. In the case 405 

of R1, the largely dominant crop category choice SC was not correlated with rainfall nor with 406 

groundwater availability, suggesting that for the farmers belonging to this type, growing SC in Rabi 407 

season was a general strategy, unaffected by the conditions at the time of the decision. 408 

 409 

3.2.3. Summer season  410 

 411 

During the summer season, since LC are rarely planted and rainfed crops are barely possible, the 412 

decision was mainly limited to an alternative between short-cycle irrigated crops (SC) and fallow (NC), 413 

although other categories were marginally present. We identified 2 types of farms (Table 2) with 414 

similar populations: S1 dominated by SC and S2 dominated by NC.  415 



   
 

14 
 

The time series of crop category choices (Figure 6a) displayed strong variations in some years, mostly 416 

due to the alternance between fallow and irrigated short-cycle crops. For example, for the S1 type, 417 

fallow became the dominant choice in years such as 2013, 2016, and 2017. As expected, the diversity 418 

Index was extremely low (Figure 6b), due to the limited range of options available in this season. Again, 419 

the average groundwater table level was not significantly different between the two types, suggesting 420 

that, similarly to the other seasons, the amount of groundwater available was not a determining 421 

general strategies of crop category choice (Figure 6c). 422 

For S1 farms, the variations in year-to-year decisions to grow SC or leave the land fallow was strongly 423 

correlated with groundwater table levels at the beginning of the season, and more weakly with the 424 

rainfall amount in the preceding month (Octobre) that replenish the soil reservoir for Summer crops 425 

(Table 3). No significant correlations were found between crop category choice and water availability 426 

for S2 farms.  427 

 428 

3.3. Typology of farm strategic pathways 429 

 430 

Five annual pathways of successive seasonal types represented 73% of the surveyed farms (Figure 7). 431 

We find that these pathways can be interpreted in terms of general strategies followed by farmers to 432 

selected crop categories. Each pathway is characterized by different factors governing tactical 433 

decisions for each season. These main pathways, presented by decreasing frequency, are the 434 

following:  435 

Pathway A (K2, R1, S1) corresponds to a strategy of specialization in irrigated short-cycle crops in the 436 

three seasons. This strategy was by far the most frequent, and it was probably driven by the awareness 437 

among farmers of the high risk of investing in long-cycle crops in the context of unreliable groundwater 438 

availability. The tactical decisions were strongly influenced by the variations of groundwater 439 

availability and rainfall patterns, with an increase of long-cycle crops in Kharif and short-cycle crops in 440 

Summer during the favorable years.   441 

Pathway B (K3, R2, S2) corresponds to a strategy of abandonment of agriculture, as the dominant 442 

choice in all seasons was clearly fallow land. The tactical decisions were not influenced by variations in 443 

groundwater availability, but these farmers seized the opportunity of favorable rainfall years to 444 

increase the proportion of irrigated crops (LC and SC) in Kharif and of rainfed crops in Rabi.  445 

Pathway C (K1, R1, S1) corresponds to a strategy of high water use over the three seasons, with 446 

priority given to irrigated long-cycle crops in Kharif and irrigated short-cycle crops in Rabi and Summer. 447 
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Compared the Pathway A, these farmers appear to be ready to accept the risk of large losses in the 448 

case of failure of LC crops. Their tactical decisions appear to be little influenced by year to year 449 

variations in groundwater availability: rainfed crops were always present in Kharif and Rabi, but their 450 

proportion was not increased when groundwater availability decreased. However, they increased SC 451 

in Summer when groundwater levels were shallow and when they are too deep, the preferred 452 

alternative to the dominant crop category choice was fallow in all seasons. Interestingly, this strategy 453 

was characterized by a large diversification of crop categories in Kharif, to make the best use of the 454 

available land and water and probably as a strategy of risk management.  455 

Pathway D (K2, R1, S2) corresponds to a strategy of specialization in irrigated short-cycle crops only 456 

in the two rainy seasons. The only difference with pathway A is that these farmers mostly preferred 457 

not to grow any crops during the dry Summer season and seem more risk averse to crop failure in the 458 

dry season. Year-to-year variations in groundwater level or rainfall before the Summer season had no 459 

significant impact on this choice. Given the large water requirement of irrigated crops in Summer, this 460 

strategy is probably the most reasonable in terms of water resource management.  461 

Pathway E (K4, R2, S2) corresponds to a constrained specialization in rainfed agriculture. The 462 

dominant crop category choice is rainfed crops in Kharif, and fallow in Rabi and Summer. Unlike for 463 

the pathway B, the tactical decisions in Kharif are not only influenced by the variations in yearly rainfall 464 

patterns but also by variations in groundwater availability, with a substitution of rainfed crops by 465 

irrigated long-cycle crops when conditions are favorable.  466 

 467 

4. Discussion  468 

 469 

Our study, based on the monitoring of crop categories choice, climate and groundwater over 10 years 470 

in a population of smallholder’s irrigated farm in a small watershed, showed that farmers develop a 471 

diversity of strategies, and that the choice a given strategy was not based on the average availability 472 

of groundwater. However, within each strategy, some tactical choices resorted to adaptations to water 473 

availability variations. 474 

4.1. Large temporal variability of water availability 475 

During the 10-years monitoring period, the hydrosystem was characterized by large variability of yearly 476 

rainfall and large variations of groundwater levels, both seasonally and across years. This situation, 477 

typical in the region since the 2000’s, was probably quite different from the conditions prevailing a few 478 

decades ago, at the onset of the development of groundwater irrigation in the region. At that time, 479 
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groundwater levels were shallower (about 5m), and their seasonal and interannual variations were 480 

smaller (Sekhar et al., 2004).  In the 1980’s and 90’s, with much more reliable access to the 481 

groundwater resource, through open wells or shallow borewells, the first irrigators focused mostly on 482 

a long cycle crop, namely sugarcane, which was ubiquitous in the region (Fischer et al., 2022).  We 483 

observed that, contrary to the widespread perception of a continued decline in groundwater levels 484 

(e.g., Bhattarai et al. 2021), increased groundwater withdrawals in the region have instead resulted in 485 

a large variability in groundwater levels. We showed that a decrease in groundwater level was 486 

associated with a decrease in borewell yields (Figure 3), implying that over the past decade, availability 487 

of groundwater for irrigation had become highly unreliable. However, the large standard deviation of 488 

borewell yields for a given water table level depth, especially at shallow depth, which reflects the 489 

spatial variability of aquifer properties at short-distances in this hard rock aquifer, implies that 490 

groundwater level depth is only a rough approximation of groundwater availability at the farm level. 491 

 492 

4.2 Diversity of irrigating Farmer’s strategies is not linked with the quantity of groundwater available 493 

in their farms 494 

 495 

We showed that statistical analysis of the patterns of crop categories, using sequence analysis (SA) and 496 

Agglomerative Hierarchical Clustering (AHC) methods, can reveal the different strategies implemented 497 

by irrigated farmers in building cropping systems using a range of crops with different water 498 

requirements.  499 

We highlighted five main general strategies based on specific mobilization of the range of crop 500 

categories with different water requirement available to farmers, that included cultivating long-cycle 501 

crops in combination with other crop categories, specializing in short-cycle crops in two or three 502 

seasons, specializing in rainfed crops or abandoning agriculture. This result shows that farmers 503 

strategic options appears quite more diverse than suggested by previous studies in the same region, 504 

which summarize the farmer’s alternative as “to chase water and not adapt to changing conditions” or 505 

“quit” agriculture (Patil et al., 2019 ; Blakeslee et al., 2020).  506 

Interestingly, and contrary to our initial hypothesis, we found that the average groundwater level 507 

depth in the farm was a not significantly different between the different farm types. Even if it is 508 

possible that this was in part due to the fact that groundwater level only a rough proxy of the amount 509 

of groundwater available in a given farm, we can still conclude that farmer’s decision to opt for a given 510 

cropping strategy is mostly driven by other factors.  511 
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Among the possible factors, we can speculate that available capital is probably one of the most 512 

important. This was the object of many studies, which highlighted the inequality in the groundwater 513 

economy in India (Sarkar, 2011; Modak, 2018) and around the world (Ameur et al., 2017). For example, 514 

in our case study, the farmer following the pathway D dominated by irrigated long-cycle crops were 515 

capable of assuming the high investment in inputs, labour and equipment specific to this type of crops 516 

(Fischer et al., 2022), but more importantly they were able to wait one year after planting to generate 517 

an income – or bear the risk of a crop failure. It is also possible that they were capable of maintaining 518 

this strategy even during drought years because they had invested in micro irrigation, making their 519 

cropping systems less sensitive to variations in groundwater availability compared to their neighbours. 520 

By comparison, the pathways A and C, dominated by irrigated short-cycle crop, are less capital-521 

intensive and these crops can provide a quick return on investment. It is worth noting that in the 522 

region, the capacity to invest in agriculture is not solely depending on the capital available in the 523 

household, as contracting loans is a common practice. According to a 2016 survey, interests on the 524 

loans taken by irrigating smallholders amounted to around 30% of the value added created on irrigated 525 

farms (Fischer, 2022). However, indebted farmers face high risks given the high rate of crop failure in 526 

such a context (Taylor, 2013) and when they are unable to repay their loans, they have to hand over 527 

their land to their creditor (Sadanandan, 2014, Fischer et al., 2022). This mechanism is central to the 528 

Indian 'agrarian crisis' that has been in news media since the 2000s (Sadanandan, 2014). Irrigating 529 

farmers with no investment capacity – because they cannot access new loans or because they are risk 530 

averse - might be the ones following the pathways B (abandoning agriculture) and E (rainfed crops), 531 

cultivating irrigated crops only when the risk of failure is minimal. It is possible that this strategy is 532 

viable because the important job demand induced by the development of irrigation in the region 533 

allows these farmers to work off-farm to supplement their income (Fischer et al., 2022). 534 

 535 

4.3 Tactical choices can be driven by variations in water availability  536 

 537 

While our results showed that the choice of farmer’s strategy was not significantly linked with 538 

groundwater availability, we found that in several cases, year-to variations in water availability – rain 539 

or groundwater - were correlated with year-to-year variations in crop category choice (Table 3), which 540 

we can interpret as tactical decisions to adapt to variable water resources. 541 

Interestingly, we found that these tactical decisions were often specific to the general strategy of the 542 

farm type. For example, the correlation between the tactical decision to leave the farm fallow and the 543 

groundwater level was very significant in some cases (for example for the farmers following the water 544 
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intensive pathway B) but not significant for others. Similarly, the tactical decision to grow more long-545 

cycle crops in Kharif season was strongly correlated with groundwater level only for the type K2, while 546 

it was correlated with April rainfall for all the Kharif types. Decision to grow more rainfed crops was 547 

negatively correlated with groundwater availability only for the type K4 in Kharif, and positively 548 

correlated with rainfall only for the type R2 in Rabi.  549 

It is not so surprising that in many cases, no correlations were found between crop category choice 550 

variations and variations in water availability, considering how complex decision-making of crop choice 551 

is. The first possible reason is that for some farms, water availability is not a limiting factor for deciding 552 

crop choice. It can be for example because they have an exceptionally good pump yield, their plot size 553 

is small, the water holding capacity of their soil is high, or they are using micro irrigation techniques. 554 

Other possible reasons can be that even if a crop with large water requirement is technically possible 555 

in a given year, farmers might decide to rather grow other crop categories, or even leave the farm 556 

fallow, for a wide range of reasons, linked for example to evolution of prices, market opportunities or 557 

labour availability. Finally, we based our categorization of crop species on large differences in seasonal 558 

water requirement, but we are well aware that within these categories, differences exist between crop 559 

species that might also be accounted for by farmers while taking their final decisions.  560 

Therefore, in this context, the fact that we were still able to identify clear correlations between water 561 

availability and some tactical decisions suggests that crop water requirement is clearly identified and 562 

sometimes used by farmers as a primary criteria in their tactical decision-making process. This also 563 

implies that farmers (at least some of them) empirically estimate the seasonal water balance of their 564 

cropping systems at seasonal scale to take tactical decisions, and therefore providing them science-565 

based tools to refine this estimation could help them taking better decisions. 566 

 567 

4.4. The importance of crop diversity 568 

 569 

Our results highlighted that in the Berambadi watershed, the capacity of farmers to adopt a large 570 

diversity of crop categories with different water requirement led to a diversity of irrigated farming 571 

systems. This diversity was large between farm types, but also within some of the farm types, for which 572 

cultivating different crop categories at the same time is a strong characteristic of their strategy (Figure 573 

4b). Such strategies are probably possible thanks to the very large range of crop species that can be 574 

cultivated in this region – diversity that we have not analyzed in our study. Such diversity is perhaps a 575 

specificity of the study area, which is characterized by a rather favorable climate (Fischer et al., 2022) 576 

and multiple market opportunities, as it is located near the border of three Indian states, with a long 577 
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tradition of intense exchange of people, knowledge, and goods between them (Hooge et al., 2022). It 578 

could also be specific to the structure of Indian smallholder farms, dominated by 'patronal farms' 579 

relying mainly on hired manual labour for most of the technical operations of their cropping systems, 580 

and little on crop-specific equipment (Aubron et al., 2022), allowing greater flexibility in crop choices.  581 

While the critical role of crop diversity for coping with future unpredictable changes is increasingly 582 

acknowledged (Østergård et al., 2009; Darnhofer, 2010; Kumar et al., 2020, Alletto et al., 2022), the 583 

adaptive capacity of farmers if often restricted by market and regulatory pressures (e.g. Duker et al., 584 

2020; Sutcliffe et al., 2021). In our study site, participatory workshops with stakeholders, including 585 

policymakers, extension services and NGOs (Baccar et al., 2021), revealed that while climate change 586 

impact was considered a serious issue, the envisaged solutions concerned primarily water access (e.g. 587 

farm pond) or water use efficiency (e.g. drip irrigation), and little crop diversification. In a global 588 

context characterized by a trend towards a global homogenization of crop species and varieties grown 589 

across regions, driven by the industrialization of agriculture (Khoury et al., 2014; Martin et al., 2019), 590 

preserving the heterogeneity and diverse strategies of millions of smallholder farmers is essential 591 

(Altieri and Nicholls, 2017). We believe that policies designed to protect water resources (e.g. 592 

restrictions, quotas, pricing) (Leenhardt et al., 2010) or to support agricultural production and farmer’s 593 

livelihood, should include maintaining or increasing farmer’s adaptive capacity in terms of crop choice 594 

as a one of their main target.  595 

 596 

4.5. The way forward for understanding and modelling farmers’ strategies  597 

 598 

The methodology proposed in this here, based on the analyses of choices of functional crop categories 599 

characterized by different seasonal water requirement, allowed to identify different cropping systems 600 

strategies among small irrigated farmers, a category often considered as homogeneous in farmers 601 

typologies (Robert et al., 2017a; Fischer et al., 2022). To go further and understand the factors driving 602 

the observed differentiation of farmer's strategies, we would require an analysis of the different 603 

technical and socio-economic factors at stake, such as farm size and assets, available capital, access to 604 

market, know-how, etc. (Baccar et al., 2017). Designing socio-economic surveys based on such a 605 

typology would allow to assess the relative importance of individual cognitive factors (Yuan et al., 2021; 606 

Zobeidi et al., 2022), availability of water resources and farm households characteristics in driving the 607 

differentiation of farmer’s strategies. Indeed, as pointed out recently, farm typologies based on socio-608 

economic surveys do not always reflect the typologies of agricultural practices, and only the 609 

combination of both can help tailoring the design of agricultural policies and extension services to the 610 

need of different farmers (Berre et al., 2022)   611 
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Importantly, it would be critical to assess the environmental impacts and the sustainability of the 612 

different strategical pathways followed by irrigators (Leenhardt et al., 2012b). In other words, while 613 

we observed that farmers resorted to different strategies and tactics to cope with a water-stressed 614 

context, we did not assess their relative success. Such an evaluation could be done by building 615 

scenarios representing the different pathways we have revealed in this study and assessing them with 616 

farm level models representing the biophysical, economic and decision processes within these systems 617 

(e.g. Robert et al., 2018), in order to evaluate their impact on the water resources and the economic 618 

viability of the farms.  619 

 620 

 621 

4 Conclusion 622 

 623 

This study showed that analyzing time-series of choices of functional crop categories based on water 624 

requirement allowed to highlight diverse strategies and some specific tactical decisions to cope with 625 

unreliable water availability used by smallholding farmers in a small watershed in South India. We 626 

identified five main strategies followed by farmers ranging from intensive use of water to 627 

abandonment of agriculture, and the strategies are not static and show adaptations over the years. 628 

We believe that such a diversity, which was possible because of the wide range of crops that can 629 

possibly be cultivated in the area, is a main lever for building the resilience of these farming systems. 630 

One of the implications of this result is that modelling the impact of climate change on groundwater 631 

resources and agricultural production in such a system must account for the  diversity of small irrigating 632 

farmer’s strategies and tactics to face unreliable water resources. Another implication is that 633 

maintaining or increasing the opportunities for farmers to cultivate a wide range of crops is likely to 634 

increase their resilience and adaptive capacity and therefore should become a primary objective of 635 

policy makers in charge of agricultural or environmental regulations.    636 
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Figure 2: Monthly average and standard deviation of groundwater depth (in meter below ground) for 962 
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Figure 3: Borewell yields (L/s) vs water table depth (in meter below ground). We plotted the average 966 
and standard deviation of 18 class intervals of groundwater table depths (for each class N=9).  967 
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Figure 4: Farm typology for the Kharif season a) Time series across years of the proportion of each 974 
state within the group of farms belonging to the each of the four farm types (see table 1 for explanation 975 
of states acronyms), b) box plot of the Diversity index by farm type, and c) box plot of groundwater 976 
levels by farm type.  977 
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Figure 5: Farm typology for the Rabi season a) Time series across years of the proportion of each state 982 
within the group of farms belonging to the each of the two farm types  (see table 1 for explanation of 983 
states acronyms), b) box plot of the Diversity index by farm type, and c) box plot of groundwater levels 984 
by farm type.  985 
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Figure 6: Farm typology for the Summer season a) Time series across years of the proportion of each 991 
state within the group of farms belonging to the each of the two farm types  (see table 1 for explanation 992 
of states acronyms), b) box plot of the Diversity index by farm type, and c) box plot of groundwater 993 
levels by farm type.  994 
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Figure 7: Five main farm annual pathways of types across the three seasons, with the percentage of 998 
farms following each pathway. 999 
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Table 1: Different states observed in the survey for individual farms. A state is the aggregation of the different crop 
categories sown or planted on the same farm in the same season of the same year 

               States 
Code Crop categories 
LC Long cycle irrigated crops only 
LC_R Long cycle irrigated crops and rainfed crops 
LC_SC Long and short cycle irrigated crops 
LC_SC_R Long cycle and short cycle irrigated crops and rainfed crops 
NC Fallow (no crop) 
R Rainfed crops only 
SC Short cycle irrigated crops only 
SC_R Short cycle irrigated crops and rainfed crops 
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Table 2: Percentage of occurrence of each of the four crop categories short cycle (SC), long cycle (LC), rainfed crop 
(R), and fallow (NC) for each farm type. Percentage is expressed as the total count of each crop category in each 
farm type – including states with more than one crop category – divided by the total number of states for this farm 
type in this season.  

 

Season Farm Type 
(number of 

Farms) 

  Crop category 

    LC SC R NC 

        
Kharif K1 (n=33) Mean  76% 69% 27% 3% 

  [min, max]  [53%,96%] [18%,94%] [7%,47%] [0%,9%] 
 K2 (n=84) Mean  32% 62% 34% 9% 
  [min, max]  [10%,76%] [33%,92%] [7%,68%] [0%,24%] 
 K3 (n=54) Mean  18% 31% 26% 44% 
  [min, max]  [4%,57%] [11%,72%] [11%,74%] [12%,76%] 
 K4 (n=17) Mean  13% 16% 64% 14% 
  [min, max]  [0%,50%] [0%,75%] [0%,100%] [0%,67%] 
        

Rabi R1 (n=114) Mean  4% 71% 29% 12% 
  [min, max]  [0%,12%] [59%,85%] [4%,49%] [1%,28%] 
 R2 (n=70) Mean  2% 18% 37% 44% 
  [min, max]  [0%,5%] [8%,48%] [9%,71%] [20%,80%] 
        

Summer S1 (n=100) Mean  4% 62% 6% 34% 
  [min, max]  [0%,13%] [20%,94%] [0%,13%] [3%,71%] 
 S2 (n=87) Mean  5% 30% 9% 61% 
  [min, max]  [0%,15%] [8%,65%] [2%,21%] [24%,88%] 
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Table 3: Correlations between crop choices and monthly rainfall or groundwater availability for each season and 
each farm type. 

 

  Kharif  Rabi  Summer 
Adaptive 

choice 
 

Farm 
type 

Water availability   
Farm 
type 

Water availability   
 

 
Farm 
type 

Water availability

  GW    Rain  
April 

 GW   Rain     
July 

Rain 
August 

 GW   Rain 
Octobre

  K1    R1     S1   
NC   -0,87** -   -0,88*** - -   -0,79** - 
LC   - 0,62.   - 0,58. -   - - 
SC   - -   - - -   0,66* 0,71. 
R   - -   - - -   - - 

Divers.1   - -   - 0,57. -   - - 
  K2    R2     S2   

NC   -0,58. -   - - -0,70*   - - 
LC   0,76* 0,81**   - - -   - - 
SC   - -   - - -   - - 
R   - -   - 0,72* 0,70*   - - 

Divers.1       - 0,63* -   - - 
  K3           

NC   - -         
LC   - 0,59.         
SC   - 0,62.         
R   - -         

Divers.1   0,57. 0,59.         
  K4           

NC   - -         
LC   0,72. 0,82**         
SC   - 0,69*         
R   -0,56. -         

Divers.1   - 0,6.         
 

"***"p-value<0.001 ; "**"0.001<p-value<0.01 ; "*"0.01<p-value<0.05 ; "."0.05<p-value<0.1 ; " ">0.1; We retained only the 
months showing significant correlation with cropping pattern.  1Diversification: at least two crop categories are grown on the 
farm at the same time (LC_R or LC_SC or SC_R or LC_SC_R) 

 

 

 



   
 

   
 

Supplementary materials 

Table S1: Crop categories, crop species and cultural cycles observed in the Berambadi watershed. The 
main season(s) for sowing or planting of each crop species are noted K (Kharif), R (Rabi) and S 
(Summer). Seasons noted into brackets are possible but less frequent. 

  

Crop category Common name botanical name Main season(s) 
for sowing or 

planting 

Cycle 
duration 
(months) 

     
Rainfed Crops (R)    

 Chickpea Cicer arietinum R 4 
 Cowpea Vigna unguiculata R 4 
 Cotton Gossypium sp. K (R) 5 
 Finger millet Eleusine coracana R (K) 4 
 Groundnut Arachis hypogaea K or R 4 
 Horse gram Macrotyloma uniflorum    R 4 
 Indian bean Lablab purpureus R 4 
 Maize Zea mays K or R (S) 4 
 Marigold Tagetes  erecta K (R) 4 
 Pigeon pea Cajanus cajan K 5 
 Sorghum Sorghum bicolor K or R 4 
 Sunflower Helianthus annuus K (R) 4 
 Tobacco  Nicotiana tabacum K 5 
     

Short-cycle irrigated crops (SC)    
 Beans Phaseolus vulgaris K or R or S 3 
 Beetroot Beta vulgaris K or R or S 3 
 Brinjal Solanum melongena K or R or S 4 
 Chili Capsicum annuum  K or R or S 4 
 Cabbage Brassica oleracea K or R or S 3 
 Carrot Daucus carota  K or R or S 3 
 Cauliflower Brassica oleracea K or R or S 3 
 Garlic Allium sativum K or R or S 3 
 Ladyfingers Abelmoschus esculentus K or R or S 3 
 Onion Allium cepa K (S) 3 
 Potato Solanum tuberosum K or R 4 
 Pumpkin Cucurbita pepo   R (K) 4 
 Sweet potato Ipomoea batatas K 4 
 Tomato Solanum lycopersicum K or R or S 4 
 Watermelon Citrullus lanatus K or S 3 
     

Long-cycle irrigated crops (LC)    
 Banana Musa acuminata  K (S) 12 
 Turmeric Curcuma longa K 9 
 Sugarcane Saccharum officinarum K (R, S) 12 
     



   
 

   
 

Figure S1: Data curation steps 

 

 

 

 

Figure S2. Annual rainfall (mm) for the studied period (histogram) and long-term average annual 
rainfall over the 2004-2019 period (solid line) at the Maddur weather station.  

 

 

 



   
 

   
 

Figure S3: Monthly average rainfall (bars, red for Kharif, green for Rabi and blue for Summer) with 
standard deviation over the study period (2010-2019) and Penman potential evapotranspiration (blue 
curve), in mm/month, at the Maddur weather station.  

 

 

Figure S4. Box plot of average groundwater depth (in meter below ground surface) for each season  

 

 

 

 


