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ABSTRACT
In many industrial manufacturing processes, the quality of products can depend
on the relative amount between two quality characteristics X and Y . Often, this
calls for the on-line monitoring of the ratio Z = X/Y as a quality characteristic
itself by means of a control chart. A large number of control charts monitoring the
ratio have been investigated in the literature under the assumption of independent
normal observations of the two quality characteristics. In practice, due to the high
frequency in sensor data collection, both autocorrelation and cross-correlation be-
tween consecutive observations can exist for X and Y and should be modeled to
protect against the false alarm rate inflation when implementing a control chart for
monitoring the ratio Z = X/Y . In this paper, we tackle this problem by investi-
gating the performance of the Phase II Shewhart-type RZ control chart monitoring
the ratio of two normal variables whose relationship is captured by a bivariate time
series autoregressive model VAR(1), which can also account for the cross-correlation
between the two quality characteristics. With the numerical study, we discuss how
the design and the statistical performance of the Shewhart-type RZ control chart
change with the VAR(1) model’s parameters. We also provide an example to illus-
trate the use of the Shewhart-type RZ control chart with bivariate time series of
observations in a furnace process.

KEYWORDS
Quality control; multivariate autoregressive model; control charts

1. Introduction

In industrial manufacturing practice, control charts are a powerful tool to reduce
variability and achieve process stability. Many control charts have been designed in
Statistical Process Monitoring (SPM) literature to monitor the stability of many pa-
rameters characterizing the distribution of a quality characteristic like the Mean, the
Median, the Standard Deviation, and the Coefficient of Variation (CV) (see for ex-
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ample Amdouni et al. (2017), Faraz et al. (2018), and Mim et al. (2021)). The ratio
between two normal random variables X and Y has been considered a quality charac-
teristic to be monitored, as well. The reason is that the ratio can play an important
role in ensuring the product quality of various processes. A number of situations where
monitoring the ratio of two variables is useful have been listed as follows:

• Food industry: In this industry, the final product specifications may be re-
lated to the correct balance of nutrition associated with the relative weights
of two ingredients within a food recipe. For such a process, the crucial quality
characteristic to be monitored is the ratio of the mixture components.

• Pharmaceutical industry: In such industries, one of the crucial factors that
ensures the safety and efficacy of drugs is the correct proportion ratio among
active ingredients. In order to monitor product quality, this ratio can be measured
before and after a chemical or physical reaction through an efficient control chart.

• Industrial production: In the industrial production of materials, raw elements
are blended together into an alloy according to reciprocally optimized propor-
tions in order to achieve some desired physical and chemical properties. Alter-
natively, it can represent a chemical or physical property of the product, which
is defined as a ratio. As an example, in the diaper production industry, a critical
quality characteristic is the speed of absorption SA = Q

t , computed by measur-
ing the time t[s] required for all the nominal quantity Q[ml] of a saline solution
to penetrate the diaper. Both Q and t are affected by random variability and
can be considered as normal variables.

• Energy management: Another emerging field of an application would be on-
line monitoring of yield Key Performance Indexes, defined as ratios between a
consumed input and a process output: a typical example of an application could
be the on-line monitoring of energy KPIs for continuous processes in energy
management of industrial assets, which are expressed as daily ratios between
the process output volume and the asset-by-asset consumed energy to get it.

Other examples related to the need of monitoring the ratio can be found in Spisak
(1990) and Davis and Woodall (1991), from an unemployment insurance quality
control program, or Oksoy et al. (1993) from on-line monitoring implemented in the
glass industry.

The statistical properties of a Shewhart-RZ control chart have been presented in
Celano et al. (2014) for individual measurements, (i.e by assuming the sample size
n = 1), and Celano and Castagliola (2016a) for multiple measurements, (i.e when the
sample size n > 1). Then, other advanced control charts have been proposed, such
as the Synthetic-RZ control chart (Celano and Castagliola (2016b)), 4-out-of-5 runs
rules-RZ control chart (Tran (2016)), the Run Rules-RZ control chart (Tran et al.
(2016a)), the EWMA-RZ (Exponentially Weighted Moving Average) control chart
(Tran et al. (2016b)), the CUSUM-RZ (Cumulative Sum) control chart (Tran et al.
(2018)), the VSI EWMA-RZ (Variable Sampling Interval) control chart (Nguyen et al.
(2019)), and the Short-Run Shewhart-RZ control chart (Tran et al. (2021)). Also, the
effect of the measurement error on the ratio control chart has been investigated in
Tran et al. (2016c) by using a linear covariate error model. The authors showed that
the performance of this control chart can be significantly affected by the presence of
measurement errors.

All the investigated RZ control charts in the literature have been designed under
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the assumption that the observations collected for the two quality characteristics X
and Y are independent. This assumption overlooks the problem of autocorrelation
among consecutive observations, which is very frequent when measures of each
quality characteristic are collected at a high rate, thus representing time series with a
potentially high degree of autocorrelation. Modeling the consecutive observations as
time series is then very important in SPM to avoid negative effects on the performance
of the control chart monitoring the process. This is also a practical problem in smart
manufacturing nowadays as the processes are mostly online monitoring. The data are
real-time collected thanks to the wide use of sensors and IIoT (Industrial Internet of
Things) technology. As a result, the independence assumption is regularly violated
(Romoli and Lutey (2019); Alshraideh et al. (2020); Zhoua et al. (2021)). In SPM
literature, many studies concerning the performance of various control charts in the
presence of autocorrelation as well as the methods cope with have been proposed:
see the review from Knoth and Schmid (2004) discussing papers related to the
topic up to the beginning of the 2000s. One of the most important studies was
conducted by Alwan and Roberts (1988), who illustrated the statistical modelling
and fitting of time-series effects and the application of standard control charts to
monitor the process stability. Later, Kalgonda and Kulkarni (2004) showed that
autocorrelation has a serious impact on the performance of conventional control charts
for multivariate data. With reference to the online monitoring of multivariate time
series of observations, Leoni et al. (2015a) studied the effect of the autocorrelation on
the performance of the T 2 chart when the observations are described by a bivariate
first-order vector autoregressive (VAR(1)) time series model. A synthetic chart to
control bivariate processes with autocorrelated data was designed in Leoni et al.
(2015b) based on the VAR(1) model. Developing control charts in the presence
of multivariate autocorrelated observations based on the VAR(1) model has been
investigated by many researchers, see for example Brian Hwarng and Wang (2010),
Leoni et al. (2016), and Huang et al. (2014).

As far as we know, up to now, the effect of autocorrelation on the design and
the statistical performance of an RZ control chart for monitoring the ratio has not yet
been considered in the SPM literature. More precisely, being motivated by the existing
gap in the related literature as well as the real challenges faced by the manufacturers
in the industry, the main contributions of this study to the SPM literature can be
summarized as follows:

• Providing the required theoretical background and investigating the performance
of the Phase II Shewhart-type RZ control chart for monitoring the ratio of two
normal random variables X and Y that are modeled by means of a bivariate
VAR(1) model.

• Extending the results for monitoring the means ratio when the correlation struc-
ture between the observations follows a general class of the VAR(p) model.

• Discussing the issues to be considered by practitioners to design and implement
the Shewhart-type RZ control chart.

• Showing the implementation of the MTS package within the R software environ-
ment for practitioners who want to run the Shewhart-RZ chart in real problems.

In summary, the main objective of this paper is to provide quality practitioners with a
tool able to perform online monitoring of the ratio with high-frequency data collection,
a condition that is rapidly spreading in the industry thanks to the evolution of sensor
technologies.
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Moreover, to show the main similarities and differences between the present study
and some of the main related existing studies regarding the Ratio RZ chart and SPM
methods applied to time series models, Table 1 is presented. In this table, the papers
are summarized and categorized in terms of the control chart’s scheme, presence or
absence of autocorrelation within the sample observations, types of shifts in the quality
parameter in terms of predicted (known) and random (unknown) shifts, the considered
time series model when the within sample observations are assumed to be autocorre-
lated and following a VAR(1) model, a reduced VAR(1) model (the coefficient matrix
is considered to be diagonal), or a VAR(p) model .

The paper is organized as follows: in Section 2, the distribution of the ratio Z is
briefly recalled. In Section 3 the multivariate autoregressive model is presented for
the special case of a bivariate time series. In Section 4, the formulas for the control
limits and the performance metrics of the Shewhart-RZ control chart are discussed;
in Section 5, the effect of the autocorrelation on the Shewhart-RZ control chart’s
performance is investigated; in Section 6, an illustrative example is provided to show
how the Shewhart-RZ control chart should be run in presence of autocorrelation; some
concluding remarks and recommendations for future research are given in Section
7. Finally, the mathematical results used in the study have been provided in the
Appendices.

2. The ratio Z distribution

Let W = (X,Y )T be a bivariate normal random vector of two quality characteristics
X and Y , with mean vector µW and variance-covariance matrix ΣW , where

µW =

(
µX

µY

)
and

ΣW =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
,

where σX and σY are the standard deviations of the two random variables X and
Y of W; ρ ∈ (−1, 1) is the coefficient of correlation. The ratio Z between the two
components of W, i.e. the quality characteristics X and Y , represents the ratio of two
normal variables and is defined as Z = X

Y . Several studies on the distribution of this
ratio have been published in the literature, see for example Hayya et al. (1975). Let
γX = σX

µX
and γY = σY

µY
be the coefficients of variation of X and Y , respectively, and let

ω = σX

σY
be their standard-deviation ratio. In this study, to get the ratio distribution

we apply an approximation for the inverse density function (i.d.f) F−1
Z (p|γX , γY , ω, ρ)

of Z proposed by Celano and Castagliola (2016a) as

F−1
Z (p|γX , γY , ω, ρ) ≃


−C2−

√
C2

2−4C1C3

2C1
if p ∈ (0, 0.5],

−C2+
√

C2
2−4C1C3

2C1
if p ∈ [0.5, 1),

(1)
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where C1, C2 and C3 are functions of p, γX , γY , ω, and ρ, i.e.

C1 =
1

γ2Y
− (Φ−1(p))2,

C2 = 2ω

(
ρ(Φ−1(p))2 − 1

γXγY

)
,

C3 = ω2

(
1

γ2X
− (Φ−1(p))2

)
.

In this paper, like in Celano and Castagliola (2016a), we will assume that the
coefficients of variations γX and γY are typically in the range (0, 0.2]: in fact, small
values of the coefficient of variation are desired in the quality control of a process, to
maintain the process’s inherent variability as small as possible to ensure output consis-
tency. In this range, the above approximation has been found to be accurate (see Tran
(2016)). Although in the existing literature on the RZ charts the consecutive couple
observations (Xt, Yt) are considered independent random variables, nevertheless they
can be both autocorrelated and cross-correlated due to the velocity of data available
in modern industrial processes.

3. The Vector Autoregressive VAR(1) model

The vector autoregressive VAR(1) model is one of the commonly used models to
fit multivariate time series observations. Here, we consider the bivariate case, where
two time series (i.e., the autocorrelated quality characteristics) Xt and Yt can be
modeled by a VAR(1) model. With this model for bivariate time series, each quality
characteristic observation at time t not only linearly depends on the observation at
time t−1 (autocorrelation), but it can also be linearly dependent on the observation of
the other variable collected at time t−1, (cross-correlation). According to the VAR(1)
model, the vector of the observations of the two quality characteristics at time t, say
Wt = (Xt, Yt)

⊺, depends on Wt−1 through the following equation

Wt = µW +Φ(Wt−1 − µW) + εt, (2)

where

µW =

(
µX

µY

)
is the mean vector of Wt,

Φ =

(
ΦXX ΦXY

ΦY X ΦY Y

)
is a (2×2) correlation matrix that accounts for both autocorrelation, (ΦXX and ΦY Y ),
and cross-correlation, (ΦXY and ΦY X), between X and Y ; εt is the bivariate normal
random noise with mean vector µε = 0 and variance-covariance matrix

Σε =

(
σ2
eX σeXY

σeXY σ2
eY

)
.
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By these notations, eqn. (2) can also be rewritten as the following system of two
equations

Xt = µX +ΦXX(Xt−1 − µX) + ΦXY (Yt−1 − µY ) + ϵXt

Yt = µY +ΦY X(Xt−1 − µX) + ΦY Y (Yt−1 − µY ) + ϵYt
.

Based on the above equations, ΦXY shows the linear dependence ofXt on Yt−1 in the
presence of Xt−1. ΦY X can also be interpreted in the same way. Hence, the univariate
time series Xt and Yt are not cross-correlated if ΦXY = ΦY X = 0. From (2), Reinsel
(2003) showed that the variance-covariance matrix ΣW of Wt is the solution to the
equation ΣW = ΦΣWΦ⊺ +Σε. Then, it can be shown that

Vec(ΣW) = (I4 −Φ⊗Φ)−1Vec(Σε), (3)

where I4 is the 4 × 4 identity matrix, ⊗ is the Kronecker product and Vec is the
operator that transforms a matrix into a one-column vector by stacking its columns.
Using (3), the variance-covariance matrix of the VAR(1) model in (2) can be obtained
as

ΣW =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
=

(
∆11σ2

eX+(∆12+∆13)σeXY +∆14σ2
eY

∆
∆31σ2

eX+(∆32+∆33)σeXY +∆34σ2
eY

∆
∆21σ2

eX+(∆22+∆23)σeXY +∆24σ2
eY

∆
∆41σ2

eX+(∆42+∆43)σeXY +∆44σ2
eY

∆

)
, (4)

where the quantities ∆sk for s, k = 1, 2, 3, 4 are given in Appendix A.

In the next section, the sample means ratio Z̄i =
X̄i

Ȳi
is suggested as the monitoring

statistic of the Shewhart-type RZ control chart. Given the inverse distribution function
of Z̄i in (1), one needs to get the distribution of the sample means vector Wi = (X̄i, Ȳi)
to calculate the control limits. It is proven in Appendix B that µW = µW = (µX , µY )

⊺

and

ΣW =

[
σ2
X̄

ρ̄σX̄σȲ
σX̄σȲ σ2

Ȳ

]
=

1

n

[
ΣW

(
I2 + Λ(Φ⊺)− 1

n
Π(Φ⊺)

)
+

(
Λ(Φ)− 1

n
Π(Φ)

)
Σ⊺

W

]
, (5)

where

Λ(Φ) = (Φ−Φn)(I2 −Φ)−1

Π(Φ) = (Φ−1 − I2)
−1
(
(I2 −Φn−1)(I2 −Φ)−1 − (n− 1)Φn−1

)
.

In practice, the VAR(1) model parameters µ,Φ, and Σε should be estimated
from the Phase I observations. Several methods have been presented in the literature
to obtain these estimated parameters such as the least squares (LS), maximum
likelihood (ML), and Bayesian methods. Tsay (2013) (Chapt. 2) provided a detailed
discussion about the theoretical aspects of these estimation methods and studied
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their key properties. They showed that the Bayesian and LS methods produce close
estimates, and under some conditions, the ML estimates are asymptotically equivalent
to the LS ones. They also wrote several R functions included in the MTS package
available in R (see Tsay and Wood (2018)) for multivariate time series analysis.
Other statistical software such as SAS with the ARIMA procedure, can also be used to
perform estimation of VAR models.

4. The implementation of the Shewhart-type RZ control chart with
VAR(1) observations

Let us consider a process where a practitioner wants to monitor the ratio between
two autocorrelated, and possibly cross-correlated, quality characteristics X and Y . At
each inspection, n observations (Xi,j , Yi,j), for i = 1, ..., and j = 1, ..., n are collected.
Similar to Tran et al. (2016a), we suggest monitoring the ratio Z̄i statistic defined as
follows

Z̄i =
X̄i

Ȳi
=

1
n

∑n
j=1Xi,j

1
n

∑n
j=1 Yi,j

(6)

at each time i = 1, 2, . . .. Let ρ = ρ0 and z = µX

µY
= z0 denote the coefficient of correla-

tion between the two normal variables X and Y and the mean ratio when the process
is in-control, respectively. As in the design of any control chart, the Shewhart-RZ chart
for autocorrelated data is designed by defining its control limits. It is well-known that
the distribution of the ratio of two normal random variables has no moment. Thus,
the control limits of the Shewhart-RZ control chart monitoring Z̄i should be defined
as probability control limits. Denoting as α the desired false alarm rate (FAR) for the
control chart, the lower control limit (LCL) and the upper control limit (UCL) of the
Shewhart-RZ are obtained from eqn. (1) as follows

LCL = F−1
Z

(
α
2

∣∣ γX̄ , γȲ , ω̄, ρ̄
)
, (7)

UCL = F−1
Z

(
1− α

2

∣∣ γX̄ , γȲ , ω̄, ρ̄
)
, (8)

where γX̄ , γȲ , ω̄, and ρ̄ should be computed from the mean vector µW and the
variance-covariance matrix ΣW of the distribution of the bivariate sample mean vec-

tor Wi = (X̄i, Ȳi) given in (5). Thus, to obtain LCL and UCL in (7) and (8), one
can calculate the coefficients of variations γX̄ and γȲ , the coefficient of correlation ρ̄
between X̄i and Ȳi, and the standard-deviation ratio ω̄ as

γX̄ =
σX̄
µX

, γȲ =
σȲ
µY

, ρ̄ =
σX̄,Ȳ

σX̄σȲ
, ω̄ =

σX̄
σȲ

, (9)

respectively. Here, we assume that the coefficient of variation remains constant for
each variable X and Y , i.e., σeX,i

= γXµX,i and σeY,i
= γY µY,i for every i ≥ 1. This

implies that the standard deviation of each sample changes proportionally to its mean.
There are several quality characteristics in practice (such as weights, tensile strengths
and linear dimensions) that have a dispersion proportional to the population mean.
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Thus, if we define z = µX

µY
= z0, then the in-control ratio ω̄ can also be rewritten as

ω̄ =
γX̄
γȲ

× µX

µY
=

γX̄
γȲ

× z0. (10)

When the process runs in the out-of-control state, the in-control ratio z0 is shifted
to z1 = τ×z0, where τ > 0 is the shift size, and the in-control coefficient of correlation
ρ = ρ0 is shifted to ρ = ρ1. According to the discussion in Leoni et al. (2015a), we
can assume that the units within a sample are collected close together in time and,
at the same time, the length h of the sampling interval is large enough to eliminate
any dependence between successive values of the sample ratio statistics Z̄1, Z̄2, . . ..
That is to say, the observations in each subgroup of size n follow a VAR(1) model
but the ratio statistics Zi, i = 1, 2, . . . are independent random variables. Under the
assumption of known (or perfect estimation of) distribution parameters, the run length
of the Shewhart-RZ control chart follows a geometric distribution with a probability
of success p = 1− β, where

β = FZ (UCL |γX̄ , γȲ , ω̄, ρ̄)− FZ (LCL |γX̄ , γȲ , ω̄, ρ̄) , (11)

denotes the probability of that at any inspection following the occurrence of the
assignable cause the control chart does not trigger any signal. The out-of-control
parameters γX̄ , γȲ , ω̄, ρ̄ in (11) can be calculated based on equation (9) or equa-
tions (14)–(17) but with ρ = ρ1 and z = z1. Then, the out-of-control average run
length (ARL1) and the out-of-control standard deviation run length (SDRL1) of the
Shewhart-RZ chart are computed as

ARL1 =
1

1− β

SDRL1 =

√
β

1− β
. (12)

Consider a case where X and Y are not cross-correlated and the matrix Φ is diag-
onal, i.e. ΦXY = ΦY X = 0, we aim to provide easier-to-use mathematical formulas for
ΣW,ΣW, γX̄ , γȲ , ρ̄, and ω̄ when n > 1 observations are collected within each sample.
The new results are helpful for practitioners to avoid time-consuming computations
in the absence of cross-correlation. There are many examples in the SPM literature
where the observations of one variable at a time i, i = 2, 3, . . . are not dependent
on the observations of the other variable at time i − 1, see for example Leoni et al.
(2015a). As proved in Leoni et al. (2015a), if ΦXY = ΦY X = 0, then using (3), the
variance-covariance matrix ΣW of Wi is equal to

ΣW =

(
σ2
X σXY

σXY σ2
Y

)
=

(
(1− Φ2

XX)−1σ2
eX (1− ΦXXΦY Y )

−1σeXY

(1− ΦXXΦY Y )
−1σeXY (1− Φ2

Y Y )
−1σ2

eY

)
. (13)

At time i = 1, 2, . . ., the sample mean vector Wi = (X̄i, Ȳi) is also a bivariate

9



normal random vector with mean vector µW and variance-covariance matrix

ΣW =

(
σ2
X̄

ρ̄σX̄σȲ
ρ̄σX̄σȲ σ2

Ȳ

)
,

where

σ2
X̄ =

σ2
eX

n(1− Φ2
XX)

(
1 +

2

n

n−1∑
k=1

(n− k)Φk
XX

)
,

σ2
Ȳ =

σ2
eY

n(1− Φ2
Y Y )

(
1 +

2

n

n−1∑
k=1

(n− k)Φk
Y Y

)
,

ρ̄σX̄σȲ =
ρσeXσeY

n(1− ΦXXΦY Y )

(
1 +

1

n

n−1∑
k=1

(n− k)Φk
XX +

1

n

n−1∑
k=1

(n− k)Φk
Y Y

)
.

From these quantities, it is straightforward to obtain the coefficients of variations
γX̄ = σX̄

µX
and γȲ = σȲ

µY
of X̄i and Ȳi as

γX̄ =
σeX

√
1 + 2

n

∑n−1
k=1(n− k)Φk

XX√
n(1− Φ2

XX)µX

(14)

γȲ =
σeY

√
1 + 2

n

∑n−1
k=1(n− k)Φk

Y Y√
n(1− Φ2

Y Y )µY

. (15)

Similarly, the coefficient of correlation ρ̄ between X̄i and Ȳi is defined as

ρ̄ =
ρ
√
(1− Φ2

XX)(1− Φ2
Y Y )

(
1 + 1

n

∑n−1
k=1(n− k)Φk

XX + 1
n

∑n−1
k=1(n− k)Φk

Y Y

)
(1− ΦXXΦY Y )

√(
1 + 2

n

∑n−1
k=1(n− k)Φk

XX

)(
1 + 2

n

∑n−1
k=1(n− k)Φk

Y Y

) , (16)

and the standard-deviation ratio ω̄ = σX̄

σȲ
is

ω̄ =
σeX

√
(1− Φ2

Y Y )

σeY

√
(1− Φ2

XX)
×

√√√√1 + 2
n

∑n−1
k=1(n− k)Φk

XX

1 + 2
n

∑n−1
k=1(n− k)Φk

Y Y

.

Concerning ω̄, it is important to note that if we let z = µX

µY
, it can also be rewritten

as

ω̄ =
γX̄
γȲ

× µX

µY
=

γX̄
γȲ

× z. (17)

Now, the LCL and UCL in (7) and (8) can be recalculated based on equations
(14)-(17). Finally, we summarize all the needed steps to estimate the control limits of
the Shewhart-RZ control chart and implement it to perform online monitoring.

• Phase I. Retrospective study.

10



Step 1 Select a Phase I sample of size m (for example m = 100 observations of the
two quality characteristics X and Y ) to carry out a process stability study.

Step 2 Perform a multivariate time series study on the individual (Xt, Yt) obser-
vations for t = 1, ...,m to check that the VAR(1) is a suitable time series
model based on the investigation of the sample ACF (autocorrelation func-
tion), PACF (partial autocorrelation function), and CCF (cross-correlation
function).

Step 3 Estimate the VAR(1) parameters with the function VAR in the MTS package
available within the R software environment.

Step 4 Check the normality of the residuals using a normal probability plot and
an Anderson Darling test.

Step 5 Investigate the stability of the residuals by using a bivariate control chart
for individual observations.

Step 6 Set a sample size n such that the ratios are uncorrelated, even if the ob-
servations within each sample are VAR(1). The decision about the sample
size is based on the sample ACF and PACF investigation for Phase I ratios
obtained with different values of n.

Step 7 Calculate the elements γX̄ , γȲ , ρ̄, and ω̄ of F−1
Z (·) based on eqns. (9) and

(10) if ΦXY and/or ΦY X are non-zero, and based on eqns. (14)-(17) if
ΦXY = ΦY X = 0.

Step 8 Set a target in-control average run length ARL0 (for example ARL0 = 200)
and calculate α = 1

ARL0
.

Step 9 Compute the control limits (LCL,UCL) from eqns. (7) and (8).
Step 10 Split the Phase I sample into s samples of size n such that m = s ∗ n and

calculate the sample means X̄i and Ȳi and then the sample ratios Z̄i for
each sample i = 1, 2, ..., s.

Step 11 Plot the sample ratios Z̄i on the control chart.
Step 12 If LCL ≤ Z̄i ≤ UCL for all i, i.e., the Phase I dataset is stable, fix the con-

trol limits LCL and UCL and go to Phase II. Otherwise, if there are some
out-of-control signals, remove the samples related to the signal conditions
from the Phase I dataset and repeat Steps 2-12.

• Phase II. On-line monitoring.
Step 1 Consider the following input data:

– A sample size n (for example n = 5).
– A target ARL0 and α = 1

ARL0
(for example ARL0 = 200 and then

α = 0.05).
– The estimated VAR(1) model parameters (µW,Φ,ΣΣΣϵ,ΣW).
– The calculated RZ distribution parameters (γX̄ , γȲ , ρ̄0, ω̄).
– The obtained LCL and UCL during Phase I.

Step 2 Collect n observations at each inspection.
Step 3 Calculate the sample means X̄i and Ȳi and the sample ratios Z̄i for each

sample i = 1, 2, ....
Step 4 Declare an out-of-control signal if Z̄i < LCL or Z̄i > UCL. Otherwise,

continuous process monitoring.

Although with industrial data p = 1 in VAR(p) model is enough to account for
the process inertia and consecutive observations autocorrelation, following Tsay(2013)
and the results regarding the VAR(1) model, the computations of the Shewhart-RZ
control chart for the VAR(p) model are also derived in Appendix C.
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5. Numerical Study

In this Section, we present the effect of autocorrelation on the performance of the
Shewhart-RZ control evaluated by using ARL and SDRL metrics. The ARL1 and
SDRL1 values are computed from (12) given the fixed values of parameters n,
γX =

σeX

µX
, γY =

σeY

µY
, ΦXX , ΦY Y , z0, ρ0, ρ1, and τ . Without loss of generality,

we assume that z0 = 1. For the sake of brevity and clarity of discussion, we also
suppose that X and Y are not cross-correlated and the matrix Φ is diagonal, i.e.
ΦXY = ΦY X = 0. It allows reducing the bivariate stationary conditions to the more
simple univariate stationary conditions for each variable and it has already been
stated by Leoni et al. (2015a). Tables showing the cross-correlation effect on the
control chart’s design and performance are available upon request from the authors.
The in-control ARL is set at ARL0 = 200, corresponding to the FAR α = 0.005. In
this study, we also assume n ∈ {2, 5, 7, 10, 15}, γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2},
ρ0 ∈ {−0.9,−0.4, 0, 0.4, 0.9}, and ΦXX ,ΦY Y ∈ {0.1, 0.7}.

The values of the control limits (LCL,UCL) of the Shewhart-RZ control chart
for the case ΦXX= ΦY Y = 0.1 are presented in Table 2. Results have also been
obtained for other parameters but they are not presented here and are available upon
request from the authors. Similar to the Shewhart-RZ control chart for independent
observations investigated in Celano and Castagliola (2016a), it can be seen from
this table that with the same value of sample size n, the values of LCL and UCL
depend on both the value of ρ0, (given (γX , γY )), and the value of (γX , γY ), (given
the value of ρ0). The increase of ρ0 leads to an increase of LCL and a decrease of
UCL. For example, with (γX , γY ) = (0.01, 0.01) and n = 5, we have LCL = 0.9711
and UCL = 1.0297 when ρ0 = −0.9 , compared to LCL = 0.9837 and UCL = 1.0166
when ρ0 = 0.4. By contrast, the increase of (γX , γY ) leads to the decrease of LCL and
the increase of UCL. For example, with n = 7 and ρ0 = 0.0, we have LCL = 0.9820
and UCL = 1.0184 when (γX , γY ) = (0.01, 0.01) compared to LCL = 0.6878 and
UCL = 1.4539 when (γX , γY ) = (0.2, 0.2).

INSERT TABLE 2 ABOUT HERE

We present the effect of the autocorrelation between observations on the Shewhart-
RZ chart in Tables 3-6 assuming that the correlation coefficient ρ between the ran-
dom variables X and Y does not be affected by the assignable causes, i.e ρ0 = ρ1.
In particular, Tables 3-4 show the values of ARL1 and SDRL1 corresponding to
the case ΦXX = ΦY Y and Tables 5-6 show the values of ARL1 and SDRL1 when
ΦXX ̸= ΦY Y . In general, the obtained results show that given the values of other
parameters, the increase of ΦXX or ΦY Y , or both of them leads to the increase of
the ARL1 and SDRL1; the larger the values of (ΦXX ,ΦY Y ), the larger the val-
ues of the ARL1 and SDRL1. For example, in Table 3 for fixed values of n = 5,
(γX , γY ) = (0.01, 0.01), ρ0 = ρ1 = −0.9 and τ = 0.99, we obtain ARL1 = 24.8
and SDRL1 = 24.3 when (ΦXX ,ΦY Y ) = (0.1, 0.1) compared to ARL1 = 97.9 and
SDRL1 = 97.4 when (ΦXX ,ΦY Y ) = (0.7, 0.7). Both of these values are larger than
the value ARL1 = 19.1 and SDRL1 = 18.59 when the process is free of autocorre-
lation (i.e.(ΦXX ,ΦY Y ) = (0, 0)) as pointed out in Celano and Castagliola (2016a).
That is to say, the autocorrelation between observations has a negative influence on
the Shewhart-RZ’s performance: it reduces the ability of the Shewhart-RZ control
chart in detecting the process shift or out-of-control conditions.
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INSERT TABLE 3 ABOUT HERE

INSERT TABLE 4 ABOUT HERE

INSERT TABLE 5 ABOUT HERE

INSERT TABLE 6 ABOUT HERE

We also consider the situation when the occurrence of an assignable cause shifts the
correlation coefficient ρ from ρ0 to ρ1. The values of ARL1 and SDRL1 corresponding
to this situation are presented in Tables 7-8. For the brevity of the paper, we only show
the ARL1 values for the case ΦXX = ΦY Y . The negative effect of autocorrelation on
the chart’s performance can also be seen in these two tables. Moreover, it is worth
noting that when both the nominal ratio and the correlation coefficient are shifted,
for the process with high values of (γX , γY ), the Shewhart-RZ control chart is on
average inefficient in detecting shifts as the values of ARL1 are too large (see the case
(γX , γY ) = (0.2, 0.2) in Table 7).

INSERT TABLE 7 ABOUT HERE

INSERT TABLE 8 ABOUT HERE

In several cases when there is no preference for any specific shift size, one may
suggest assigning a distribution for the process shift in a predicted interval. The ex-
pected average run length (EARL) is used to evaluate the statistical performance of
the corresponding chart, where

EARL =

∫
Ω
ARL× fτ (τ)dτ, (18)

in which fτ (τ) stands for the distribution of the shift size τ in the interval Ω and ARL
is as defined in (12). When there is no information about τ , a uniform distribution of
τ could be applied, i.e. we have fτ (τ) =

1
b−a for τ ∈ Ω = [a, b].

The effect of ΦXX and ΦY Y on the overall performance of the Shewhart-RZ control
chart in the presence of autocorrelation is displayed in Figure 1 (ρ0 = ρ1 = −0.9)
and Figure 2 (ρ0 = −0.4 and ρ1 = −0.9) with the EARL values for two possibilities
of Ω, including Ω = ΩD = [0.9, 1) (decreasing case, denoted as (D)) and Ω = ΩI =
(1, 1.1] (increasing case, denoted as (I)). We also consider several values of ΦXX and
ΦY Y as ΦXX ∈ {0.1, 0.2, . . . , 0.7} and ΦY Y ∈ {0.1, 0.2, . . . , 0.7}. The values of other
parameters are presented in the caption of each figure. In general, the obtained values
of EARL in these figures show a similar trend of the negative effect of ΦXX and ΦY Y

(representing the autocorrelation between observations) on the overall performance of
the Shewhart-RZ chart as the specific shift size cases. In most cases, the larger the
values of (ΦXX ,ΦY Y ), the larger the values of EARL, namely the slower the Shewhart-
RZ control chart in detecting the out-of-control conditions. For example, in Figure 1
with n = 15, Ω = [0.9, 1), ρ0 = ρ1 = −0.9, γX = γY = 0.01, we have EARL = 1.87
for ΦXX = ΦY Y = 0.1, EARL = 4.71 for ΦXX = ΦY Y = 0.5, and EARL = 6.52 for
ΦXX = ΦY Y = 0.7. These values are all larger than EARL = 1.4 for ΦXX = ΦY Y = 0
(the process is free of autocorrelation) as presented in Celano and Castagliola (2016a)
(Table 6).

INSERT FIGURE 1 ABOUT HERE
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INSERT FIGURE 2 ABOUT HERE

As mentioned earlier in Section 2, the method proposed by Celano and Castagliola
(2016a) is used to calculate the control limits of the RZ chart based on the (approx-
imated) inverse density function of the ratio Z. In what follows, the accuracy of the
applied approximation is assessed, in particular in the presence of autocorrelation,
through a simulation study. Although the exact analytical form of the inverse density
function of the ratio Z is complicated to obtain, some helpful results can be derived
using Monte-Carlo simulations. To this end, B = 100, 000 samples are generated from
a bivariate VAR(1) model with some specified parameters and sample sizes. Then, for
each sample, the ratio Z̄ is calculated. The accuracy of the approximation is investi-
gated with respect to the sample size n, the coefficients of variation γX and γY , and
the correlation coefficient ρ. It is worth mentioning that we have used the function
VARMAsim of the MTS R package to generate VAR(1) observations. Figure 3 shows the
empirical inverse density function of the ratio Z̄ obtained by simulation (continuous
line) and its approximation (dashed line), as in Celano and Castagliola (2016a). The
figure shows that while the sample size has the largest effect on the approximation,
there is no significant difference between the empirical and exact inverse density func-
tion when the other parameters vary (see Figure 3). More precisely, the larger n the
more accurate the approximation. From a practical point of view, sample sizes n ≥ 4
can be used in practice to get an acceptable approximation (see Figure 3 (a)-(c)).

INSERT Figure 3 ABOUT HERE

As the last step of numerical analysis, let us assess the impact of overlooking the
autocorrelation among the observations on the statistical performance of the Shewhart-
type RZ. In the Introduction Section, it was mentioned that Celano and Castagliola
(2016a) developed the Shewhart-RZ control chart with multiple measurements when
there is no autocorrelation among the observations within each sample. In what follows,
we investigate the effect of overlooking autocorrelation on the ARL performance of
this chart. More precisely, we want to investigate how much the in-control performance
changes if the quality inspector uses the control limits of the Shewhart-RZ control chart
presented in Celano and Castagliola (2016a), while the observations within each sam-
ple follow a VAR(1) model. To this end, we conduct a numerical comparison by assess-
ing the impact of autocorrelation parameters on the in-control ARL of the chart. The
results of the comparison study for some combinations of ΦXX ,ΦY Y , ρ, γX , γY , and n
are presented in Table 9. The presented in-control ARL values in this table are ob-
tained through simulations. From this table, it can be observed that the in-control per-
formance of the chart is dramatically affected by the autocorrelation coefficients ΦXX

and ΦY Y and the sample size n. In particular, the in-control ARL strongly reduces
when the coefficients ΦXX and ΦY Y move from 0 to 1, thus leading to an excessive num-
ber of false alarms. For example, when ΦXX = ΦY Y = 0.7, ρ0 = 0.9, γX = γY = 0.2
and n = 15, the actual in-control ARL of the chart is 5.03 while it is expected to be
200. The table also shows that for the same values of ΦXX and ΦY Y , the in-control
ARL decreases with n.

INSERT Table 9 ABOUT HERE
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6. Illustrative example

In this Section, we provide an example to illustrate the implementation of the
Shewhart-type RZ control charts with VAR(1) observations. In particular, we con-
sider the bivariate time series dataset of N=185 individual observations (n = 1) of the
measured pressure in psi at the front and back end of an industrial furnace recorded
every ten minutes reported in Montgomery et al. (2015) (p. 347). Let us denote the
front and back pressure as X and Y , respectively. Montgomery et al. (2015) studied
the sample ACF and CCF plots and concluded that the individual time series Xi and
Yi, for i = 1, . . . , 185, are autocorrelated and cross-correlated with each other. They
also proposed the VAR(1) model as an appropriate fit for the time series data. Here,
we are going to analyze this dataset in an SPM setting by monitoring the ratio of
pressures at the front and back of the furnace as the heating process quality char-
acteristic of interest. Controlling the furnace pressure is essential to achieve a high
heating process efficiency. In fact, when the pressure is too low, cold air can infiltrate,
and burned gas tends to condensate, due to the excessive presence of air. This problem
is critical in industrial furnaces, where the distance between the front end and back
end can facilitate the occurrence of an uncontrolled pressure imbalance and, therefore,
external air infiltration. To this end, let we have considered the first m = 100 indi-
vidual observations as the Phase I dataset to estimate the model’s parameters and
plot the Phase I control chart and the remaining m = 85 individual observations for
the online monitoring purpose (Phase II implementation of the control chart). We
assume that the time series model parameters are perfectly estimated from the Phase
I retrospective sample. The Phase I dataset is reported in Table 10.

INSERT TABLE 10 ABOUT HERE

INSERT Figure 4 ABOUT HERE

INSERT Figure 5 ABOUT HERE

We start from the Phase I dataset study to check the process stability. Figure 4
shows the plots of individual time series Xt and Yt. The sample ACF and PACF plots
of the given time series are given in Figures 5 (a-d). These figures demonstrate that
in both cases an AR model seems to be suitable. Thus, assuming the VAR(1) model
proposed by Montgomery et al. (2015) to fit the bivariate time series, to estimate
the model’s parameters, we have used the function VAR in the MTS R package that
runs the least squares estimation method. From Table 10, it is easy to get µ̂W =
µW = (X̄, Ȳ )⊺ = (10.885, 20.363)⊺. Combining the mean vector with the output of
VAR function gives the following VAR(1) autoregressive model(

Xi,j

Yi,j

)
=

(
10.885
20.363

)
+

(
0.663 0.464
0.434 −0.551

)[(
Xi,j−1

Yi,j−1

)
−
(
10.885
20.363

)]
+

(
εj,X
εj,Y

)
(19)

where (
εj,X
εj,Y

)
∼ N2

(
0, Σ̂ε =

(
1.257 0.399
0.399 1.040

))
. (20)

In the next step, after estimating the VAR(1) model parameters, the quality
practitioner should analyze the residuals. The probability plots in Figure 5 (e and f)
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show that the residuals follow the normal distribution, as well as the cross-correlation
plot of VAR(1) model residuals in Figure 5 (g), shows that there is no strong cross-
correlation among residuals. By these results, one can check the VAR(1) residuals’
stability with a Hotelling’s T2 chart, Figure 5 (h). From the control chart, it can be
seen that the Phase I residuals are stable. Therefore, we can compute the parameters
for the Phase I ratio distribution and the ratio statistics Z̄i.

INSERT Figure 6 ABOUT HERE

Now, a sample size n such that the ratios are uncorrelated should be selected, even
if the observations (Xij , Yij) for j = 1, 2, ..., n within each sample i are VAR(1). The
decision about the sample size is based on the sample ACF and PACF study for the
Phase I ratios obtained with different values of n. We assessed this issue and found
that n = 5 is sufficient to eliminate autocorrelation for the ratios, even if the individual
observations within each sample are VAR(1), see figure 6. Therefore, samples of n = 5
observations are collected, where the first one is collected at the beginning of each
hour of production. From eqns. (4) and (5) and the fact that n = 5, we obtained

Σ̂W =

(
3.978 0.897
0.897 1.953

)
(21)

Σ̂W =

(
2.855 0.949
0.949 0.418

)
(22)

To check the stability of the Phase I dataset, let the in-control ratio z0 = µX

µY
=

10.885
20.363 = 0.535. In addition, the parameters of F−1

Z (· · · ) in (1) can be calculated from
equations (9) and (10):

γ̂X̄ =
σ̂X̄
µ̂X

=

√
2.855

10.885
= 0.155, γ̂Ȳ =

σ̂Ȳ
µ̂Y

=

√
0.418

20.363
= 0.032,

ˆ̄ρ =
σ̂X̄Ȳ

σ̂X̄ σ̂Ȳ
=

0.949√
2.855

√
0.418

= 0.869, ˆ̄ω =
γ̂X̄
γ̂Ȳ

× z0 =
0.155

0.032
× 0.535 = 2.591.

From (7)-(8), the control limits of the proposed Shewhart-RZ chart in this case are
calculated as

LCL = F−1
Z

(
0.0025|γ̂X̄ = 0.155, γ̂Ȳ = 0.032, ˆ̄ω = 2.591, ˆ̄ρ = 0.869

)
= 0.327

UCL = F−1
Z

(
0.9975|γ̂X̄ = 0.155, γ̂Ȳ = 0.032, ˆ̄ω = 2.591, ˆ̄ρ = 0.869

)
= 0.715.

Figure 7 (a) shows the Shewhart-RZ control chart as well as the ratio statistics
Zi for Phase I observations based on samples #1 to #20 each of size n = 5. Since
the control limits LCL = 0.327 and UCL = 0.715 does not trigger any out-of-control
signal for Phase I observations, therefore, these control limits can be used for the Phase
II implementation of the control chart.

The Phase II dataset is presented in Table 11 together with the corresponding
sample means X̄i and Ȳi and the sample ratios Z̄i.
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INSERT TABLE 11 ABOUT HERE

INSERT Figure 7 ABOUT HERE

Figure 7 (b) shows the Phase II control chart for samples #21 to #37. An assignable
cause leads to a downward shift of the ratio z0 between samples #30 and #33. This
results in a too large pressure unbalance between the front and back end pressure
moving air towards the furnace entrance, with consequent problems to the heating
process of material conveyed within the chamber. The chart signals the occurrence of
the out-of-control condition by plotting points #32 and #33 below the LCL (see also
bold values in Table 11). An intervention on the furnace pressure sensors eliminates
the assignable cause and brings the process back to the in-control condition. Finally,
we warn readers that this example was worked with a relatively small benchmark
dataset from Montgomery et al. (2015) to facilitate the reproduction of results. For
this reason, we assumed a perfect estimation of time series parameters from the Phase
I retrospective study. However, we remember to practitioners that collecting a dataset
of VAR observations consisting of several hundred or thousands of observations can
significantly improve the reliability of the time series parameters estimation. Therefore,
we strongly encourage practitioners to cope with large retrospective samples, whenever
they are available. In the Conclusion Section, we stress this issue as a further research
direction.

7. Conclusions

In this paper, we have investigated the effects of autocorrelation on the performance
of the Shewhart-RZ control chart using an autoregressive model for the sample ratio.
The ARL,SDRL, and EARL metrics are used to evaluate the performance of the
Shewhart-RZ chart for the specific shift size (using ARL and SDRL) or the overall
performance (using EARL). The obtained results show that the autocorrelation be-
tween observations has a negative impact on the Shewhart-RZ chart’s performance.
It reduces the ability of the chart in detecting process shifts compared to no auto-
correlation case. The presented results also show that the Shewhart control chart is
not efficient in detecting small shifts for the process with high values of coefficient of
variation (i.e. γX , γY )). However, the following topics could be interesting directions
for further research:

• Designing other advanced control charts to reduce the negative impact of the
autocorrelation on the chart’s performance.

• Investigating the effect of autocorrelation on the performance of the EWMA-RZ
control chart along similar lines.

• Assessing the reliability of Phase I implementation for processes with autocor-
related observations on the RZ-type control charts is essential to its correct
implementation. In particular, a thorough study of the dimension of the Phase
I dataset (i.e. the retrospective sample) is important to assess the effect of past
process knowledge available from automatic sensor readings. A good balance be-
tween the size of the retrospective study and the probability of having process
shifts during the Phase I implementation should be carefully investigated.
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8. Appendices

Appendix A: Derivation of the variance-covariance matrix ΣW in (4).

To calculate Vec(ΣW) in (3), we have,

(I4 −Φ⊗Φ) =


1− Φ2

XX −ΦXXΦXY −ΦXY ΦXX −Φ2
XY

−ΦXXΦY X 1− ΦXXΦY Y −ΦXY ΦY X −ΦXY ΦY Y

−ΦY XΦXX −ΦY XΦXY 1− ΦY Y ΦXX −ΦY Y ΦXY

−Φ2
Y X −ΦY XΦY Y −ΦY Y ΦY X 1− Φ2

Y Y



19



After some time-consuming calculations, one can obtain:

(I4 −Φ⊗Φ)−1 =
1

∆


∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44


where:

∆ = (ΦXXΦY Y − ΦXY ΦY X − 1)

× (Φ2
XXΦ2

Y Y − 2ΦXXΦXY ΦY XΦY Y +Φ2
XY Φ

2
Y X − Φ2

XX − 2ΦXY ΦY X − Φ2
Y Y + 1)

and

∆11 = −(ΦXXΦ3
Y Y − ΦXY ΦY XΦ2

Y Y − ΦXXΦY Y − ΦXY ΦY X − Φ2
Y Y + 1)

∆12 = ∆13 = ΦXY (ΦXXΦ2
Y Y − ΦXY ΦY XΦY Y − ΦXX)

∆14 = −Φ2
XY (ΦXXΦY Y − ΦXY ΦY X + 1)

∆21 = ΦY X(ΦXXΦ2
Y Y − ΦXY ΦY XΦY Y − ΦXX)

∆22 = −(Φ2
XXΦ2

Y Y − ΦXXΦXY ΦY XΦY Y − Φ2
XX − ΦXY ΦY X − Φ2

Y Y + 1)

∆23 = −ΦY XΦXY (ΦXXΦY Y − ΦXY ΦY X + 1)

∆24 = ΦXY (Φ
2
XXΦY Y − ΦXXΦXY ΦY X − ΦY Y )

∆31 = ∆21, ∆32 = ∆23, ∆33 = ∆22, ∆34 = ∆24

∆41 = −Φ2
Y X(ΦXXΦY Y − ΦXY ΦY X + 1)

∆42 = ΦY X(Φ2
XXΦY Y − ΦXXΦXY ΦY X − ΦY Y )

∆43 = ∆42

∆44 = −(Φ3
XXΦY Y − Φ2

XXΦXY ΦY X − Φ2
XX − ΦXXΦY Y − ΦXY ΦY X + 1)

Accordingly, from these calculations and the formula of Vec(ΣW) in (3), it is resulted
that

Vec(ΣW) =
1

∆


∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44




σ2
eX

σeXY

σeXY

σ2
eY



=
1

∆


∆11σ

2
eX + (∆12 +∆13)σeXY +∆14σ

2
eY

∆21σ
2
eX + (∆22 +∆23)σeXY +∆24σ

2
eY

∆31σ
2
eX + (∆32 +∆33)σeXY +∆34σ

2
eY

∆41σ
2
eX + (∆42 +∆43)σeXY +∆44σ

2
eY


Finally, this leads us to obtain the variance-covariance matrix ΣW in (4).
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Appendix B: Derivation of ΣW in eqn. (5)

Let Wi = (Wi,1,Wi,2)
⊺ be a stationary bivariate time series with mean vector µW

and cross-covariances matrix at lag k as

Γ(k) = E
[
(Wi − µW)(Wi+k − µW)⊺

]
p×p

=
[
γj,t
]
j,t=1,2.

where γjt = E [(Wi,j − µj)(Wi+k,t − µt)] is the covariance between Wi,j and Wi+k,t

for k = 0,±1,±2,±3, .... By definition, we have ΣW = Γ(0). For the random sample
Wi,1,Wi,2, ....,Wi,n, Reinsel (2003) showed that

µW = µW

ΣW =
1

n2

n∑
j=1

n∑
t=1

Γ(j − t) =
1

n2

n−1∑
k=−(n−1)

(n− |k|) Γ(k).

Adopting this result for VAR(1) autoregressive model, ΣW can be obtained as

ΣW =
1

n
ΣW +

1

n2

n−1∑
k=1

(n− k)Γ(k) +
1

n2

n−1∑
k=1

(n− k)Γ(−k)

=
1

n
ΣW +

1

n2

n−1∑
k=1

(n− k)[Γ(k) + Γ(k)⊺] (Γ(−k) = Γ(k)⊺)

=
1

n
ΣW +

1

n2

n−1∑
k=1

(n− k)
[
ΣWΦ⊺k

+ΦkΣ⊺
W

] (
Γ(k) = ΣWΦ⊺k

)
=

1

n
ΣW +

1

n

n−1∑
k=1

[
ΣWΦ⊺k

+ΦkΣ⊺
W

]
− 1

n2

n−1∑
k=1

k
[
ΣWΦ⊺k

+ΦkΣ⊺
W

]
. (23)

In order to further simplify the above relation, we use proposition 1.5.38. of Hubbard
and Hubbard (2015) in which they proved that

∑∞
n=0Φ

n = (Ip − Φ)−1 for a p × p
square matrix Φ whose absolute values of all its eigenvalues are assumed to be less
than 1. Here, we know that this assumption about Φ is true because it is a necessary
and sufficient condition for the stationarity of a VAR(1) autoregressive model. Using
the idea of their proof, it can be shown that

∑n−1
k=1 Φ

k = Λ(Φ) and
∑n−1

k=1 kΦ
k = Π(Φ),

where

Λ(Φ) = (Φ−Φn)(I2 −Φ)−1

Π(Φ) = (Φ−1 − I2)
−1
(
(I2 −Φn−1)(I2 −Φ)−1 − (n− 1)Φn−1

)
Rewriting eqn. (23) based on Λ(Φ) and Π(Φ), after some mathematical calculations

we get the expression of ΣW in eqn. (5).
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Appendix C: Extension to VAR(p) time series observations

The implementation of the Shewhart-type RZ control chart based for VAR(1) time
series model is discussed and some interesting theoretical results are also presented in
Sections 3 and 4. This Appendix provides some useful outcomes to use the obtained
results in Sections 3 and 4 in order to monitor the means ratio Z when the auto-
correlation structure between sample observations (x1, y1), · · · , (xn, yn) follows a VAR
model of order p, say VAR(p). The bivariate time series Wt follows a VAR(p) model
with mean vector µW when

Wt − µW = Φ1(Wt−1 − µW) + · · ·+Φp(Wt−p − µW) + εt, (24)

where Φi (i = 1, · · · , p) are 2 × 2 coefficients matrices, Φp ̸= 0, and εt is a bivariate
normal vector with mean zero and covariance matrix Σε. In order to construct the
control limits of the RZ chart under the VAR(p) model, in the same way as the VAR(1),
the variance-covariance matrix ΣW of Wt in (24) and then ΣW are needed. For the
VAR(p) model in (24) we have

ΣW = Γ(0) = Φ1Γ(−1) +Φ2Γ(−2) + · · ·+ΦpΓ(−p) +Σε, (25)

where Γ(k) is the cross-covariances matrix of Wt at lag k that can be obtained from
the relation

Γ(k) = Φ1Γ(k − 1)+Φ2Γ(k − 2)+ · · ·+ΦpΓ(k − p), for k > 0, (26)

and the fact that Γ(−k) = Γ(k)⊺. From (25), it can be seen that the matrices
Γ(−1),Γ(−2), · · · ,Γ(−p) are needed to obtain ΣW. This makes the problem of finding
ΣW and ΣW very hard under the VAR(p) model. Here, we are going to tackle this
obstacle by using the novel idea of Tsay (2013) to express the VAR(p) model in (24) in
a VAR(1) form. Then, one can apply the obtained results for VAR(1) model in Section
4 to monitor the means ratio Z when the autocorrelation structure of within-sample
observations is VAR(p). To this end, let us define the 2p-dimensional time series Zt as

Zt =
(
W⊺

t ,W
⊺
t−1, . . . ,W

⊺
t−p+1

)⊺
=



W1t

W2t

W1(t−1)

W2(t−1)
...

W1(t−p+1)

W2(t−p+1)


2p×1

. (27)

Then, it can be seen that the VAR (p) model in (24) can be represented as a VAR(1)
model in terms of Zt as

Zt = ΦZt−1 + bt, (28)
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where bt = (a⊺
t ,0

⊺)⊺ in which 0 is a 2(p− 1)-dimensional zero vector, and

Φ =


Φ1 Φ2 · · · Φp−1 Φp

I2 02 · · · 02 02
02 I2 · · · 02 02
...

...
. . .

...
...

02 02 · · · I2 02

 , (29)

where I2 and 02 are the 2 × 2 identity and zero matrix, respectively. Now, from the
definition of time series Zt in (27) we have

ΣZ =


Γ(0) Γ(1) · · · Γ(p− 1)
Γ(1)⊺ Γ(0) · · · Γ(p− 2)

...
...

...
Γ(p− 1)⊺ Γ(p− 2)⊺ · · · Γ(0)


2p×2p

. (30)

Relation (30) shows that the cross-covariances matrices Γ(k) ofWt for k = 0, · · · , p−1,
and its variance-covariance matrix ΣW = Γ(0), can be obtained once ΣZ is calculated.
On the other hand, since Zt is a VAR(1) model, from equation (3) we have

Vec (ΣZ) =
(
I(2p)2 −Φ⊗Φ

)−1
Vec (Σb) , (31)

where

Σb =


Σε 02 · · · 02 02
02 02 · · · 02 02
02 02 · · · 02 02
...

...
. . .

...
...

02 02 · · · 02 02


2p×2p

. (32)

Now, the variance-covariance matrix ΣW = Γ(0) of the VAR(p) time series Wt in (24)
can be obtained conveniently based on relations (30) and (31). On the other hand,
reminding again that Zt is a VAR(1) model, the variance-covariance matrix ΣZ can
be obtained from relations (5) and (31) as

ΣZ =


ΓW(0) ΓW(1) · · · ΓW(p− 1)
ΓW(1)⊺ ΓW(0) · · · ΓW(p− 2)

...
...

...
ΓW(p− 1)⊺ ΓW(p− 2)⊺ · · · ΓW(0)


2p×2p

, (33)

where ΓW(0) = ΣW. Consequently, given the coefficient matrices Φi and the covari-
ance matrix Σε of the VAR(p) model in (24), one can obtain Φ and Σb from (29) and
(32), calculate matrices ΣW and ΣW based on equations (30), (31), and (33), and
finally derive the control limits of the RZ chart based on the elements of matrix ΣW
and relations (7) and (8).
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Table 2. Values of LCL (first row) and UCL (second row) for the Shewhart-RZ control chart in the presence

of autocorrelation, for z0 = 1, ARL0 = 200, ΦXX = ΦY Y = 0.1, n ∈ {2, 5, 7, 10, 15}, γX ∈ {0.01, 0.2},
γY ∈ {0.01, 0.2} and ρ0 ∈ {−0.9,−0.4, 0, 0.4, 0.9}.

γX γY ρ0 n = 2 n = 5 n = 7 n = 10 n = 15
0.01 0.01 −0.9 0.9577 0.9711 0.9752 0.9790 0.9827

1.0442 1.0297 1.0254 1.0214 1.0176
0.01 0.01 −0.4 0.9635 0.9752 0.9787 0.9820 0.9852

1.0378 1.0255 1.0218 1.0183 1.0151
0.01 0.01 0.0 0.9691 0.9790 0.9820 0.9848 0.9874

1.0319 1.0215 1.0184 1.0155 1.0127
0.01 0.01 0.4 0.9760 0.9837 0.9860 0.9882 0.9903

1.0246 1.0166 1.0142 1.0120 1.0098
0.01 0.01 0.9 0.9901 0.9933 0.9943 0.9952 0.9960

1.0100 1.0067 1.0058 1.0049 1.0040
0.20 0.20 −0.9 0.3940 0.5462 0.5986 0.6502 0.7032

2.5382 1.8310 1.6707 1.5380 1.4221
0.20 0.20 −0.4 0.4463 0.5938 0.6429 0.6905 0.7388

2.2405 1.6841 1.5555 1.4482 1.3535
0.20 0.20 0.0 0.5032 0.6428 0.6878 0.7309 0.7741

1.9875 1.5557 1.4539 1.3682 1.2919
0.20 0.20 0.4 0.5850 0.7093 0.7478 0.7841 0.8199

1.7094 1.4098 1.3372 1.2753 1.2197
0.20 0.20 0.9 0.8017 0.8687 0.8878 0.9053 0.9220

1.2474 1.1512 1.1263 1.1046 1.0846
0.01 0.20 −0.9 0.6787 0.7585 0.7861 0.8134 0.8416

1.8340 1.4489 1.3619 1.2901 1.2274
0.01 0.20 −0.4 0.6860 0.7640 0.7910 0.8177 0.8452

1.8144 1.4385 1.3535 1.2833 1.2221
0.01 0.20 0.0 0.6920 0.7686 0.7951 0.8213 0.8482

1.7986 1.4299 1.3466 1.2778 1.2177
0.01 0.20 0.4 0.6983 0.7732 0.7992 0.8249 0.8513

1.7825 1.4213 1.3397 1.2722 1.2134
0.01 0.20 0.9 0.7063 0.7793 0.8045 0.8295 0.8552

1.7622 1.4103 1.3308 1.2651 1.2078
0.20 0.01 −0.9 0.5452 0.6902 0.7342 0.7751 0.8148

1.4735 1.3184 1.2720 1.2293 1.1883
0.20 0.01 −0.4 0.5511 0.6952 0.7388 0.7792 0.8183

1.4577 1.3089 1.2641 1.2229 1.1831
0.20 0.01 0.0 0.5560 0.6993 0.7426 0.7826 0.8212

1.4450 1.3011 1.2577 1.2176 1.1790
0.20 0.01 0.4 0.5610 0.7036 0.7465 0.7860 0.8242

1.4321 1.2932 1.2512 1.2123 1.1747
0.20 0.01 0.9 0.5675 0.7091 0.7514 0.7905 0.8280

1.4158 1.2833 1.2429 1.2055 1.1693
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ρ1 = ρ0 = −0.9; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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ρ1 = ρ0 = −0.9; ΩI = (1; 1.1]

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)
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Figure 1. The effects of ΦXX and ΦY Y on the overall performance of the Shewhart-RZ control chart in the

presence of autocorrelation for n ∈ {2, 15}, γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2}, γX = γY , ρ0 = ρ1 = −0.9 and
ARL0 = 200.

Alt Text: This figure illustrates the surface plots of EARL against the coefficients ΦXX and
ΦY Y .
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ρ0 = −0.4; ρ1 = −0.9; ΩD = [0.9; 1)

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)

0
0.1

0.2
0.3

0.4
0.5

0.6 0

0.1

0.2

0.3

0.4

0.5

0.6

 1

 2

 3

 4

 5

 6

 7

 8

 9

ΦXX

ΦY Y

EARL

n = 2
n = 15

0
0.1

0.2
0.3

0.4
0.5

0.6 0

0.1

0.2

0.3

0.4

0.5

0.6

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

ΦXX

ΦY Y

EARL

n = 2
n = 15

ρ0 = −0.4; ρ1 = −0.9; ΩI = (1; 1.1]

(γX = 0.01, γY = 0.01) (γX = 0.2, γY = 0.2)

0
0.1

0.2
0.3

0.4
0.5

0.6 0

0.1

0.2

0.3

0.4

0.5

0.6

 1

 2

 3

 4

 5

 6

 7

 8

 9

ΦXX

ΦY Y

EARL

n = 2
n = 15

0
0.1

0.2
0.3

0.4
0.5

0.6 0

0.1

0.2

0.3

0.4

0.5

0.6

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

ΦXX

ΦY Y

EARL

n = 2
n = 15

Figure 2. The effects of ΦXX and ΦY Y on the overall performance of the Shewhart-RZ control chart in the
presence of autocorrelation for n ∈ {2, 15}, γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2}, γX = γY , ρ0 = −0.4, ρ1 = −0.9

and ARL0 = 200.

Alt Text: This figure illustrates the surface plots of EARL against the coefficients ΦXX and
ΦY Y .
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(a) n = 2, γX = γY = 0.01, ρ =
0.9,ΦXX = ΦY Y = 0.1.
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(b) n = 4, γX = γY = 0.01, ρ =
0.9,ΦXX = ΦY Y = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0

0
.9

9
0

0
.9

9
5

1
.0

0
0

1
.0

0
5

p

F
Z−

1
(p

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.9

9
0

0
.9

9
5

1
.0

0
0

1
.0

0
5

p

F
Z−

1
(p

)

Exact  F
Z

−1(p)

Approximated  F
Z

−1(p)

(c) n = 5, γX = γY = 0.01, ρ =
0.9,ΦXX = ΦY Y = 0.1
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(d) ρ = −0.9, n = 4, γX = γY =

0.01,ΦXX = ΦY Y = 0.1
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(e) ρ = 0, n = 4, γX = γY =

0.01,ΦXX = ΦY Y = 0.1
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(f) ρ = 0.9, n = 4, γX = γY =

0.01,ΦXX = ΦY Y = 0.1
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(g) γX = γY = 0.01, ρ = 0.9, n =

4,ΦXX = ΦY Y = 0.1
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(h) γX = 0.01, γY = 0.2, ρ = 0.9, n =

4,ΦXX = ΦY Y = 0.1
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(i) γX = γY = 0.2, ρ = 0.9, n =

4,ΦXX = ΦY Y = 0.1

Figure 3. Empirical and approximated F−1
Z (p|γX , γY , ω, ρ).

Alt Text: This figure contains nine blocks that show the curves of empirical and approximated
F−1
Z (p|γX , γY , ω, ρ) whit respect to various combinations of γX , γY , ρ,ΦXX ,ΦY Y , and n.
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Table 10. The front end (Xi) and back end (Yi) pressures [psi] of the furnace for Phase I observations.

sample Xi Yi sample Xi Yi sample Xi Yi sample Xi Yi
1 8.0 20.1 26 10.4 19.9 51 11.8 19.8 76 8.5 18.3
2 8.6 20.4 27 9.8 21.9 52 11.9 21.8 77 9.2 21.2
3 10.1 20.0 28 11.8 18.3 53 13.6 20.7 78 10.2 18.5
4 8.1 19.6 29 10.8 20.8 54 14.3 21.9 79 8.6 21.8
5 8.8 20.3 30 9.8 17.7 55 14.8 21.8 80 9.7 18.4
6 10.3 19.5 31 10.0 23.1 56 12.0 19.0 81 8.7 19.2
7 9.6 20.2 32 11.1 17.9 57 11.0 23.1 82 7.6 18.9
8 10.5 19.7 33 10.3 20.9 58 10.6 18.9 83 9.2 19.4
9 7.9 19.5 34 9.2 19.5 59 9.8 20.3 84 9.5 19.5
10 9.7 18.97 35 10.3 22.6 60 11.5 21.2 85 10.6 19.8
11 10.4 22.3 36 10.7 19.0 61 10.5 19.3 86 10.8 18.6
12 11.0 20.2 37 8.5 20.4 62 12.6 19.9 87 10.7 22.5
13 10.1 20.7 38 11.5 19.2 63 12.3 19.9 88 14.1 19.1
14 9.8 20.1 39 10.2 22.2 64 9.8 19.4 89 14.1 23.8
15 9.4 20.3 40 11.3 18.9 65 10.7 21.3 90 16.1 21.3
16 11.5 18.8 41 9.6 21.2 66 10.0 17.9 91 13.6 20.5
17 10.6 24.0 42 10.6 17.9 67 9.5 21.6 92 12.1 22.6
18 14.3 19.7 43 9.2 20.6 68 9.4 19.1 93 13.8 20.8
19 13.3 22.5 44 8.9 20.5 69 9.1 19.1 94 13.6 20.9
20 14.5 20.8 45 10.2 20.0 70 9.1 21.4 95 13.7 21.7
21 14.8 21.7 46 11.3 20.1 71 9.9 17.7 96 15.1 21.6
22 15.1 20.9 47 12.4 20.8 72 7.9 21.6 97 15.1 21.7
23 13.0 21.4 48 12.4 21.0 73 7.9 18.1 98 14.01 21.9
24 11.3 19.0 49 10.4 20.9 74 6.4 19.1 99 12.7 20.9
25 10.8 22.6 50 9.3 20.1 75 7.7 19.9 100 11.6 20.9

Figure 4. Time series plots of the pressure readings at both ends of the furnace (X: front end observations,
Y: back end observations).

Alt Text: This figure shows the time series plots of the pressures at the front and back ends
of the furnace in one figure.
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(a) ACF plot for Xt. (b) PACF plot for Xt.

(c) ACF plot for Yt. (d) PACF plot for Yt.

(e) Probability plot of Xt residuals. (f) Probability plot of Yt residuals.

(g) Residual cross-correlation of VAR(1)
model.

(h) Hotelling’s T 2 chart for Xt and Yt residu-
als.

Figure 5. Time series and stability study of the Phase I dataset of the industrial furnace example.

Alt Text: This figure contains eight blocks and shows the results of the Time series analysis,
including the ACF and PACF plots of individual time series along with the probability plots,
the cross-correlation plot, and the Hotelling’s T 2 chart for the residuals.
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(a) ACF plot for Z̄i. (b) PACF plot for Z̄i.

Figure 6. Sample ACF and PACF plots of Z̄i when n = 5.

Alt Text: This figure contains two blocks and shows the ACF and PACF plots of the
monitoring statistics Z̄i when n = 5.
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(a) Phase I control chart.
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(b) Phase II control chart.

Figure 7. Shewhart-RZ control chart in Phase I and Phase II for the furnace example

Alt Text: This figure contains two blocks that display the Shewhart-RZ control charts in
Phase I and Phase II for the furnace example.
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Table 11. The front end (Xi) and back end (Yi) pressures [psi] of the furnace for Phase II observations.

Sample Xi,j [psi] X̄i [psi] Z̄i =
X̄i

Ȳi

Yi,j [psi] Ȳi [psi]
21 12.2 13.0 11.9 10.9 11.8 11.96 0.578

20.6 21.2 19.5 21.1 21.0 20.68

22 9.5 9.3 9.3 8.6 8.9 9.12 0.463
18.5 20.3 19.8 20.1 19.8 19.70

23 10.3 11.4 11.8 13.1 12.7 11.86 0.579
20.6 20.0 21.5 20.4 19.9 20.48

24 13.9 12.4 12.5 14.3 13.5 13.23 0.624
22.4 19.0 23.3 20.4 20.9 21.20

25 13.0 11.7 12.0 9.6 7.4 10.74 0.550
20.3 20.7 19.7 18.5 18.5 19.54

26 7.0 8.2 7.5 7.0 9.10 7.76 0.395
20.4 18.2 20.9 18.9 19.8 19.64

27 8.6 8.9 9.8 9.6 10.3 9.44 0.467
19.2 20.8 19.0 20.3 21.7 20.20

28 11.9 12.4 12.2 12.9 14.3 12.74 0.620
18.7 22.4 19.3 22.8 19.6 20.56

29 12.9 12.1 10.1 10.2 7.6 10.58 0.525
23.7 18.1 20.1 19.6 19.3 20.16

30 7.8 9.0 10.8 9.4 7.8 8.96 0.453
18.6 21.9 19.2 19.4 19.8 19.78

31 8.0 5.8 5.5 6.5 5.2 6.20 0.329
18.8 18.5 19.5 18.3 19.2 18.86

32 5.0 4.3 4.5 5.5 5.7 5.00 0.274
17.7 18.4 17.9 19.2 17.9 18.22

33 3.8 5.9 6.7 6.8 5.2 5.68 0.296
19.4 18.2 20.8 18.5 19.1 19.20

34 6.3 9.1 9.3 10.4 11.9 9.40 0.471
18.9 20.9 18.7 22.2 19.0 19.94

35 12.4 14.6 13.6 13.1 10.1 12.76 0.613
22.2 20.7 22.4 19.8 18.9 20.80

36 10.1 11.0 11.4 11.0 10.0 10.70 0.521
21.5 19.8 21.9 18.7 21.4 20.66

37 11.3 10.6 11.7 10.7 13.6 11.58 0.563
19.2 23.0 17.5 21.6 21.6 20.58
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