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ABSTRACT In this work, we study the restoration of low-light images with outdoor scenes without ground
truth. Until now, approaches in the literature have avoided using the Retinex decomposition model in an
unsupervised way or have added constraining priors on the searched components. We propose here to relax
the constraint of a grayscale illumination of the Retinex model. Indeed, according to the physics of light, it
should include a colored illumination. Resulting from this new decomposition model, we formulate a new
deep learning-based architecture inspired by the style transfer methods. Our method enables us to visualize
the illumination (i.e. a complex style with the same dimensions as an image) and the reflectance (i.e. the
content). It achieves more visually pleasing components compared to the state-of-the-art i.e. without artifact,
without noise amplification and without hallucination with a simple restoration for each of the components.

INDEX TERMS Low light enhancement, Image decomposition, Image restoration, Inverse problems,

Retinex model, Neural Networks

I. INTRODUCTION

ANY technological fields, such as self-driving vehi-

cles, would benefit from more efficient algorithms for
the restoration of outdoor nighttime images. To do so, three
characteristics have to be considered. The first two are due to
the image itself. Indeed, (i) the image is captured during the
night, therefore the image is very dark with a low intensity
signal, the noise level is high, but more importantly the light
sources in the scene are artificial and thus mostly colored
and not white. Second, (ii) the image contains an outdoor
scene. Therefore, the image contains details of various types,
with also a large range of depth of field. As for the last
characteristic, it is related to the restoration task itself, which
must (iii) preserve the integrity of the image. It is of great
importance to avoid adding fake details for night vision tasks.

Due to the image characteristics (i) and (ii), the restoration
method must be unsupervised. Indeed, obtaining night/day
image pairs of the same outdoor scene is difficult and, ex-
isting datasets do not contain true day/night image pairs but
rather estimated ones. For instance, in the database FiveK
[8], the normal-light image is made by human experts. Other
datasets consider pairs with modified exposure parameter
(e.g. ISO) of the scene, which is different from a night/day
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illumination (e.g. NPE [48], LIME dataset which is called
HDR by the original authors [45], VV [2], MEF [33], LOL
[52], DICM which is a mix of images from USC-SIPI [51] and
a True Color Kodak images database [1] or the multi exposure
dataset from [3]). Therefore, supervised methods based on
these datasets, such as KinD++ [64], learn to compensate the
exposure parameter (e.g. ISO) change during the capture, but
not the lighting change (e.g. colored streetlamps during the
night versus white sun lighting at daytime). By contrast, we
choose to work with the Waymo dataset [46]. This dataset
does not contain any night/day image pairs of the same scene
but provides true day and true night scenes with similar
contents.

In a first set of approaches, the restoration of low-light
images, either does not preserve the integrity of the image
(requirement (iii)), or significantly increases the noise level.
Indeed, Jiang et al. restore night images using adversarial
generative networks in their EnlightenGAN approach [25].
The restored image is thus a pleasant and plausible image.
However, elements, which were not present in the original im-
age may be introduced. CLEGAN [53] use a similar method
adding a regularization to maximize mutual information be-
tween low and normal-light images but still hallucinate details
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in the output. This prior is even more powerful since satellite
images have strong self-similarity. The authors train a neural
network on a different type of dataset. The datasets they
use contain mainly underexposed images changing exposure
parameters of the camera sensor and not nighttimes images.
Therefore, the required restoration is different from the one
we seek with our method. For instance, they do not deal with
the noise introduced in low-light conditions.

In another set of approaches, the Zero-DCE method [31]
and the work of Wang et al. [49] consists of tone mapping
functions. The former is based on a deep neural network while
the latter is not. The latter doesn’t need a dataset to train and
has low complexity. In these two methods, no hallucination
is added but the noise is increased. They do not deal with the
noise in these images which is not ideal in our case.

To overcome the previous issues, Horn’s interpretation
of the Retinex theory [16] has been used to restore low-
light images. This theory states that an image is a product
of two components: illumination and reflectance, where the
illumination contains the lighting dependent information and
the reflectance the true color of the objects in the scene.
Retinex-based low light image restoration methods therefore
perform a decomposition of the low-light image into two
components. Then, the restored image is either considered as
the reflectance, or as the product between a gamma-corrected
illumination and the estimated reflectance. These Retinex-
based approaches have two drawbacks which come from the
underdetermined nature of the separation problem, where
the number of observations is smaller than the number of
unknowns.

The first drawback observed in LIME [13], RetinexGAN
[34], and RetinexDIP [30] is that these methods propose to
explore solutions around an initialization of the illumination
component as the maximum of the image over the color chan-
nels, and originally proposed in [13]. However, the method
only explores the neighborhood of its solution. A second
drawback, is that in all the Retinex-based methods, the prior
of a grayscale illumination is used in order to reduce the
number of degrees of freedom and facilitate the search for
solutions to this inverse problem. In this paper, we propose
to relax this constraint by defining a decomposition model
based on the physics of light thanks to the Retinex model
with a colored illumination. The extraction of the components
then becomes an even more difficult problem and to solve it,
we propose firstly the idea of extracting common information
thanks to the physics of light, and define a GAN-based archi-
tecture allowing, in fine, a restoration of the images with low
illumination in an unsupervised way.

Indeed, according to the physical definition of reflectance
[23], this property of a material represents the fraction of the
radiance reflected by a surface over the radiance received by
this surface. However, a consequence of this definition, is that
the value of the reflectance of a material varies with respect
to the wavelength of the incident light. In other words, in
nighttime images, where the lighting is colored, the estimated
reflectance does not contain all the true colors of an object
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but only part of it, and the illumination is colored. Therefore,
we propose a novel Retinex model that takes into account
low-light characteristics, and decompose an image into the
product of the reflectance and illumination, with two main
differences. First, the reflectance is the common information
between daytime and nighttime image domains after a spe-
cific correction is applied. Indeed, the low-light reflectance
that we can estimate is only a portion of the whole estimated
normal-light reflectance. Thus, the low-light reflectance is
the common information but it is the best estimate of the
reflectance we can possibly extract from the two domains
because of this degradation. By contrast, previous contribu-
tions in low-light restoration assumed that the reflectance
was equal under daytime and nighttime lighting. Second,
the illumination is colored, whereas previous contributions
considered grayscale illumination.

Another set of methods try to restore low-light images
with additional metadata present in the RAW version of these
images. For instance, in [19], the authors propose an approach
to unprocess the images, correct them in the RAW image
space and simulate back the image processing pipeline. In
our case, we do not have access to the RAW metadata of the
images. Thus we cannot use this information for the training
phase of our algorithm. An interesting fact, however, is that
the authors conclude that the linearity with respect to the
irradiance on the sensor is critical to restore low-light images.
We reach the same conclusion with the Retinex theory in
Section II-B. To better estimate the Retinex components,
reversing the nonlinear camera operations is important.

Our problem shares similarities with the source separa-
tion problem as it can be seen as an instantaneous mixture.
However, our case differs from the methods referenced by
the reviewer since the number of unknowns in the outputs
is greater than the number of input variables. For instance,
in the works of Yao ef al. [56]-[58], the hyperspectral images
have between a hundred to four hundred bands or channels for
each sample. Moreover, the goal of unmixing is to decompose
a spectrum into a collection of spectral signatures of pure
materials (i.e. endmembers or classes) and their fractional
abundances (i.e. abundance maps). This discrete set of classes
can contain from three to twelve elements in the datasets
shown in the papers which is far less than the dimension of
the input samples. Therefore, this problem is overdetermined
whereas in our case we seek to find the values of six variables
out of a three-dimensional input and thus it is underdeter-
mined.

In summary, the main contributions of our paper are as
follows:

o We formulate different improvements to the original
Retinex decomposition model thanks to a colored il-
lumination and define new appropriate priors for the
components. The first one is designed to avoid the scale
ambiguity problem of the decomposition and the second
one deals with the problem of a saturated sensor and its
effect on the resulting components.
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e We also propose a new architecture with deep neural
networks inspired by state-of-the-art source separation
and style transfer methods trained in an unsupervised
fashion taking a single standard RGB image as input.
This deep neural network has two branches, one for each
of the component and outputs two colored images: the
RGB illumination and the reflectance. It is trained with
additional loss terms corresponding to physical priors
such as the reflectance being the degraded common
information between the night and daylight image dis-
tributions.

« We demonstrate the efficiency of our method compared
to the competitors in the literature on a real world dataset
without any ground-truth [46]. We then show the first
visualization of the Retinex components following the
physics of light as well as the original Horn’s model [16]
while only coarse approximations can be found in the
literature.

Il. IMPROVEMENTS TO THE RETINEX MODEL

A. BACKGROUND ON THE ORIGINAL RETINEX MODEL
The study of the human visual system which lead to the
Retinex theory goes back to the fundamental work by Land
et al. [28] quickly followed by Barrow et al. [4]. Through
its history, this theory had diverse interpretations based on
path, center/surround approaches or physics of light. We refer
the reader to [41] for a more detailed review. However, the
Retinex image decomposition model commonly found in the
literature nowadays was first defined by Horn in [16] for one-
channel grayscale images. In the context of low-light image
restoration [13], [30], [52], [64], this model is extended to
RGB images I € R®" as follows:

I=L.«xR+n. (D

where .x is the element-wise product, L € R”" the light-
dependent component known as the illumination map, R €
R3" the complementary component named the reflectance,
and 7 an additive Gaussian noise. Thus, the illumination is
considered a grayscale image scaling the reflectance with
a common factor for the different color channels. The re-
flectance is assumed to be Lambertian (i.e. the surface at
every point in the scene is diffusely reflecting light rays).
The incident angle of the irradiance can be ignored and the
Bidirectional reflectance distribution function (BRDF) [37]
is not used. Besides, any specular or ambient component is
also neglected since these methods only take a single image
as input which invalidate the use of models such as Phong’s
model of the reflection of the illumination on a surface [38].

B. A COLORED ILLUMINATION

Since the Retinex decomposition model is only valid if ap-
plied on the irradiance of the camera sensor, it cannot be used
directly on a standard RGB image. The intensity of the image
needs to be linear with respect to this irradiance. Thus, the
non-linear camera operations (i.e. mainly gamma corrections
or tone mappings) need to be reversed. Complex pipelines can
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be used to achieve this goal whether by estimating the camera
response model [24], [26], [59] or by reversing each step of
the image processing pipeline [7], [18], [32]. We assume in
this paper that we can reverse the image processing pipeline
by only inverting the gamma correction (y = 2.2).

The reflectance is officially defined by [23] as the frac-
tion of the radiance reflected by a surface over the radiance
received by that surface. In the computer graphics commu-
nity (e.g. [6], [9], [61]), the illumination is assumed to be a
colored component. Since the spectral reflectance curves of
the material present in the scene depends on the wavelength,
this property is needed to accurately simulate the reflection
of light rays. If the light sources in the scene are colored
and not "white", the camera sensor only receives partial in-
formation about the whole spectral reflectance curve. Thus,
the reflectance cannot be considered as the true color of
the scene in this case. It is only a ratio map over the three
bands, RGB, in the visible spectrum. Therefore, it can be
counter-intuitive and not look like a realistic image. Different
authors tried to reconstruct the spectral reflectance curve of
the scene in a discrete fashion [5], [11], [55], [65] or in a
continuous one [54]. However, identifying each material in
low-light images is extremely challenging and ill-posed in
practice without using strong priors on the diversity of the
present elements because of the metamerism effect (i.e. one
RGB color can be the result of different combinations of
wavelength). Indeed, in a night image, all colors result from
artificial lights (e.g. streetlamps, car headlights, ...) reflecting
on the different objects in the scene and then going straight
through the camera sensor. Since these artificial lights are
colored and the reflectance spectra of the objects in the scene
are highly non-linear, we only observe a tiny portion if not
none of the "true" colors (i.e. the color under a white light) of
the scene. We introduce a different definition of the Retinex
decomposition to address these challenges. In the literature,
indoor datasets such as LOL [52] don’t fully represent the
complexity of the degradation in outdoor images. Reducing
the exposure to simulate a low-light image is too simplistic to
capture the whole shift of the distribution. In this paper, we
also do not consider the multiple scattering of light rays or the
attenuation of the fog during the night in the outdoor scene to
simplify the model as opposed to [36] for instance.

Instead, we define the reflectance as the corrected common
information between two distributions of images (which are
assumed to have similar scenes and objects but not paired
images). Indeed, the reflectance extracted from low-light im-
ages is degraded and thus not equal to the one estimated from
normal-light images. In that sense, the reflectance is really
independent from the domain while the illumination is the
light-dependent component and contains, for instance, the
specific noise of low-light images.

With these definitions, we redefine eq. (1) as eq. (2).

I'*:(é—i—n).*aR )

where I € [0,1]*" the RGB image, L € [0,1]%" the il-
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lumination, « € R* a scaling factor as the decomposition
leads to an infinity of solutions. R € [g,1 — ¢]3" as the only
object which absorbs all light is a black hole. On the contrary,
perfect mirrors are still not widely commercialized and may
not appear frequently in our everyday lives. € = 1e~® in our
experiments. Thus, we relax the original previous model of
the grayscale constraint of the illumination. The component
now has a local chrominance in addition to a local luminance
value. In Section II-C, we quickly define an additional prior
to reduce the solution set with the scaling factor o and extend
a previously published prior in [30] to address a colored
illumination. Since the illumination is supposed to contain
the low-light noise and degradations, adding an illumination
smoothness prior (e.g. the one in [52], [64] would be ineffi-
cient).

C. NEW PRIORS

1) Scale ambiguity (High reflectance prior)

The « factor introduced in the model (2) highlights the scale
ambiguity problem in the Retinex decomposition. Any pos-
itive real value can lead to a plausible solution. To reduce
even further the solution set we propose a new prior defined

as follows: .

3)

£HR =

1
a = 1 as an initial value before the optimization process.
As we are working with low-light images, we assume that
the illumination should have the lowest possible value. On
the other hand, minimizing this prior is equivalent to seek-
ing for the highest reflectance. Intuitively, it can be seen as
considering a high V-channel (HSV) for the reflectance, one
with a low value for the illumination. This also means that the
optimization process is biased against black bodies.

2) Exposure prior (RGB version)

In this section, we extend the exposure prior [30] to RGB
images. As long as the camera sensor is not saturated by the
light ray (i.e. I.c(r,g,8y # 1), the illumination can not be
saturated as well (i.e. L.c(r,G,B} # 1). This prior is defined
to prevent the trivial solution where L = 1 and thus I = R.
Only light sources or overexposed regions in the input image
should lead to such values in the components. This prior is
defined as

Le= Y Hg(i)—g(Lc)

c€{R,G,B}

“4)

, x>1-—
where g is a threshold function g(x) = o i ¢
0, otherwise

and L = max
c€{R,G,B}

following the work LIME by Guo et al. [13].

1., an approximation of the illumination

lll. THE ARCHITECTURE
A. ARCHITECTURE CHOICES

In this section we describe the architecture shown in Fig. 1
that we propose to decompose an image. Since we do not have
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access to the ground-truth images and want a low execution
time, we use a GAN-based architecture. To better separate
the input image into the two components, we make use of
two discriminators, one to generate each of the component
respectively.

The network is composed of two branches to extract each
component. We build on the YTMT source separation strat-
egy [17] which consists of alternating positive ReLu on one
branch and negative ReLu on the other to avoid losing infor-
mation and to better connect the two networks together. We
use two UNets [43]. The illumination branch receives as input
an approximation of the illumination of the input image /.

In MUNIT [21], the authors managed to transfer the style
of an image such that the resulting image belongs to another
domain while preserving the content of the image. To perform
that, they improve upon the work of [12] and the surprising
result that instance normalization [47] followed a procedure
to align the mean and variance of the content features with
those of the style features [20]. By nature, this problem is
similar to the Retinex decomposition problem if we consider
the reflectance as the content we try to preserve and the illumi-
nation as a complex style (i.e. a whole RGB image instead of
mean and variance parameters). Therefore, we add instance
normalization modules to the reflectance extraction branch.
The information of the style of the image flows through the
illumination branch.

B. THE LOSS TERMS
1) The reconstruction loss

For ease of notation, we omit the « scaling factor in the fol-
lowing equations to compute the two estimated components
(L,R).

L=Xx max I, (&)
c€{R,G,B}

Gg:l; e R* — R, € RY (6)

GL:L;eR”— L, e R™” (7

where A is the mean triplet RGB over the spatial dimensions
of the input image, d € {0, 1} the label being equal to 1 for
the normal-light domain and O for the low-light one.

To make sure that the two generated components we get can
reconstruct the input image according to the Retinex model,
we use the mean absolute error for the structure of the image
and the angular error to ensure that the color is accurately
recovered. This can be summed up as the following terms,

Luae = |[I" = L.*R|), ®)
L-R

£c00r TESTITENTY 9

I HIE )]

‘We don’t use the latent reconstruction terms like in [21] since
applying the illumination of one image to the reflectance of
another would result in an unrealistic and not plausible image
and then would mislead the discriminators during the training
process. The £!-norm guarantees that no information is lost
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FIGURE 1. An illustration of architecture composed of two branches: the upper branch extracts the reflectance from the image normalizing the style of
the features, the lower branch on the contrary keeps the style information to produce the illumination and takes as input an approximation of this
component to facilitate the process. The two branches can swap information with the YTMT strategy [17] for source separation. Each component has its
own discriminator to follow the definition of the Retinex components with common information. We reapply the gamma correction to display the images

illustrating the variables.

during the decomposition process. However, we directly ex-
tract a noisy illumination instead of a noiseless version since
it is easier to do so and then denoise the resulting component.

2) Domain discriminator adversarial functions

Our architecture relies on adversarial loss terms to find the
components in an unsupervised fashion. We define the two
discriminators function as follows,

Dg:Ry—d (10)
Dy :L;—d (11)
d € {0,1}.

where d is the estimated label resulting from each of the com-
ponent. We use a multiscale discriminator architecture such as
the one in [39]. The discriminators need to be able to identify
the domain of the input component they get (i.e. separate each
component according to their domain). We empirically find
that the training of the generators is more stable with the Least
Squares GAN [35] than the other versions. The parameters of
(Gg, Gy) are fixed in this pass.

Lo, = Y. ELd{(DL(GL(Ld))—d)Q} (12)
de{0,1}

Log= Y E,d[(DR(GR(Id))—d)Q} (13)
de{0,1}

3) Generator adversarial functions
To train the generators (Gg, Gy ), we fix the parameters of
(Dg, Dy.). The illumination generator should extract the com-
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ponent from the image and the domain should be accurately
identified by the corresponding discriminator. On the con-
trary, we seek to extract information which cannot be clas-
sified by the reflectance discriminator between the low and
normal-light domains. Therefore, we optimize it to align the
low-light reflectance to the normal-light one. This leads to the
following equations,

Lo, = 3 ELd[(DL(GL(Ld))—d)Q} (14)
de{0,1}

Lo = Y Ezd[(DR(GR(Im—l)Z} (15)
def{o,1}

4) The resulting optimization problem
As a result, we obtain the following problem to train the
decomposition network,

(GRa GL) = argmin )\MAEEMAE + Acolor‘Ccnlor

Gg,GL,«
+ MurLur + MeLE
+ Aaav(La, + Lag) (16)
and for the Retinex components domain discriminators,
(bR,bL) = argmin Lp, + Lp, . a7n

Dg,Dr

C. VISUALIZATION & RESTORATION OF THE
COMPONENTS

One of the key benefits of considering a complex style as
the illumination (i.e. a style that has the same dimensions of
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an image here) is that it can be visualized. Some examples
of the obtained Retinex components are illustrated in Fig. 2.
To the best of our knowledge, this is the first time that
these components are linked to the style transfer literature
and that the common and specific domain information are
displayed. The reflectance is sharper than the input image.
The dark areas present in it can be intuitively explained as
loss or missing information about the scene. It shows that this
component also needs a custom restoration. Besides, shadows
and light rays coming from the car headlights and streetlamps
still end up in the reflectance. However, the glare effect of the
light sources are reduced and the colors are less saturated.
On the other hand, the illumination contains the low-light
noise and degradations. We seek to restore low-light images
but not estimate a daylight version. Thus, we denoise the
illumination component instead of the reflectance like in the
previous works in the literature and avoid any tone mapping
to avoid amplifying the noise. We use a weight map to denoise
the component according to the structure of the scene in the
reflectance in Fig. 3. Using the maximum of the reflectance
over the color RGB channels gives more information than a
simple gradient and guide the denoising network to strengthen
the denoising process where the reflectance does not have
a lot of information in the dark areas. We try to find the
best compromise to keep the maximum of information in the
image. Since the reflectance contains the textural details of
the different objects of the scene, we seek to amplify this
information to highlight and make it easier to distinguish the
elements. The different works in the literature do it with a
tone mapping function such as a gamma correction [13] or
by the use of a neural network [31], [63]. Defining which
type of function to apply here can be difficult without any
ground-truth images or priors to control the exposure of the
image (e.g. section 3.3 in [31]). Therefore, we decide to
use the simple and efficient gamma correction with a low
execution time. We empirically find the best gamma values
by maximizing the LPC-SI metric [14]. We also found that we
can get visually better results with a higher correction on the
blue channel to balance the colored noise of the illumination.
This effect is dataset-specific though and not mandatory in
other cases. It may be due to the sensors that the authors
used but we couldn’t verify this hypothesis. We also tried a
unique gamma for all the channels or in the HSV domain
but the results were either too whitened by the process or the
colors too saturated. An example of the restoration process
of the illumination is shown in Fig. 3 and in Fig. 4 for the
reflectance. Using a gamma correction on the reflectance does
not reveal a hidden noise or another low-light degradation.
This shows the high quality of the decomposition.

IV. RESULTS

A. METRICS & EVALUATION METHODOLOGY

As we are not seeking to approximate the distribution of day-
light images with the restored images and we have no ground-
truth, neither commonly used metrics like FID [15], IS [44] or
CIS [22] nor classic reference-based metrics such as PNSR,
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SSIM [50] or LPIPS [62] can be used here. The LPC-SI metric
[14] measures the sharpness of an image through local phase
coherence of complex wavelet coefficients. Even though it
cannot measure the whole low-light degradation, being sharp
is one of the properties we desire for the result. We choose the
best gamma values to apply for the gamma correction over
the RGB color channels with a trade-off between the LPC-SI
metric and the visual quality of the images.

As there are no ground-truth images available for our prob-
lem, we consider a two-steps process to evaluate the methods:
First, we use a visual approach: we observe the level of noise
and note if there are hallucinations in the outputs. Then,
since there are no ground-truth in the datasets, we cannot
use metrics with reference. Thus, we compare the methods
using a non-visual test with the reference-free LPC-SI metric
[14]. The results are illustrated in Table 2. The hallucinat-
ing methods can reach higher scores since they invent very
sharp objects. On the contrary, ours gives the sharpest images
among the methods which cannot hallucinate. The LPC-SI
scores of the different methods are shown in Table 2.

B. IMPLEMENTATION DETAILS

We use the ADAM optimizer [27] with a fixed learning rate of
le~* optimized over 200 epochs, Pytorch [10] as framework
and the Kornia library [42]. We empirically find the coeffi-
cients Arecon = 56‘1, Acolor = 161, Agr = 1, Mg = 561, YR =
2,7% = 2,7 = 6,0r = 15,06 = 10,05 = 15. We crop
the images to the size 256x256 and group them by 3 to make
a batch. To denoise the component, we use the plug-and-play
denoising network trained on spatially varying noise in [29].
We found out that we get better results using the same noise
level map for all color channels as illustrated in Fig. 6.

C. ABLATION STUDY
If we consider the original Retinex model with a grayscale
smooth illumination, we get the results shown in Fig. 5. Then,
even if we denoise the reflectance, we cannot obtain visually
pleasing outputs here.

In Fig. 8, Retinex components of a daylight image are il-
lustrated. Textural details such as the frontage of the buildings
end up in the reflectance.

D. QUALITATIVE COMPARISON
1) On the Waymo dataset [46]
The state-of-the-art results are illustrated in Figs. 7 and 9.
Fig. 7 contains the outputs of several style transfer methods.
These works are mainly aiming at augmenting data to en-
hance datasets with the goal of training networks which will
be robust to these modifications. CoMoGAN [39] simulates
night images with daylight images and cannot do the reverse
process as seen in Fig. 7b. In Figs. 7c and 7d, ManiFest [40]
and MUNIT [22] completely modify parts of the image and
do not preserve the integrity of the scene which is undesirable
in our case.

In Fig. 9f, EnlightenGAN [25] hallucinates trees in the
background as shown in the red squares which is obviously
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FIGURE 2. From left column to right column: the input image, the extracted raw illumination and reflectance. The illumination contains the specific
low-light noise and degradations.

Dataset Publicly available ~ Indoor/Outdoor  Contains paired images  Contains real-world scenes Size
Waymo [46] v Outdoor X v 128 093 normal-light images / 15419 low-light images
BDD [60] v Outdoor X 4 14772 low-light images
LOL [52] 4 Indoor v v 500 pairs

TABLE 1. Properties of the different datasets we use throughout the paper.

~
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FIGURE 3. From left to right: the input image Fig. 3a, the extracted raw illumination Fig. 3b, the denoised component Fig. 3¢, the component if we denoise
before the decomposition Fig. 3d. To denoise the illumination, the noise map is weighted. Since the gradient of the reflectance Fig. 3e has less
information about the structure of the scene than the weight map Fig. 3f as the inverse of the approximation of the illumination as defined in LIME [13],
we use the latter here. We could not further denoise the image as it would lead to a loss of details. Fig. 3d shows that if we denoise the image before the
decomposition, it only affects the illumination as the reflectance remains untouched Fig. 3g. We decide to denoise the component after the
decomposition as the former would lead to some artifacts introduced by the denoising network and amplified by the restoration of the components.

(a) (b) (c)

FIGURE 4. From left to right: the input image, the extracted raw reflectance, the gamma corrected component. The low-light noise is not strengthened
after the restoration which confirms the components are correctly separated according to the defined model. We restore with a different  for each RGB
color channel as we empirically find it leads to visually better output images. The higher gamma value for the blue color channel giving the component its
non-natural hue is set to balance the green noise of the illumination. See Fig. 12 for an example of the components extracted from an image of the
BDD100K dataset [60].

(a) (b) | ©

FIGURE 5. From left to right: the input image, the extracted raw illumination and reflectance if we consider a grayscale smooth illumination as previously
used in the literature.
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FIGURE 6. From left column to right column: the input image, the output of our method without denoising, with denoising and denoising with a different
noise level for each RGB color channel.

(a) (b) (c) (d)

FIGURE 7. Style transfer and data augmentation methods with from left to right: Fig. 7a The input image, Fig. 7b CoMoGAN [39], Fig. 7c ManiFest [40],
Fig. 7d MUNIT [22] trained on the Waymo dataset. These style transfer methods do not preserve the integrity of the scene in the input image and add
hallucinations.

not desirable in our case. However, the image is sharper. We results and still obtained hallucinations in Fig. 9g.
fine-tune it on the same dataset to see if we could improve the
For the gamma correction, we apply the same gamma
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(a)

FIGURE 8. From left column to right column: the input normal-light image, the extracted raw illumination and the reflectance. Textural details such as the
frontage of the buildings end up in the reflectance which demonstrates the quality of the decomposition model.

Methods LPC-SI(T)
MUNIT [22] 0.95428
EnlightenGANpreqrained [25] 0.97610
EnlightenGANwaymo [25] 0.97848
Retinex DIP color [30] 0.94439
Retinex DIP gray [30] 0.94686
Zero-DCE [31] 0.96943
Gamma Correctionysy 0.96746
Gamma Correctionggg 0.96463
KinD++ [63] 0.96572
LIME [13] 0.96343
Ours 0.97152

TABLE 2. LPC-SI scores [14] on the Waymo dataset with respectively in
blue methods that hallucinate and in black methods which don’t. Scores
in bold are the highest scores in each of the category. We obtain the best
LPC-SI score among the non-hallucinating approaches.

values as with our method (i.e. with a higher gamma for the
blue channel) in the RGB color space and the result is shown
in Fig. Oh. The "fog" effect results from the gamma correction
applied to all the color channels. The histogram of the blue
channel is shifted to the right as shown in Fig. 11b. This effect
is not present if we restore the V channel in the HSV color
space instead, see Fig. 91 and its corresponding histogram
Fig. 11c. With our method, it’s not the case even if we restore
the reflectance with a gamma correction on all RGB channels
as shown in Figs. 11d and 11e. There is little to no difference
applying a gamma correction on all RGB channels or V
channel in HSV with respect to the histograms. Moreover, the
histograms are flatter than the ones with gamma correction
only which can be seen as histogram equalizations or contrast
enhancement. We get visually more appealing results with our
method than the gamma correction.

Looking at the histograms of the input images, the blue
channel pixels have really low intensity and there are more
information about the scene in the red and green channels.

Our method Fig. 9b leads to a visually better result than the
competitors such as LIME, Zero-DCE or KinD++ Figs. 9c, 9j
and 9k. Applying our network trained on the Waymo dataset
[46] to the BDD100k dataset [60] leads to the results shown

10

in Fig. 12. We only reduce the vz = 2 to the same value as the
other color channels as this dataset does not suffer from the
green hue. We obtain similar results with a network pretrained
on another dataset which really highlights the generalization
ability of the restoration. Moreover, the visual quality of the
decomposition is on par with the one on the Waymo dataset.
Nonetheless, we emphasize that this dataset is composed of
images with similar scenes (same objects and backgrounds).

2) Failure cases

Fig. 10 illustrates the outputs of our method if the network
is trained on the commonly known LOL dataset. Figs. 10a
and 10b are respectively the input low-light image and its
corresponding ground-truth normal-light image. Figs. 10c
and 10d show the illumination and reflectance components
we can extract if a colored illumination is considered. The
dataset size being relatively small with around 500 paired
images, a GAN-based architecture has trouble to learn in an
unsupervised fashion. Specifically, the common information
of widely diverse scenes is really challenging to estimate.
If we consider a grayscale smooth illumination like in pre-
vious works, the constraints are strong enough to guide the
decomposition but the low-light noise still ends up in the
reflectance and makes it even more difficult to get rid of it. If
we apply the network already trained on the Waymo dataset
to the LOL dataset, we obtain results as shown in Figs. 10g
and 10h. Since there is an enormous gap between the type of
scene and degradation between the two datasets, the network
experiences difficulty in extracting the correct information.
We provide more information on the different datasets we use
in Table 1.

V. CONCLUSION

In this paper, we proposed a new approach based on state-
of-the-art source separation and style transfer methods to
decompose in an unsupervised fashion outdoor nighttime
images. We improved on the original Retinex model by ex-
tracting common information between the low and normal-
light domain thanks to a colored illumination. Moreover, we
also defined a new architecture with deep neural networks
building on this physical model. To the best of our knowledge,
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(d)

(9]

FIGURE 9. First part of the qualitative comparison between the restoration methods applied to the input image Fig. 9a and the state-of-the-art
approaches. Our method Fig. 9b leads to a visually better result than the competitors with respectively Fig. 9c KinD++ [63], Fig. 9d Retinex DIP color [30],

Fig. 9e Retinex DIP gray [30].

this is the first time this definition of the Retinex components
is put into practice. It makes it feasible to visualize the com-
plex style known as the illumination and the reflectance in an
image. Applied to the Waymo dataset, our method is more
stable and produces visually pleasing images without hallu-
cinating parts of the image compared to the state-of-the-art
methods. However, different aspects of the method could be
improved in a future work. Indeed, each non-linear operation
applied by the camera pipeline like a gamma correction or a
specific tone mapping makes it more difficult to decompose
the image. Reversing this pipeline from a single input image

VOLUME 11, 2023

is already an active research field in the literature. See [32] for
instance. Since it’s another challenging inverse problem and
our model is still valid in our context, reversing the camera
pipeline is beyond the scope of this paper. It remains an
interesting research direction to improve the accuracy of the
estimation of the Retinex components. We also could find
a better method to restore the components than a gamma
correction and a denoising network.
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