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3D curvature-based tip load estimation for continuum robots

Matyas Diezinger1, Brahim Tamadazte2, and Guillaume J. Laurent1

Abstract— This paper presents a method intended for the
estimation of external force and moment applied at the tip of
thin continuum robots using vision-based shape measurements.
A versatile vision process that does not require any additional
markers nor sensors provides an accurate 3D reconstruction of
the deformable rod shape. Then, the tip loads are directly de-
duced from the curvature along this curve formed by deformed
rod thanks to the resolution of a linear system without requiring
any iterative optimization. The curvature is determined with
a robust method that allows filtering out measurement noise
and artefacts. Simulations show that this approach gives fast
and precise results in both 2D (planar forces estimation without
torsion) and 3D (spatial forces estimation). Experimental results
on cantilever rods show an accuracy of 2.2% and 2.7% of the
applied forces and moments, respectively.

Keywords— Continuum robots, small-scale robots,
force and moment estimation, stereo-vision, 3D recon-
struction.

I. INTRODUCTION
Continuum Robots (CRs) have the potential to be used in

a wide range applications, from medical to industrial. Unlike
standard robots, CRs are made of slender flexible elements
in place of rigid links. Numerous CRs have been proposed in
the past few years [1], [2]. There is a common consensus that
CRs offer several advantages over conventional architectures,
e.g., their slender shapes as well as their potential to be
miniaturized [3] allow them to reach thinly accessible area
inside human bodies [2] or inside machines (turbine engines
for instance). Indeed, the removal of mechanical joints allows
to down size all the structure and to provide six Degrees
of Freedom (DoF) with robots having diameters of a few
millimeters [4], [5]. Additionally, the compliant nature of
CRs confers safer interactions with humans for collaborative
tasks in industry or for medical applications [6].

Conversely, the flexibility of CRs reduces the forces and
moments that can be obtained at their end-effector. The
payload of these robots is also much lower than their rigid
counterpart. The most serious limitation is to guaranty the
robot trajectory under different loads, i.e., under different
applied external forces and moments. Traditional models of
CRs are based on Cosserat rod theory [7], [8], [9] and allows
calculating the actuators positions/angles to reach a desired
pose in the Cartesian space. However, if the external loads
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Fig. 1: Load estimation from shape (f , m, p, e are force,
moment, position and position error vectors, respectively).

are not known, the models cannot predict the end-effector
position. Indeed, the pose of CRs is highly dependent on
unpredictable external interactions. This leads to a load-
dependent trajectory that limits the capabilities of the robot.
However, the compliant nature of CRs can also be used as
an advantage during the design of a control strategy. As
their deformations are the direct reflection of external forces,
their shapes can be used to estimate these interactions. This
approach has been investigated using different deformation
sensors as Bragg fibers [10], [11], [12] or cable tension
sensors [13].

Although the use of proprioceptive sensors can be the solu-
tion in certain configurations or applications, their integration
on a CR is not straightforward, especially at small scale.
Robots deformations are then more easily estimated by ex-
teroceptive sensors. Among these are magnetic sensors [14],
cameras [15], [16], x-ray imaging [17], optical-coherence
tomography [18] as well as ultrasound imaging [19], [20].
Vision-based methods in particular are indeed less invasive
but have also usually lower costs and a more flexible range
of use.

Vision-based force estimation methods require first to
estimate the deformation of the CR. Then, from the measured
shape, the two usual ways of estimating external loads
are model-based and curvature-based methods as shown in
Fig. 1. Model-based methods are built on rod deformation
models and iterative optimizations. The principle is to create
a system-like model that predicts deformations from external
guessed forces, and to make them converge by reducing
errors between the simulated and the measured shapes. The
model-based methods are usually based on the Cosserat
theory [23], [12], [24], or on simpler piece-wise constant
curvature models [25], [22] among others. However, these
approaches are often slow because of model integration and
iterative optimizations. They have also some difficulties to



TABLE I: Accuracy comparison of tip force estimation on cantilever rods and catheters (single planar bending).

Related work Sensor Method Object dimensions (mm) Mean relative error
Back et al. [21] Vision Curvature-based L130 × Ø3 10% of applied magnitude
Hasanzadeh et al. [22] CMM machine Model-based L70 × xØ2.33 11.4% of average magnitude
Khan et al. [10] Bragg fibers Curvature-based L210 × Ø0.25 6.9% of applied magnitude
Aloi et al. [23] Vision Model-based L200 × Ø1.4 6.7% of average magnitude
Hooshiar et al. [17] Vision Curvature-based L40 × Ø6 7.5% of maximum magnitude
Al-Ahmad et al. [12] Bragg fibers Model-based L170 × Ø2.16 5.5% of applied magnitude
Xiao et al. [11] Bragg fibers Curvature-based L290 × Ø1.4 5.25% to 12.87% of applied magnitude
Proposed method Stereo-vision Curvature-based L150 × Ø1 2.2% of applied magnitude

converge with 3D and large deformations because the inverse
problem is often ill-conditioned [23].

On the contrary, curvature-based methods are not itera-
tive and do not require the integration of any differential
equations. They can provide more robust estimations with
fast computation time. The concept is to find an estimator
that links the measured shape straight to internal forces and
moments (Fig. 1b). Then, the external loads are estimated
by solving the balance of forces and moments in several
points of the CR. Obviously, this method is perfectly adapted
to CRs that embed Bragg fibers as illustrated in the recent
work [11]. However, some studies has been also performed
with vision-based shape estimation. For instance, in [21], the
curvature-based estimation is applied with a continuum robot
constrained in planar motion yielding an interesting result
because the obtained estimation error is approximately 10%
of the applied force. The same order of estimation error is
reported in [17] using real-time x-ray imaging and Bézier
curve smoothing.

Both methods require a precise and robust shape measure-
ment method. One challenge to force estimation on CRs is
the handling of three dimensional external forces. Most of
the above-mentioned works deal with planar deformations
and loads, generally yielding an external force estimation
with error between 5% and 10% of the applied magni-
tude as reported in Table I. Additional methods dealing
with 2.5D configurations (i.e., slightly extra-planar loads,
but quasi-planar deformations) [10], [11] reported similar
performances in term of accuracy and robustness. In fact, the
tri-dimensional deformations lead to increased complexity
in the force estimation for various reasons including: the
challenging accurate reconstruction of the 3D deformations,
the necessary estimation of the torsion, the ill-conditioning
issues, etc. One of the most advanced works dealing with the
estimation of 3D external forces is probably the one reported
in [12] yielding an accuracy of approximately 5.5% using
several Bragg fibers embedded along the CR.

In this paper, we set up an accurate and versatile 3D
reconstruction method suitable for all shapes and sizes of
thin continuum robots without any additional visual markers
nor embedded sensors. Furthermore, we develop a curvature-
based approach to estimate the 3D tip forces on a longitudi-
nal deformable structure based on the direct measurement of
its shape. Also, the proposed force estimation method is real-
time and does not require any optimization method usually
used for such problem whose performances depend directly
on the proper conditioning of the optimizer. The developed

force estimation method allows to robustly filter out mea-
surement noise and artefacts. One of the main advantages of
the proposed method is the ability to work in 2D (planar
forces estimation without torsion) and 3D (spatial forces
estimation) configurations. Finally, the proposed method and
material were successfully evaluated both numerically and
experimentally.

The remainder of this paper is organised as follows. In
Section II, we introduce the stereo-vision-based framework
for 3D reconstruction of unknown shape rods. Section III
presents the developed method for forces estimation on
longitudinal deformable structure. The numerical validation
of the proposed methods and materials is discussed in
Section IV, when the experimental validations are discussed
in Section V.

II. SHAPE RECONSTRUCTION OF RODS BY
STEREOVISION

The first step of the proposed forces estimation approach
consists of the shape reconstruction of the CR. Thus, this
section deals with the tri-dimensional reconstruction of longi-
tudinal deformable structures (e.g., rods) using a stereovision
system and the epipolar geometry principles.

A. Epipolar Geometry

The stereovision system consists of a pair of standard cam-
eras placed remotely in a manner to visualize the deformable
structure with a given angle of view for each camera (Fig. 2.
Therefore, the cameras provide a pair of images of a rod
used to reconstruct a set of n measured 3D positions p(si)
for i = 1, ..., n at arc length position si.

It can be noticed that most of continuum robots are
made of uniform and monochrome materials (e.g., Nitinol,
different types of polymers, silicon, etc.) which raises the
problem of the lack of visible and recognizable visual
features that can be easily and accurately detected, matched
and tracked over time. By the way, although we want to add
artificial markers, it is often difficult to integrate them on the
continuum robot due to the size and the incompatibility with
the targeted applications. Hence, we investigated a method
for 3D reconstruction that does not requires visual markers
or a priori knowledge of the viewed object. This method is
based on the use of the well-established epipolar geometry
principle [26] as well as image processing methods easy to
set up and sufficiently robust and accurate with respect to
the targeted applications.
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Fig. 2: Illustration of the built stereovision system used to
reconstruct the 3D shape of a rod.

1) Setup configuration and involved notations: Starting
with the introduction of the built stereovision system as well
as the notations involved in the 3D reconstruction algorithm.
Let us consider two cameras c

R
and c

L
with optical centers

o
R

and o
L

view a 3D point p = (x, y, z)>) which is
projected in 2D image points p

L
= (x

L
, y

L
)> and p

R

= (x
R
, y

R
)>. These two points are in the image plans

IR and IL, respectively. The line (o
R

o
L

) between both
the camera optical centers defines the stereovision system
baseline. The intersections of the baseline with the image
planes give the so-called epipolar points (or epipoles) e

L

and e
R

, when the lines (e
R
p

R
) and (e

L
p

L
) are known as

epipolar lines. Therefore, each 2D point p
L

in the left image
is mathematically related to the epipolar line (e

R
p

R
) in the

right image and vice-versa.
The intrinsic parameters of both the right and the left cam-

eras are defined with the matrices KR and KL, respectively.
The extrinsic parameters that represents the pose of cameras
in a common reference frame, which can be chosen as the
left camera’s frame RCL

, is defined as the 3D transformation
R

T
L

between the poses of camera c
R

and camera c
L

. This
transformation includes a 3 × 3 rotation matrix

R

R
L

and a
3× 1 translation vector RtL.

2) Epipolar projection model: The relations between a
world point p and its two projections on the left and right
images pi i ∈ [R,L] can be expressed as follows for both
the right and left cameras, respectively:

[p̃
L
]×KL [I3×3 | 03×1] p̃ = 0 (1)

[p̃
R
]×KR [I3×3 | 03×1]

RTL p̃ = 0 (2)

where I3×3 is a 3 × 3 identity matrix, 03×1 a 3 × 1 null-
matrix, p̃i = (pi, 1)

> and p̃ = (p, 1)> are the homogeneous
coordinates of pi and p, respectively, and [ ]× is a 3 × 3
skew-symmetric matrix representing a vector cross-product.

Furthermore, note that both the camera intrinsic and ex-
trinsic parameters are obtained using a well-known camera
calibration toolbox [27].

3) Rectification: In order to simplify the problem of
matching left and right image points, it is useful to perform
a rectification procedure on the images in order to make the

Fig. 3: Correlation process on rectified images of a rod.

epipolar lines, in both the right and left images, perfectly
horizontal with respect to the respective images frames. This
means that both e

R
and e

L
are located at infinity. Therefore,

each point in the right image has its match in the left image
along the same horizontal epipolar line, which makes the
matching process much easier (Fig. 3).

4) Correlation: Once the rectification is done, it becomes
trivial to determine and match the rod points between the
right and left images. Both functions are performed us-
ing a conventional zero-mean normalized cross correlation
(ZNCC) method [28]. With x, y defining an image reference
frame in pixels, the correlation error is computed at fixed
line x as following:

ε(x0, x) = min
α,β

∑
y
|αILc(x, y − β)ILc(x0, y)|2∑

y
|ILc(x0, y)|2

(3)

where x0 is the index of the first line crossing the rod, x is
the current line index, α is the correlation coefficient and β
is the transverse offset from which the disparity is computed.

Thereby, for each point piL (i = 1, · · · , n) in the left recti-
fied image ILc, we search the corresponding point piR in the
right rectified image IRc along the corresponding horizontal
epipolar line to which the point belongs. Consequently, we
obtain two coherent 2D curves representing the deformable
structure in each image as can be seen in Fig. 3.

B. Triangulation
Now, we have all the ingredients to reconstruct the contin-

uum robot geometry. The previous steps have led to two set
of matched image-points piL and piR (i = 1, · · · , n), and
an off-line estimation of both the intrinsic and the extrinsic
parameters. Using these elements, the complete shape of the
rod can be reconstructed using equations (1) rewritten as
A1 p̃ = 0 and equation (2) rewritten as A2 p̃ = 0 combined

as a unique equations system A p̃ = 0 with A =

[
A1

A2

]
.

As reported in [26], the resolution of this system can be
tackled by computing the eigenvectors. The solution is found
using an singular value decomposition (SVD) of matrix A,
giving a good estimation of p.

III. LOAD ESTIMATION FROM RODS SHAPES
With a view to the initial objective of estimating external

loads on a continuum robot by measuring it thanks to a
vision-based method, the following section aims at proceed-
ing the computed deformations of a rod to determine the
involved external tip forces and moments.
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Fig. 4: Illustration of the balance between external force and
moment.

A. Problem Statement

Continuum robots are slender actuated rods subjects to
nonlinear deformations with proper mechanical properties.
These properties as well as the initial straight configuration
are known. We assume that no distributed forces or moments
are applied along the rod except its own know gravity
attraction. Punctual force and moment localized at rod tip
are responsible for large shape deformations. The section
dimension is negligible compared to length so that the
rod is considered uni-dimensional. The shearing forces are
then ignored compared to bending and twisting moments.
Moreover, the material of the rod is taken linearly elastic
and isotropic.

Let us consider a rod whose 3D shape is defined as a
set of n measured 3D positions p(si) for i = 1..n at arc
length position si. Its proximal and distal ends are located at
arc length 0 and l (Fig. 4), respectively. The rod is at static
equilibrium, therefore the pose of each point of the rod is
the image of the local moment due to external load forces.

B. Tip Force Estimation

The external force and moment are not measurable at a
single point on a CR. But the 3D shape of the robot gives
multiple images of the local moment due to external loads.
The static equilibrium of the moments is relied upon to
deduce these force and moment. The static state of the rod
implies balanced moments and forces. Then, given a point
of the rod located at the arc length position s, the moments
applied to the portion [s, l] are balanced at s:

m(l) + d(s, l)× f(l) +w(s)−m(s) = 0 (4)

where w(s) =
∫ l
s
d(s, u)× g ρadu is the moment contribu-

tion induced by the mass of the rod portion [s, l] and:
• a is the section of the rod;
• d(s, l) is the formed vector from point p(s) to point

p(l);
• f(s) is the external force located at s;
• g is the local acceleration of free fall;
• m(s) is the external moment located at s;
• ρ is the linear mass of the rod;

The unknown tip load is expressed in (4) by the rod-
end moment m(l) = (mx,my,mz)

> and force f(l) =

(fx, fy, fz)
> (Fig. 4). Note that each 3D reconstructed point

p = (x, y, z)> of the rod yields three equations (one per
axis), then at least two points are necessary to estimate
the six unknowns of the tip load. However, for a better
precision and robustness to measurement errors, it is highly
recommended to consider a larger number of reconstructed
3D points. Thereby, (4) can be rewritten as a redundant linear
system of equations in the form of Ax = y:

A︷ ︸︸ ︷ [d(s0, sk)]× I3×3

...
...

[d(sn, sk))]× I3×3

 .

x︷ ︸︸ ︷[
f(l)
m(l)

]
+

−y︷ ︸︸ ︷w(s0)
...

w(sn)

−

m(s0)
...

m(sn)

 = 0

(5)
To solve the system (5), a QR decomposition is used in

order to transform the matrix A, as product of an orthogonal
matrix Q and an upper triangular matrix R (i.e., A = QR).
Therefore, the problem can be tackled by a backwards
substitution technique.

Building the system (5) requires a set of position points
reconstructed with vision techniques, and a set of local
moments that can be estimated from these positions as
follows.

C. Local Moment Estimation

On a 3D curve, the local section orientation follows the
deformations. Let that orientation be given by the Frenet-
Serret frame formed at each position p(s) by the tangent unit
vector t(s), the normal unit vector n(s), and the binormal
unit vector b(s) obtained as the cross product of t(s) and
n(s). The triplet of vectors are obtained as follows:

t(s) =
p′(s)

‖p′(s)‖
(6)

n(s) =
t′(s)

‖t′(s)‖
(7)

then,

b(s) = t(s)× n(s) (8)

The rod deformations are given by the curvature κ and the
torsion τ that represent the flexion and the twist, respectively.
The curvature is the deviation of the tangent from a straight
direction, locally following a circular arc. In other words,
the inverse radius of this arc is the curvature. The plane
containing this arc is named the osculating plane and contains
by definition the tangent vector t(s) and the normal vector
n(s). The torsion τ is the spatial speed of rotation of the
osculating plane, i.e. the speed of rotation of its normal b(s).
The curvature and the torsion are defined, respectively, as
follows:

κ(s) = ‖t′(s)‖ (9)

τ(s) = ‖b′(s)‖ (10)

The deformations are directly related to the local moments
m(s) through stress-strain constitutive laws which are ex-
pressed as follows:

m(s) = EIκ(s)b(s) + GJτ(s)t(s) (11)



where E is the Young’s modulus, I is the quadratic moment
of area along radial direction, G is the shear modulus and J
is the torsion constant (quadratic moment of area along axial
direction).

D. Discrete Curvature and Torsion Estimation

The computation of the local moment uses the estimation
of the tangent and binormal vectors as well as the curvature
and torsion. All these elements can be defined from the
positions p(s) and its three first derivatives [29]. However,
even if the 3D reconstruction method for rod shape esti-
mation is accurate, the deformation estimation is sensitive
to measurement noise, especially emphasized by the use of
derivatives. Indeed, the evaluation of discrete curvature and
torsion from position is challenging and has been addressed
in several ways such as B-spline smoothing [30] or weighted
least-squares curve fitting [31].

To avoid the use of 3-order spatial derivatives, the curva-
ture and the torsion can alternatively be estimated from the
osculating plane and its rotation rates around the tangent
vector as proposed by [32]. This method is more robust
to measurement noise and its implementation is available
for MATLAB1. In order to tackle the induced measurement
noise, the Frenet frame estimation is performed on a sliding
window centered at each curvilinear abscissa si. The rod
section taken in the sliding window is centered on the origin
to form the point cloud P defined as follows:

P(si) =
[
p(si−k)− p(si), · · · , p(si+k)− p(si)

]
(12)

where p(si) is the centroid of positions neighbouring p(si).
The eigenvectors of the matrix P(si) form a frame at-

tached to the estimated set of points. These are estimated
with a singular value decomposition showed in equation (13).
U(si) and V(si) are projective matrices and D(si) is the
diagonal matrix containing the eigenvalues. The eigenvectors
are the columns of U(si) and the tangent t(si) is given
by the vector with greatest eigenvalue, as in a usual line
correlation. The second greatest value gives the estimation of
the normal n(si), and the third the estimation of the binormal
b(si).

P(si) = U(si)D(si)V(si)
> (13)

The tangent and normal vectors t(si) and n(si) define the
osculating plane at si. The curvature κ(si) is then determined
as the inverse of the radius of the best fitted circle in the
osculating plane using the Taubin’s method [33].

The torsion τ(si) corresponds to the rotation rate of the
osculating plane. As the rotation of the osculating plane is
continuous, the angle between consecutive normal vectors re-
mains small but can be either positive or negative. Therefore
the torsion is computed using the normal and the binormal
at the previous position by:

τ(si) =
arcsin (b(si−1) · n(si))

si − si−1
(14)

1https://de.mathworks.com/matlabcentral/
fileexchange/47885-frenet_robust-zip

Fig. 5: Examples of simulated rods with given density
(2000kg.m−3), young modulus (81GPa), shear modulus
(32GPa), radius (0.5mm), length (260mm) and number of
points (50).

The continuity of the normal and the binormal directions
is ensured by avoiding flips that can occur on parts of the
rod with zero curvature. Therefore, the normal vector does
not always points toward the center of the osculating circle,
that results in a negative curvature.

IV. NUMERICAL VALIDATION

The validation of the tip force estimation method goes
through the evaluation of various 3D rods. To do this, it
is necessary to numerically generate a data-set of different
shaped rods. Also, the simulated rods allow evaluating all
the state variables, particularly the internal moments.

The generation of several theoretical rod shapes is carried
out with the robust finite element modeler available within
the open-source simulation framework SOFA dealing with
finite element modelling of deformable objects [34], [35].
Several 3D rod shapes are generated (Fig. 5) to cover
different possible rod deflection shapes.

The proposed force estimation method was then evaluated
on the different 3D obtained shapes depicted in Fig. 5.
The estimated forces and moments are compared to the
theoretical ones as can be seen in Fig. 6. The force estimation
gives an average error of 0.062N (respectively, a maximum
error of 0.26N) within a range of 2.6N, while the moment
estimation gives an average error of 0.0044N.m (respectively,
a maximum error of 0.0068N.m) within a range of 0.13N.m.

V. EXPERIMENTAL VALIDATION

A. Shape Reconstruction Validation

1) Vision setup: The vision shape estimator is built from
two cameras placed at the same distance from a targeted rod,
with a slightly different orientation and position as shown in
Fig. 7. The rod to be reconstructed is fixed at the front of a



Fig. 6: Comparison of estimated tip force and moment with
theoretical ground values for the ten simulated rods presented
in Fig. 5.

Fig. 7: Vision setup with cantilever rod.

black screen and enlightened in order to increase the contrast
between the rod and the background more suitable for the
correlation-based matching method.

2) Shape estimation: The 3D reconstruction process has
been tested on single rods with various 3D shapes. Figure 8
shows several examples of reconstruction of different bent
and twisted wires compared to the real ones. The experi-
mental conditions being variable, some adaptive parameters
are added to the process in order to make it more versatile.
Among these, a coefficient for brightness, an upper boundary
for rod diameter detection and the maximum allowed corre-
lation shift. Allowing the user to change these parameters
has made the process more robust and the shapes are then
precisely reproduced for rods of several materials (steel, glass
and plastic) whose diameter varies from 0.25mm to 2mm.

B. Model Validation

In order to verify the model, an experiment is conducted
with a carbon fiber beam deformed to 4 different shapes
with known tip orientation and position. The principal pa-
rameters are determined experimentally, the radius (0.5mm)
is measured with a calliper, the density (3032kg.m−3) is
measured with a precision balance and the young modulus
(60GPa) and shear modulus (24GPa) are estimated with a 3-
point flexure test. The shape is reconstructed by vision and

Fig. 8: Four examples of 3D shape reconstruction of bent
and twisted wires.

Simulated rod

Rod shape estimated

from vision

Fig. 9: Rods simulated from real rod end poses.

compared to a theoretical rod shape generated obtained with
SOFA from the same parameters (Fig. 9). This validates the
coherence and the reliability of both the vision process and
the measured rod parameters used for the generated model.
Note there is a minor shift between the reconstructed rods
and the simulated ones. Two potential origins of error are
envisaged: 1) the existence of an initial curvature/stress (not
be taken into account in the model) when the rod is initially
considered perfectly straight and 2) small lateral errors in the
correlation process on rectified images, due to the acquisition
conditions (blur, shadow). However, these shifts between 3D
real shapes and reconstructed ones remain insignificant to
actually impact the accuracy of the proposed force estimation
method.

C. Moments Estimation

In order to validate experimentally the proposed force
estimation method, we used a 150mm long steel cantilever
rod (as depicted in Fig. 7) whose 3D shape has been recon-
structed by the vision method. As mentioned in Section III-D,
the efficiency and accuracy of the estimation of local curva-
ture and torsion and then the local moments depend directly
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Fig. 11: a) Perspective view of the shape reconstruction of
a cantilever rod with estimated internal moments, and b) a
top view of the estimated internal moments.

on the ability to handle noise in position measurements. To
highlight this, a comparison is made between Frenet bases
estimated 1) from derivatives of positions after a B-Spline
smoothing and 2) from the fitting of the osculating plane and
circle (Frenet robust).

The rod is weighted with a 0.24N load at its end so
that the deformations remain planar and there is no torsion
involved. The moments are then all pointing to the same
direction with decreasing magnitude. As shown in Fig. 10,
the proposed method gives a more accurate estimation of the
moments with an average error of 0.54mN.m and a maximum
error of 0.99mN.m whereas the B-Spline smoothing method
gives an average error of 1.47mN.m and a maximum error
of 3.02mN.m. The local moments are represented on the
reconstructed rod shape in Fig. 11.

D. Load Estimation on Cantilever Rods

The previous experiment has been conducted on five
cantilever rods loaded with several masses from 12.8g to
35.48g in order to validate the accuracy of the method
over a large range of loads. The measured parameters are
the density (3032kg.m−3), the young modulus (60GPa), the
shear modulus (24GPa) and the radius (0.5mm). The vision
process gives the length of the rod (158mm).
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Fig. 12: Tip force and moment estimation errors on cantilever
rods.

The forces due to the hanged weight are known and
compared to the estimated forces, as shown in Fig. 12.
The resulting errors are 2.2% on average of the applied
forces when are 2.7% of applied moments, with maximum
errors of 4.4% and 5.1%, respectively. It can be highlighted
that the proposed method outperforms the state-of-the-art
methods as can be seen in Table I. Note that, the more
relevant method reported in the literature stated an accuracy
of approximately 5.5% using Bragg fibers as means for the
rod shape reconstruction.

E. Load Estimation from 3D Deformation

The force estimation tool developed in this paper has
been tested on a rod deformed by hand to show applied
force magnitude and direction at any time. Fig. 13 shows
different rod deformations with the corresponding force and
moment estimations in overlays. These experiments can be
much more appreciate on the supplementary video file. These
experiments illustrate the robustness of the proposed method
to detect, to reconstruct and to estimate tip load in real
conditions and paves the way to the force sensing/control
of continuum robots.

VI. CONCLUSION

In this paper, an accurate and fast method to estimate tip
loads on a continuum rod based on curvature calculation
has been presented. Magnitude and direction are estimated
for both external forces and moments from stereo images.
Simulations on various rods with large deformations showed
a precision of 0.062N within a range of 2.6N in the force
measurement and experimental results on cantilever rods
showed an accuracy of 2.2% of applied magnitude. The
method can be applied to any 3D deformations of a rod
without additional visual markers nor embedded sensors.
In future work, we aim to implement this method for the
force/position control of a parallel continuum robot. We also
intend to use this method as an adaptive haptic feedback
sensor.
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