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ABSTRACT: 

Granular materials are now known to be an illustration of complex materials as they display 

emergent macroscopic properties when loaded. An initially homogenous response can 

bifurcate into a heterogeneous one with the appearance of a rich variety of structured 

kinematical patterns. The shear banding that ensues illustrates a symmetry-breaking transition 

with multiple choices of macroscopic behaviours, a common feature of dynamical complex 

systems. Even though the phenomenon has been studied for decades, this regime transition 

remains mostly mysterious in geomaterials, with no convincing arguments that could link it to 

the underlying microscopic mechanisms. The paper investigates this issue by invoking the 

fundamental minimum entropy production theorem established by Prigogine in the past 

century to seek any connection with the second-order work theory in the mechanics of failure. 

A general equation linking the derivatives of the entropy of a mechanical system to the 

second-order work is thus inferred, which leads to a thermodynamic interpretation of 

bifurcations in the failure behaviour of granular materials under a given loading. This is 

verified through discrete element simulations that highlight the fundamental role played by 

the elastic energy stored within a granular material before a bifurcation occurs, which also 

corresponds to a minimization of the entropy production. The analysis suggests a new 

interpretation of the intriguing shear banding phenomenon as a bifurcation with the 

emergence of ordered dissipative structures germane to nonequilibrium thermodynamics of 

open systems. 
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1. INTRODUCTION 

 

The term "dissipative structure" was coined in 1969 by Ilya Prigogine to emphasize that far 

from thermodynamic equilibrium, when systems are traversed by flow of matter and energy, 

structuring processes leading to spontaneous organization can occur within these systems 

(Glansdorff and Prigogine, 1971; Nicolis and Prigogine, 1977). The association between 

structure and dissipation is apparently paradoxical since the former evokes order while the 

latter calls for waste, disorder, and degradation. This is because the second principle of 

thermodynamics, which deals with dissipative processes, has traditionally been related to the 

irreversible evolution of a system toward a state of equilibrium identified as the state of 

maximum disorder where all the usable energy of the system has been degraded. However, 

the discovery of dissipative structures reveals that those irreversible processes, far from 

equilibrium, can also play a constructive role and become a source of order (Prigogine and 

Lefever, 1975; Nicolis and Prigogine, 1977; Lefever, 1978). 

 

It is worth recalling that a given system is said to be in thermodynamic equilibrium under 

constant temperature when any fluctuation that takes place stays bounded and eventually 

vanishes. When a system is in thermodynamic equilibrium1, it is automatically in mechanical 

equilibrium which is a less restrictive equilibrium type. Mechanical equilibrium imposes that 

the external tractions applied on the boundary of the system are balanced by the internal stress 

field developing within the system. Conversely, when a system is not in mechanical 

equilibrium, it is out of thermodynamic equilibrium. In that case, any fluctuation developing 

within the system (that can be spontaneous or imposed) is likely to grow, making it evolve in 

an irreversible way toward another state. Irreversibility means that the system cannot return 

spontaneously to the previous states without any external exchange, mainly because of 

internal dissipative processes. In this regard, the notion of time and space scales is 

fundamental, as discussed in a review paper by Veveakis and Regenauer-Lieb (2015). In 

accordance with the Fluctuations Theorems (Evans and Searle, 2002), for systems at 

equilibrium, fluctuations vanish through dissipative mechanisms occurring at elementary 

(microscopic) scales over small time scales. Dissipative processes initially stay uncorrelated 

with each other within the system. When dissipative mechanisms extend and grow, they 

become correlated with a marked incidence on the behaviour of the system. In such a case, the 

                                                 
1 In the following, when no confusion is possible, the word “equilibrium” used alone will refer to 

“thermodynamic equilibrium” 
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system enters progressively an out-of-equilibrium regime where internal fluctuations grow to 

eventually lead to an irreversible process from a macroscopic point of view both in space and 

over time. 

 

Classical thermodynamics has always included the antagonistic concepts of order and disorder. 

Following Boltzmann’s illuminating contribution, the ordered macroscopic state is known to 

be a rare state, i.e., when huge numbers of the elementary units of a complex system are found 

in a limited number of microscopic configurations such as molecules restricted to move in the 

same direction. By contrast, a disordered state is achieved when a huge number of 

microscopic configurations is necessary to describe the state of the system as, for example, 

when molecules move incoherently in all possible directions (Parisi and Sourlas, 2002). The 

classical laws of thermodynamics refer to these “disordered” states through entropy, and the 

system at equilibrium continuously fluctuates around average values determined by these laws 

in the context of the mean field theory. It is of paramount importance to note that the second 

principle of thermodynamics states that, close to the equilibrium, any fluctuation which brings 

this system out of the state of equilibrium should vanish. In short, the disorder is ‘stable’. 

 

However, when a macroscale system is brought far from equilibrium (out-of-equilibrium 

state), disorder is no longer ‘stable’. Fluctuations at the micro scale, instead of vanishing, can 

be amplified. The system then bifurcates towards a new response mode, where a gain in order 

(as a restriction of the number of reachable microscopic configurations) can be observed 

together with a new topological organization of the energy dissipation. A well-known 

example is the Rayleigh-Bénard cells, that form within a liquid layer whose lower surface is 

heated (Bénard, 1901; Rayleigh, 1916; Chandrasekhar, 1961). Such a liquid contains billions 

and billions of molecules which, instead of following a disordered motion, organize 

themselves into structured macroscopic cells. In systems where chemical reactions take place, 

the deviation from equilibrium is often not large enough for dissipative structures to appear. 

But on the other hand, when so-called non-linear reactions (e.g., autocatalysis and mutual 

catalysis) are present, fluctuation amplifications can occur and lead to very diverse chemical 

patterns (Turing, 1952), including among others the famous chemical clock pattern 

(Béloussov-Zhabotinsky chemical reaction; Hudson and Mankin, 1981). In brief, a variety of 

bifurcation modes can appear, making the system no longer homogeneous, with a spatial or a 

time structuration that gives the system intrinsic dimensions. 
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It is worth noting that the discovery of dissipative structures has a significance that goes 

beyond physics, by addressing fundamental issues such as self-organization in biology, life 

and the becoming of Nature (Prigogine and Stengers, 1979). In fact, dissipative structures 

seem to emerge in complex systems, that are known to give rise to a wide spectrum of 

emerging properties (Damper, 2000; Aziz-Alaoui and Bertelle, 2009). Among complex 

systems, granular materials have attracted a marked interest in the past few years in materials 

sciences. Granular materials are involved in a variety of engineering purposes, such as 

pharmaceutical engineering, food particle storage, geological mass-driven hazards, and civil 

engineering. It was highlighted that granular materials exhibit a wide spectrum of emergent 

features that have been intensively investigated (see for example Nicot and Darve, 2007a and 

2007b; Tordesillas, 2007; Tordesillas and Muthuswamy, 2009; Walker and Tordesillas, 

2010). As a manifestation of complexity, several properties are observed at the specimen scale 

(also referred to as the macro scale), whereas those properties are absent at smaller (micro) 

scales, namely the particle scale or even larger scales involving a few grains. For example, the 

existence of a plastic flow rule that can be regular or irregular (Nicot and Darve, 2007a and 

2007b), or the existence of a bifurcation domain in which a variety of failure modes can be 

encountered (Bigoni, and Hueckel, 1991; Petryk, 1993; Nicot and Darve, 2011) are some of 

the salient constitutive properties that can be observed on the granular assembly scale. 

 

As for the existence of a bifurcation domain, the sudden appearance of a shear band within 

granular materials when sheared (as for example during the conventional drained triaxial 

compression test – axial compression under constant lateral stress; Desrues and Chambon, 

2002), patterning of the material in several structured zones, has received much attention over 

the past decades. Such features can be observed irrespective of the scale considered: along 

faults during earthquakes, in large rocky cliffs, or in laboratory test specimens. Focusing on 

the lab scale, the fundamental reasons why a specimen along a continuous loading can 

spontaneously lose its (kinematic and microstructural) homogeneity to give way to a 

structured pattern remain largely mysterious. Taking advantage of the background developed 

by Hill (1962) and Mandel (1966) in relation to the occurrence of acceleration wave 

propagation discontinuities (see also Regenauer-Lieb et al., 2021 for a very interesting 

extension), the occurrence of such events can also be modelled by the Rice-Mandel criterion 

(Rice, 1975; Rudnicki and Rice, 1975). This criterion was recognized later as a subset of the 

broader second-order work criterion introduced in the middle of the past century by Hill 

(1958). More recently, the second-order work theory was formalized further (Nicot et al., 
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2012), by establishing a direct relation between the sudden occurrence of an outburst in 

kinetic energy, and the vanishing of the (internal) second-order work corresponding to the 

non-positive definitiveness of the symmetric part of the constitutive operator relating both 

incremental stress and strain operating on the material point scale. Along a given loading 

path, all mechanical states corresponding to the non-ellipticity of the symmetric part of the 

constitutive operator thus define the bifurcation domain. In such a domain, an operative 

(effective) failure of the material can only occur according to the loading direction applied, 

and to the loading control adopted (Wan et al., 2017).  

 

Granular plasticity, through mesostructural rearrangements, was recognized to be a key 

ingredient for the emergence of potential material instabilities (Wautier et al., 2018). 

However, the link between material instabilities and the framework of the out-of-equilibrium 

thermodynamics remains to be investigated in the light of the pioneering contributions of 

Bazant (1988 and 1989) who was the first to relate in a proper formalism the second-order 

work to entropy-based thermodynamic considerations. Thus, the purpose of this paper is to 

address this issue by deriving an equation relating a potential increase in kinetic energy within 

the system (marking a transition from a quasi-static toward a dynamic response regime) to the 

second-order time derivative of the total entropy of the system. This result augurs well with 

the fundamental minimum entropy production theorem established in the past century by 

Prigogine (Glansdorff and Prigogine; 1954, 1963 and 1964). The findings are then discussed 

within the framework of granular materials subjected to shear loading conditions and offer a 

proper conceptual foundation to interpret the development of shear bands as the emergence of 

dissipative structures. 

 

Throughout this paper, only rate-independent materials are considered. Soil mechanics 

convention will be used with strains taken as positive in compression. Vectors, matrices, and 

tensors are represented in either bold face or index notation. Einstein notational convention is 

used such that repeated indices mean summation. Moreover, time and spatial derivatives of 

any term   will be distinguished by denoting   the incremental variation with time of   

(defined as the product of the particulate derivative   by the infinitesimal time increment t ) 

with respect to a given frame, and by denoting d  the spatial differential of   with respect 

to the spatial coordinates ix , with i

i

dx
x

d



=


 . Here, it must be cautioned that the common 
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notation   should apply only to state functions that are not path dependent. For example, if 

  corresponds to the rate of heat and work supplied to the system, it cannot be interpreted as 

a state function and hence deals with inexact differential (Teixeira-Dias, 2017). In this paper, 

as the uncertainty related to the path dependent integration of inexact differentials is bounded 

by extrema of entropy production, it is not necessary to introduce a special notation for 

inexact differentials. Thus, the same notations will be used for path-dependent terms such as 

heat in heat-related terms, or internal and external entropy. Moreover, whenever   is a force 

or a stress term, the rate of   should be understood as a material, objective derivative such as 

the Jaumann rate whose definition is frame independent. Here again, in order not to obfuscate 

the notations, the same overdot symbol will be used throughout the paper. 

 

 

2. THERMODYNAMICS BACKGROUND 

 

The incremental variation of the total energy totE  of a given closed system can be expressed 

as in Eq. (1), where 
cE  denotes the kinetic energy of the system, intE  is the internal energy, 

extP  is the external power of forces applied to the system, and Q  is the heat power provided 

to the system: 

( ) ( )inttot ext

cE E E P Q t  = + = +  (1) 

 

The external power comprises a volume term involving body forces =γ g  acting within the 

volume V  (   being the mass per volume of the material, and g  the acceleration due to 

gravity), and a surface term with tractions f  applied to the system boundary V , as follows: 

ext

i i i i

V V

P u dv f u ds


= +   (2) 

 

Likewise, the heat power reads: 

i i

V V

Q r dv q n ds


= −   (3) 

 

where the first integral corresponds to the radiated heat within the system body, and the 

second integral accounts for the boundary conduction heat transfer with a heat flux q . 
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Invoking the theorem of kinetic energy that reads: 

( )i

c i i ij

jV V

u
E f u ds dv

x


  




= −

   (4) 

 

and combining with Eq. (1) finally give: 

int i
ij i i

jV V V

u
E r dv dv q n ds

x
 




= + −

    (5) 

 

Equation (5) expresses the internal energy intE  within the system in an integral form. Noting 

int

V

E e dV=  , where e  denotes the specific internal energy, the equation can be written 

with a local formulation as follows: 

i i
ij

j i

u q
e r

x x
  

 
= + −

 
 (6) 

 

The resulting Eq. (6) corresponds to the first law of thermodynamics. 

 

Under the external thermal and mechanical loading, the entropy S  of the system should 

evolve. This evolution can be split into two parts, as follows: 

intextS S S= +  (7) 

 

where extS  denotes the rate of entropy exchanged with the external medium, and intS  denotes 

the rate of internal entropy. It then follows that: 

ext i
i

V V

qQ r
S dv n ds

  


= = −   (8) 

 

where   is the thermodynamic temperature. 

Furthermore, the second law of thermodynamics imposes that int 0S   (zero in case of 

reversible processes). This term can be expressed as 
int

V

S dv



=  , where   denotes the total 

dissipation rate taking place within the system. Noting 
V

S dv =  , where   is the specific 

entropy, it can be shown that: 
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i i

i i

q q
r

x x


   



 
 = − + −

 
 (9) 

 

where int i

i

q
r

x
   


 = − +


 stands for the intrinsic dissipation rate, whereas th i

i

q

x






 = −


 

represents the conduction heat dissipation rate. Introducing the Helmholtz specific free energy 

e   = − , and taking advantage of the first law of thermodynamics as expressed in Eq. (6), 

yield: 

( )int i
ij

j

u

x
   


 = −  + +


 (10) 

 

The second law of thermodynamics states that: 

( ) 0i i
ij

j i

u q

x x


   



 
−  + + − 

 
 (11) 

 

This relation is known as the Clausius-Duhem inequality. 

 

The intrinsic dissipation, as expressed in Eq. (10), corresponds to any process for which 

dissipation is not solely thermal. This will be explored further in the next section, by 

addressing the case where a material system is subjected to a mechanical loading applied on 

its boundary under isothermal conditions. 

 

 

3. EVOLUTION OF A MATERIAL SYSTEM UNDER EXTERNAL FORCES 

3.1 Preamble 

 

Throughout this section, a system consisting of a volume oV  (with o oV =  ) of a given 

material, initially in a configuration oC  is considered. After a loading history, the system is in 

a strained configuration C  and occupies a volume V  (with V =  ), in mechanical 

equilibrium under a prescribed external loading. This loading is controlled by specific 

boundary static or kinematic parameters, referred to as the control parameters. It will be 

assumed hereafter that no chemical reactions take place within the system, and that no matter 

is being added to or removed from the system, i.e., a closed system. For the sake of simplicity, 
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the thermal capacity of the material will be assumed to be very large, so that the temperature 

of the system is virtually constant. This assumption does not weaken the scope of the 

approach, in the sense that we mainly investigate the contribution of mechanical processes 

responsible for the intrinsic dissipation (Collins and Houlsby, 1997). 

 

We introduce the transformation   relating each material point x  of the current 

configuration C  to the corresponding material point X  of the initial configuration 
oC . The 

continuity of the matter ensures that   is bijective, i.e., the transformation is invertible with a 

one-to-one correspondence. One consequence is that the Jacobian J  of the tangent linear 

transformation (deformation gradient) F , with /ij i jF x X=   , and its determinant being 

strictly positive. The displacement field u  of material points between both initial and current 

configurations is defined by the relation = +x X u , with u  being a function of X . 

 

In what follows, we investigate the stability of the system at a given thermodynamic state, 

under a given externally prescribed loading. 

 

3.2 The second-order work equation 

 

Let us consider the material system at equilibrium at time t. If a change in the loading 

parameters is applied at time t over a small duration t , the evolution of the system is shown 

to follow in Lagrangian formulation (See Appendix 1): 

( ) ( )
2( )

4 o o

i
c c i i o ij o

V
i

ut
E t t E t f u ds dv

X

 
+  = + −  

 
   (12) 

 

where Π  corresponds to the Piola-Kirchhoff stress tensor. Following Murnaghan’s first 

attempts and Hill’s pioneering contribution (Murnaghan, 1944; Hill, 1958), the two terms 

inside brackets in Eq. (12) involve second order works herein called 2

extW  and 
int

2W  due to the 

loading variables controlled by the external world on the boundary of the system, and the 

intrinsic constitutive properties of the material at hand, respectively. Further details can be 

found in Nicot and Darve, 2007; Nicot et al., 2012; Wan et al., 2017. 
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It thus transpires from Eq. (12) that the incremental evolution of the kinetic energy of the 

system within a finite time interval  ;t t t+   is governed by the difference between the 

external and internal second-order works. If we further assume that the kinetic energy of the 

system is zero at time t, namely ( ) 0cE t = ,  

( )
2

int

2 2

( )
( ) ( ) ( )

4

ext

c

t
E t t W t t W t t


+ = +  − +   (13) 

 

This equation indicates that the kinetic energy of the system may abruptly increase from an 

equilibrium configuration, according to the competition between the external loading applied 

to the system (term 2

extW ), and the capacity of the system to adapt against this external loading 

through its constitutive behaviour responsible for internal stress and strain fields (term int

2W ). 

This is also reminiscent of the zero-acceleration wave condition first proposed by Hill (1962). 

In such eventuality, the system bifurcates from a quasi-static regime towards a dynamical 

regime. Conversely, when the system is able to sustain the external loading, both terms 2

extW  

and int

2W  are equal, and Eq. (13) indicates that no increase in kinetic energy occurs. The 

system then stays in a quasi-static regime over the time increment t  such that 

( ) ( ) 0c cE t t E t+  = = . 

 

To illustrate this theoretical result, one can refer to the classical drained triaxial laboratory test 

in geomechanics to explore the constitutive properties of geomaterials. During this test, a 

material sample is first isotropically compressed under a prescribed confining pressure o . 

Then, the lateral pressure exerted onto the lateral walls is kept constant ( o ), while the upper 

platen is kinematically controlled with a downward motion at a constant displacement rate. In 

short, the axial (direction 1) strain rate 1F  is positive and constant, while the lateral (directions 

2 and 3) pressures are kept constant: 
2 3 o = = . For an initially dense specimen, a typical 

stress-strain response curve, as depicted in Fig. 1, can be obtained. 
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Fig. 1. Typical stress-strain response curve of a dense soil specimen along a drained triaxial loading path. 

 

The axial stress 1  monotonously increases until reaching a peak ( 1̂ ), then decreases until 

approaching a steady-like, asymptotic regime. This latter regime is known as the Critical State 

regime, with no more volume change nor stress evolution. Close to the peak stress during the 

hardening regime, it is often observed the development of a localized kinematic pattern 

consisting of a single (or multiple) band(s) crossing the specimen from bottom to top. This 

pattern is referred to as a shear band and can have various topologies with sometimes multiple 

reflections on the sides according to various factors. The latter include: specimen geometry, 

presence of defects or heterogeneities, loading conditions, as well as boundary conditions 

imposed by the loading platens as illustrated in Fig. 2.  

 

 

 

Fig. 2. Example of shear band formation within a geomaterial specimen subjected to a drained triaxial loading; 

after Desrues and Ando, 2015. 
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If at the peak stress, the loading control was switched from a kinematical control to a statical 

one (for example, a small axial stress increase could be imposed instead of prescribing a 

constant axial strain rate), the specimen would abruptly collapse, marked by violent outbursts 

in kinetic energy and large deformations. This is in perfect accord with the theoretical 

predictions of Eq. (13) (Nicot et al., 2012). At the peak stress, Fig. 1 indicates that the internal 

stress should decrease as the material has exhausted all mobilization of mechanical strength 

against applied loads. In fact, if external loading were to be next increased, an imbalance 

would occur between what is imposed on the boundary of the system and what the 

constitutive properties of the material allow in terms of internal stress. As a result, a (time) 

bifurcation occurs from a quasi-static response to a dynamic one (Nicot et al., 2012; Wan et 

al., 2017). 

 

On the other hand, if the loading control were kept unchanged, no outburst in kinetic energy 

would be observed, but a (spatial) kinematic bifurcation would occur. The system dissipates 

energy in terms of the emergence of a patterned deformation. The incremental strain field is 

no longer homogeneous (as roughly observed before the peak) ― the incremental strain field 

is heterogenous, with one or more shear bands crossing the specimen. 

 

It is worth noting that both loose and dense specimens will behave in totally different ways 

under a drained triaxial loading. The dense case gives rise to a peak stress followed by a 

softening regime corresponding to the formation of a shear band, whereas the loose one will 

experience a hardening regime until reaching an asymptotic plateau in the absence of any 

shear localization. Also, heterogeneities in local density or void distribution that develop 

during loading history are a determinant for shear band branching in the form of various mode 

switchings and the associated entropy rate productions. 

 

The above phenomenon can also be verified from numerical discrete simulations (based on a 

discrete element method; see for example Cundall and Strack, 1979), as shown in Fig. 3. For 

comparison, two specimens of different initial density are considered: a dense specimen on 

the left, and a loose specimen on the right in Fig. 3. The distribution of the incremental 
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deviatoric strain d  (see footnote 2) reveals a clear heterogeneous pattern in the case of a 

dense specimen, with a shear band crossing the specimen roughly along a diagonal. The shear 

band appears as a narrow domain in which d  is much more intense than in the rest of the 

specimen. Interestingly, this is no longer the case when the initial porosity is increased. 

 

 

 (a) Dense  (b) Loose 

Fig. 3. Distribution of incremental deviatoric strain within a granular assembly subjected to a drained biaxial 

loading. A shear band has clearly developed within the dense specimen after the stress peak is reached (a), 

whereas the distribution remains much more random and roughly homogeneous within the loose specimen (b). 

The distribution has been computed for an axial strain increment 
3

1 10 −= ; (Liu et al., 2018). 

 

The purpose of what follows is to discuss this loss of homogeneity as a kinematic bifurcation 

in relation to thermodynamics. 

 

 

3.3 The second-order work approach in the light of thermodynamics 

3.3.1 General setting 

                                                 

2 In 2D conditions, ( ) ( )11 22 11 22

1 1 1

2 2 2
d ij ij ij ijI I      

   
= − + − +   

   
, where ijI  is the 

identity matrix 
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In the example discussed above (Fig. 3), the occurrence of a shear band at the peak stress 

could be regarded as a structuring event within the material sample. Focusing on granular 

materials, as will be done in section 4, the shear band coincides with a gain in order in the 

sense that the kinematic pattern is no longer random as it might have been before the peak 

stress for a dense specimen (Fig. 3a) or in a loose specimen (Fig. 3b), but organized within 

specific spatial zones. The objective of this section is to analyze this transition by invoking 

the thermodynamic equations coupled with the second-order work equation (Eq. 13). 

 

As the thermodynamic temperature within the material system is assumed to be constant 

(isothermal conditions) and homogeneous, the dissipation potentials written in Lagrangian 

formulation are: 

0th

o =  (14) 

int i
o o ij o ij ij

j

u
F

X
 


 = −  + = −  +


 (15) 

 

During loading, the specimen stores a part of the external work into elastic energy at contacts 

which corresponds to the free energy in the sense that it is usable energy available in the 

system that can be later retrieved and transformed. At the contact scale, this elastic energy is 

reversible; however, this is no longer true at the specimen scale where geometrical effects 

come into play. The latter are also responsible for the strong coupling between both elastic 

and plastic mechanisms. The reader can refer to Nicot and Darve (2006) for a discussion on 

this issue. In essence, the free energy can also be defined as the maximum stored energy that 

can be used as elastic work exchanged with the outside or dissipated within the system into 

plastic work. Even if the local elastic strain energy, on the contact scale, is recoverable, this is 

no longer true on the macroscopic scale: the macroscopic elastic strain energy is not totally 

recoverable, which led to the notion of frozen energy (Collins and Muhunthan, 2003; Collins, 

2005; Nicot and Darve, 2006). 

 

The internal power ij ijW F=   can therefore be split in an elastic part eW  and a plastic 

counterpart pW : 

e pW W W= +  (16) 
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The classical decomposition 
e p

ij ij ijF F F= +  ensues from Eq. (16), with 
e e

ij ijW F=   and 

p p

ij ijW F=  . Thus, on the boundary of the system, the displacements can also be 

decomposed as: e p

i i iu u u= + , where e

iu  corresponds to the elastic part of the displacement 

taking place on the boundary, and p

iu  to its plastic counterpart. 

 

Noting that the rate of the Helmholtz free energy is 
e

o ij ijF  =  , the internal dissipation 

potential in Eq. (15) reduces to 
int p

o ij ijF =  , which corresponds to the intrinsic dissipation 

rate solely emanating from all contacts, which is always positive, i.e.  

int 0p

o ij ijF =    (17) 

 

which follows the second law of thermodynamics. 

As 
int

int

o o

int o
o o o

V V

S dv dv 



= =  , it can also be written that: 

int p

o ij ijF   =   (18) 

 

where int  corresponds to the specific internal entropy within the system. 

 

Furthermore, the external entropy flow can be related to the dissipation taking place on the 

boundary of the system, namely: 

o

ext ext p

i i oS f u ds


= −  (19) 

 

where ext = , as isothermal conditions are assumed. 

Finally, it can be written that: 

o

o

p p
ij ij i i

o o

V

F f u
S dv ds

 


= −   (20) 

 

3.3.2 A second-order entropy equation 

 

Let us now assume that at time t , the system is in mechanical equilibrium under a prescribed 

external loading. An incremental loading distribution ( f  or u ) is smoothly imposed on the 
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boundary of the system from time t  to time t t+ , making the system evolve. The first order 

time derivatives can therefore be supposed equal to zero at time t . Let us examine the 

different terms at time t t+ . Equation (18) reads: 

int ( ) ( ) ( )p

o ij ijt t t t F t t   +  =  + +   (21) 

 

Adopting a first-order time series expansion, the following relations hold: 

( )int int int int int( ) ( ) ( ) ( ) ( )
2 2

t t
t t t t t t t t    

 
+ = + + +  = +   (22) 

( )( ) ( ) ( ) ( ) ( ) ( )
2 2

ij ij ij ij ij ij

t t
t t t t t t t t t

 
 + =  +  + + =  +  +  (23) 

( )( ) ( ) ( ) ( ) ( )
2 2

p p p p p

ij ij ij ij ij

t t
F t t F t F t F t t F t t

 
+ = + + +  = +   (24) 

 

Thus, by virtue of Eqs. (22)-(24), and after rearranging the terms, Eq. (21) gives: 

int ( ) ( ) ( ) ( ) ( )p p

o ij ij ij ijt t t F t t t t F t t   +  =  + + + +   (25) 

 

which also can be written as: 

int ( ) ( ) ( ) ( ) ( ) ( ) ( )p e

o ij ij ij ij ij ijt t t F t t t t F t t t t F t t   +  =  + + + +  − + +   (26) 

 

Thus, combining with Eq. (12), Eq. (26) yields: 

( )
2

int

( ) ( ) ( ) ( )
( )

4 ( ) ( ) ( )

o o

o o

e

i i o ij ij o
V

c
p

ij ij o o o
V V

f t t u t t ds t t F t t dv
t

E t t
t F t t dv t t dv  



 +  + −  + + +
  +  =

 
 + − + 

 

 

 
 (27) 

 

Furthermore, using Green’s formula one gets: 

( )
( ) ( ) ( ) ( ) ( )

o o o

ijp p p

ij ij o ij j i o ij o
V V

j

t
t F t t dv t N u t t ds u t t dv

X


 + =  + − +

    (28) 

 

As the system is supposed to be at equilibrium at time t, it follows that 
( )

0
ij

j

t

X


=


 and 

( ) ( )ij j it N f t = . Thus, Eq. (27) can be rewritten as: 



- 17 - 

( )
2

int

( ) ( ) ( ) ( )
( )

4 ( ) ( ) ( )

o o

o o

e

i i o ij ij o
V

c
p

i i o o o
V

f t t u t t ds t t F t t dv
t

E t t
f t u t t ds t t dv  





 +  + −  + + +
  +  =

 
+  − + 

 

 

 
 (29) 

 

Furthermore, Eq. (19) gives: 

( ) ( ) ( )
o

ext p

i i oS t t f t t u t t ds


+  = − +  +   (30) 

 

which can be rewritten as: 

( ) ( ) ( ) ( ) ( )
o o

ext p p

i i o i i oS t t f t u t t ds f t t u t t ds
 

+  = − +  − +  +    (31) 

 

Combining Eqs. (29) and (31) finally yields: 

( )
2

int

( ) ( ) ( ) ( )
( )

4 ( ) ( )

o o

o

e e

i o ij ij o
V

c
ext

o o
V

f t t u t t ds t t F t t dv
t

E t t
S t t t t dv   



 +  + −  + +
  +  =

 
− + − + 
 

 


 (32) 

 

By virtue of Eq. (20), Eq. (35) also reads: 

( )
2 2 ( ) ( )

( ) ( )
( )

4 4 ( ) ( )

o

o

e

i i o

c
e

ij ij o
V

f t t u t t ds
t t

E t t S t t
t t F t t dv




 +  +
   +  + + =

 
−  + + 
 




 (33) 

 

It is herein emphasized that in absence of dissipative processes, the existence of an elastic 

potential precludes any outburst of kinetic energy except for the case of geometrical 

instabilities. Thus, according to Eq. (13), both internal and external second-order works are 

equal, which reads: 

( ) ( ) ( ) ( ) 0
o o

e e

i i o ij ij o
V

f t t u t t ds t t F t t dv


+  +  −  + +  =   (34) 

 

Combining with Eq. (33) finally gives: 

int

2 2 2

4
( ) ( ) ( ) ( )

( )

ext

cS t t W t t W t t E t t
t

− +  = +  − +  = + 


 (35) 

 

which highlights the key role of the imbalance between the internal mechanisms within the 

system related to material constitutive properties (
int

2W  term) and external loading (
t

2

exW  
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term). This imbalance triggers the emergence of an effective failure characterized by an 

outburst in kinetic energy and a decrease in the rate of the total entropy. The system is no 

longer able to store, nor dissipate all the input energy provided by the external loading. 

 

The occurrence of an effective failure is marked by an increase in kinetic energy from zero 

value ( ( ) 0cE t = ) to a non-zero ( ( ) 0cE t t+   ), turning the mechanical regime from quasi-

static to dynamic. According to Eq. (35), this bifurcation in the mechanical regime is 

equivalently signaled by the condition: 

( ) 0S t t+    (36) 

 

In combining with Eq. (13), it can also be derived from Eq. (33), that: 

( ) ( ) ( ) ( ) ( ) 0
o o

p p

i i o ij ij o
V

S t t f t t u t t ds t t F t t dv


+  + +  +  −  + +  =   (37) 

 

Recalling that int

o

o

p p
ij ijext i i

o o

V

F f u
S S S dv ds

 


= + = −  , it can be thus inferred from Eq. 

(37) that: 

int ( ) ( ) ( )
o

p

ij ij o
V

P t t t t F t t dv +  =  + +  (38) 

 

where int intP S=  refers to as the entropy production. 

This can also be written locally as: 

int p

ij ijP t F   =    (39) 

 

Noting that 
e p

ij ij ij ij ij ijF F F  =   +   , yields: 

( )int

2

e

ij ij ijP t q F F   +  =    (40) 

 

where ( )2

e e e

ij ij ijq F F =    is a necessarily a positive definite quadratic form. 

Also, ( )2 ij ij ijq F F =    takes a quadratic form, but not necessarily positive definite, the 

sign of which can be positive or negative depending on whether: (a) the mechanical state lies 

within to the bifurcation domain, and (b) the incremental loading ijF  (or ij ) belongs to 

the instability cone (see Wan et al., 2017, for a thorough review). Thus, as 
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int

ij ijP t F      , if ( )2 ijq F  is negative, then intP  is negative too (negative entropy 

production). 

 

It can therefore be inferred from Eq. (40) that the entropy production intP  decreases and tends 

to be minimum along an incremental loading direction belonging to the instability cone, i.e., 

such that ( )2 0ijq F   

 

Finally, inequality (36) should be compared to the main result inferred by Prigogine in the 

context of out-of-equilibrium thermodynamics (Glansdorff and Prigogine, 1964 and 1971) 

which states that the negativity of the second-order derivative of the entropy is a necessary 

condition of instability around an equilibrium state. Fluctuations can increase without turning 

back to zero, transporting the system toward a new state that is different from the initial 

stationary state. When the system stays close to the equilibrium state, Eqs. (39) and (40) are 

reminiscent of the minimal entropy production theorem, which was key in the subsequent 

expansion toward the out-of-equilibrium thermodynamics (Prigogine, 1945 and 1947; Ziegler 

and Wehrli, 1987). In fact, once the system is brought out-of-equilibrium, it reorganizes itself 

in a way that extremizes the entropy production to reach a new, more stable equilibrium state 

(Ziegler, 1983; Dewar, 2005; Veveakis and Regenauer-Lieb, 2015).  

 

In the context of the thermodynamics of irreversible processes, and particularly when dealing 

with diffusion or thermal mechanisms, instability occurs once a certain level of loading is 

reached. Indeed, Lefever (1978) writes that a certain critical amount of dissipation should 

have occurred for instability to develop. For example, Rayleigh-Bénard cells develop when 

the heating at the bottom of the fluid reaches a critical value of the Rayleigh number. Then, 

the system evolves abruptly toward a new regime giving rise to ordered cells. Such structures 

were denoted as dissipative structures by Prigogine, highlighting the fact that the system 

enters a more ordered regime to dissipate all the external energy provided to the system.  

 

Extending this reasoning to the mechanical system considered throughout this section, we 

now turn to analytical argumentations. Under the effect of the external loading, the system 

stores a part of the external work in elastic energy, the remaining part being dissipated 

through plastic mechanisms. Before the plastic limit surface is reached, the system can 

become potentially unstable, as soon as the mechanical state belongs to the bifurcation 
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domain3 (Darve et al., 2004; Darve and Vardoulakis, 2005; Nicot et al., 2012; Wan et al., 

2017). In such a situation, it was proved that the symmetric part of the constitutive operator is 

no longer elliptic, with at least one eigenvalue being negative. Thus, incremental loading 

directions exist, along which the second-order work is negative. For a suitable choice of 

control parameters (Nicot et al., 2012; Wan et al., 2017), the system can bifurcate from a 

quasi-static regime towards a dynamical one usually marked by a sudden outburst in kinetic 

energy. The essential notion of out-of-equilibrium state far from the equilibrium state, 

suggested by Prigogine, could therefore be compared to the concept of potential instability 

that occurs as soon as the mechanical state of the system belongs to the bifurcation domain. 

Such potential instabilities require that the constitutive behaviour is no longer conservative 

(plastic dissipation should take place), as the constitutive operator should admit at least one 

negative eigenvalue. Basically, as will be shown in the next section, the system approaches its 

limit capacity for storing elastic energy. At the stress peak, no more elastic energy is stored. 

 

The onset of inertial mechanisms, detected by a local increase in kinetic energy, and 

repeatedly observed along the softening regime during a drained triaxial test (section 3.2), 

coincides with the formation of a fully developed shear band, crossing the material specimen 

(as observed in Fig. 2 from lab experiments, or in Fig. 3 from discrete numerical simulations). 

This shear band corresponds to a bifurcation from a homogeneous stress-strain pattern, toward 

a structured one. The system is more ordered, with a narrow band where most of the 

dissipative processes concentrate. The shear band can therefore be regarded as an example of 

dissipative structure, in the sense suggested by Prigogine. As emphasized in several seminal 

works, dissipative structures develop far from the equilibrium, marking the break in symmetry 

of the initial homogenous configuration. The purpose of the next section is to explore with 

more details this bifurcation, by considering the mechanical response of a granular assembly 

simulated with a discrete numerical approach. 

 

                                                 
3 The bifurcation domain, for a given material, is a part of the stress space where the constitutive operator 

relating both incremental strain and stress is no longer positive-definite, and admits at least one nil or negative 

eigenvalue. When the stress state of a given material belongs to the bifurcation domain, it can be shown that a set 

of incremental stress (resp. strain) loading directions exist, along which the second-order work takes nil or 

negative values. This set of incremental loading directions is referred to as the instability cone. This cone 

belongs to the incremental stress (resp. strain) space. 
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4. MICROMECHANICAL INVESTIGATION USING A DISCRETE APPROACH 

4.1 General setting 

 

A granular assembly composed of N grains ‘p’, with Np 1 , is now considered (Fig. 4). 

Each grain ‘p’ is in contact with pn  other grains ‘q’. Each grain ‘p’ belonging to the boundary 

V  of the volume is subjected to an external force ext,p
F . It will be assumed that no torque is 

applied to the particles of V : 

Vp  ,  =ext,p
M 0  (41) 

 

In addition, the external loading will be considered equilibrating at any time: 

p V

= ext,p
F 0  (42) 

 

Under the effect of the external loading ( ext,p
F , p V ), the granular assembly rearranges 

mainly through dissipative mechanisms (such as intergranular sliding) and marginally through 

grain deformation. In most discrete approaches, such as the Discrete Element Method 

(Cundall and Strack, 1979), the grain deformation is described by grain overlapping. 

Although this process contributes marginally to the global deformation, it is the main source 

of elastic energy storage. While the external loading is increased (the external work provided 

to the system is increasing), the elastic energy stored within the system through grain 

overlapping is increasing too. 

 

 

Fig. 4. Definition of the granular assembly: Boundary of the REV and external forces. 
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4.2 Analysis of the post-bifurcated regime from a DEM approach 

 

The drained triaxial loading test as described in section 3.2 is herein used as a prototype 

example to numerically explore the thermodynamics aspects of shear banding. As such, the 

mechanical response of a dense specimen subjected to a drained biaxial loading was simulated 

using YADE DEM code (see Appendix 2 for more details) in 2D conditions with model 

parameters summarized in Table 1.  

 

Parameters Numerical values 

Specimen initial height (m) × width (m) 1.5 × 1.0 

Range of particles radii (m) 0.003 – 0.006 

Initial porosity 0.153 

Interparticle friction coefficient  0.5 

Damping coefficient 0.01 

Contact normal stiffness nk  (N/m) 5 108 

Contact tangential stiffness tk  (N/m) 5 108 

Confining pressure 
o  (kPa) 400 

 

Table 1. Parameters and numerical values used during the simulations. 

 

 

Fig. 5. Evolution of the deviatoric stress (q) and of the volumetric strain (v) with axial strain. The dashed line A 

corresponds to the characteristic point (maximal contractancy), the dashed line B corresponds to the deviatoric 

stress peak, whereas the dashed line C corresponds to the beginning of the critical state regime. 
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Fig. 5 depicts the computed deviatoric stress-strain-volumetric strain response which is 

typical for a dense sand. Characteristic points of the response are identified by lines A, B and 

C marking: maximum contractancy, peak deviatoric stress and beginning of the critical state 

regime, respectively. As the specimen is incrementally loaded, the granular assembly 

rearranges and adapts itself to external loading until the peak stress is reached. 

 

 
 

Fig. 6. Evolution of both: (a) the external work, and (b) the elastic energy stored within the system along an axial 

compression path under constant lateral stress. 

 

In line with the previous sections, the energetics of the triaxial test is next explored in Fig. 6. 

As loads are being incrementally applied so that external work continuously increases in Fig. 

6a, the system stores elastic energy elE  at contacts that can be easily computed (see Appendix 

2). It is found that the accumulation of stored elastic energy is limited as signaled by a peak 

value followed by a decrease, hinting that part of the elastic energy is being released and 

dissipated; see Fig. 6b. Interestingly, this limit in elastic energy storage is reached exactly at 

the peak stress when the shear band simultaneously develops (Fig. 7). Thus, the bifurcation of 

the system from a homogenous regime toward a heterogeneous one (corresponding therefore 

to a proper break in symmetry) is strongly governed by the maximal capacity of the system to 

store elastic energy (Sun et al., 2015). 
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Fig. 7. Distribution of incremental deviatoric strain ratio ( 1/d  )  within the granular assembly at the peak 

stress (point B, left) and at the beginning of the critical state regime (point C, right). 

 

The elastic energy stored within the system wanes after the peak stress to reach a non-zero 

plateau. This suggests an important feature characterizing the post-bifurcation critical state 

regime: the system is not able to store more elastic energy. This is perfectly in line with the 

recent findings of Liu et al. (2018, 2020 and 2022) who showed that shear band development 

during the critical state regime for dense granular specimens is marked by continuous 

microstructural rearrangements. Elastic energy continuously released from opening contacts is 

dissipated into plastic energy. Short and fast grain motions occur, associated with recurrent, 

short-range outbursts in kinetic energy. The nature of the critical state regime that emerges is 

therefore stationary only on an average sense at the macroscopic scale. From a microstructural 

point of view, the critical state consists of intense and continuous grain reorganization (Deng 

et al., 2022).  

 

As far as dense specimens are concerned, the post-bifurcated regime beyond peak stress 

corresponds to a macroscopic increase in order. The specimen becomes structured with the 

occurrence of shear banding which divides it into several zones. Thus, an increase in disorder 

on the microscopic scale is observed through repeated and intense microstructural 

rearrangements (Parisi et al., 2017). Above all, the free energy is minimal during the post-

bifurcated critical state regime. Hence, the critical state can be regarded as a proper state of 

equilibrium, where all the usable energy newly stored in the system is immediately degraded 

through a fast-fading memory process; see Deng et al., 2022. This is likely the reason why 
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such a regime is known to be so robust, acting as an attractor, irrespective of the initial fabric 

of the material (Deng et al., 2021). 

 

Interestingly, the entropy production along the loading path can be determined from the 

relation: 

int

o

p

ij ij o
V

P F dv =   (43) 

 

where the right-hand side integral corresponds to the plastic power, and the thermodynamic 

temperature   is assumed to be constant (isothermal conditions). Thus, the evolution of the 

entropy production intP  corresponds to that of the plastic power within the system.  

 

The plastic power can be readily obtained by subtracting the elastic power from the external 

power provided to the system. It should be noted that it corresponds to the plastic dissipation 

pertaining to the frictional sliding occurring at the contacts between grains. This quantity is 

accessible from the DEM computations, at each time step. As the evolution of the plastic 

dissipation energy follows a noisy signal, the derivative of such a signal would inevitably 

amplify the noise, even though the amplitude of the fluctuations in plastic dissipation energy 

remains small with respect to the mean signal. For this reason, to avoid amplification of noise, 

the raw fluctuating plastic dissipation curve has been fitted piecewise using polynomials (see 

Appendix 3), and the entropy production curve subsequently obtained by direct analytical 

differentiation to get a smooth curve (Fig. 8). 

 

As observed in Fig. 8, the entropy production reaches a peak at the end of the softening 

regime, when the critical state is reached (point C). After this peak, the entropy production 

decreases until reaching a constant value while the critical state continues to develop. As a 

result, the bifurcation of the system after the peak stress from a homogeneous state toward a 

heterogeneous one corresponds to a structuring of the material that minimizes the entropy 

production. Through a structuring pattern, the shear band will make it possible to optimize the 

plastic dissipation within the system, with a high level of dissipation within the shear band, 

whereas the dissipation level remains very small outside the band. Indeed, it has repeatedly 

been shown that sliding contacts are mainly located within the shear band (see for example 

Liu et al, 2020).  
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The shear band, as a structural medium, can therefore be regarded as a proper dissipative 

structure in the sense given by Prigogine (Prigogine and Lefever, 1968 and 1975; Glansdorff 

and Prigogine, 1971; Lefever, 1978). The emergence of this structure coincides with a gain in 

macroscopic ordering to optimize the level of dissipation within the system. It is worth 

emphasizing that the minimal value of entropy production is not reached at the beginning of 

the critical state, but only later. This suggests that while the microstructural reorganization 

after peak stress is responsible for a transition in the energy dissipation modalities, it is after 

all a long-lasting process that stabilizes after the critical state regime has started. This could 

be due to fluctuations in the shear band topology that are still operative at the beginning of the 

critical state regime.  

 

Further discussions are necessary to link the microstate continua entropies to the critical state 

regime. In fact, Prigogine’s minimal entropy production principle applies to near-equilibrium 

states. More specifically, this principle establishes that the steady state reached by a system 

corresponds to a minimal entropy production only if: (i) the system is close enough to the 

equilibrium (Onsager’s reciprocity relations hold), and (ii) the steady state corresponding to 

the minimal entropy production is unique. Otherwise, when (ii) is denied (several steady 

states exist), the maximal entropy production principle applies (MEP), and the steady state 

effectively reached by the system (local minimal entropy production) is the one corresponding 

to the largest of the different minimal entropy productions. The extremal entropy production, 

i.e., minimal entropy production vs. maximal entropy production, is still a debatable question, 

although about to be clarified (Ziegler, 1983; Dewar, 2005; Veveakis and Regenauer-Lieb, 

2015). Interestingly, Veveakis and Regenauer-Lieb (2015) discuss the extremal (min vs. max) 

entropy production diffusion mechanism across both space and time scales. In line with 

Veveakis and Regenauer-Lieb’s conjecture, we hypothesize that the delay in getting the 

minimal entropy production value well after state B stems from a diffusion mechanism from 

the elementary grain contact scale to the whole assembly scale. Investigating the entropy 

production over the scales at hand (from the grain scale to the specimen scale, and the related 

time scales) is outside the scope of this work. 
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Fig. 8. Evolution of the entropy production (times the thermodynamic temperature considered constant) along an 

axial compression path under constant lateral stress. The dashed line A corresponds to the maximal contractancy 

state, the dashed line B corresponds to the deviatoric stress peak, and the dashed line C corresponds to the 

beginning of the critical state regime. To avoid amplification of noise, the raw fluctuating plastic dissipation 

curve has been fitted piecewise using polynomials, and the entropy production curve subsequently obtained by 

direct analytical differentiation. 

 

 

5. CONCLUSION 

 

The paper intends to shed a new light on the bifurcation mechanism operating within granular 

materials by advocating the field of out-of-equilibrium thermodynamics. Juxtaposing the 

fundamental minimum entropy production theorem with the second-order work theory, a 

general equation linking the derivatives of the entropy of the system to the second-order work 

is inferred. It is therefore proven than the negativity of the second-order derivative of the 

entropy is a necessary condition of instability around a steady state. Fluctuations within the 

granular assembly can increase without returning to zero, transporting the system toward a 

new state that is different from the initial stationary state. This is reminiscent of the minimal 

entropy production theorem, which was key to the development of out-of-equilibrium 

thermodynamics. More recent contributions belonging to the post Prigogine’s era have 

established variational principles applied to the time derivative of the second law of 
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thermodynamics and have contributed significantly to a better understanding of dynamic 

systems. Thus, Prigogine’s minimal entropy production principle should be thought as a 

subset of the more complex case with extremal entropy production involving various time and 

length scales. 

 

For verification purposes, the above framework of out-of-equilibrium thermodynamics is 

presented through the discrete element method numerical simulation of a biaxial loading test 

under constant lateral pressure. These simulations have pointed out the fundamental role 

played by the elastic energy stored within the material before the onset of bifurcation. In 

particular, the transition of the system from a homogenous regime toward a heterogeneous 

one is strongly governed by the maximal capacity of the system to store elastic energy and 

which reaches a non-zero plateau after the peak stress. The system is no longer able to store 

more elastic energy during the post-bifurcation critical state regime. Simultaneously, the 

entropy production reaches an extremum upon entering the critical state regime. After peak 

stress, the entropy production decreases to a constant value as the critical state is sustained. 

Thus, the bifurcation of the system from a homogeneous state toward a heterogeneous one 

into a shear band corresponds to a structuring of the material that ultimately minimizes the 

entropy production. In essence, for the system to dissipate energy in an optimal manner, it 

must be made through a shear band where plastic dissipation is the most intense. This result 

suggests a new interpretation of the intriguing shear banding phenomenon as the emergence 

of spontaneous dissipative structures by exhaustion of available energy. 
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APPENDIX 1 

Derivation of equation (12) 

 

The material system at hand is assumed to be at equilibrium at time t. An infinitesimal change 

in the loading parameters is applied between time t, and time t t+ . The evolution of the 

system should satisfy the kinetic energy theorem, that expresses in Lagrangian form as: 

( )
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At time t , the first-orders time derivatives in Eq. (A1) can be assumed to equal zero. 

Expanding ( )ij t t +  and ( )if t t+  to the first time-order gives: 
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Combining Eqs. (A1) and (A2) yields: 
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By virtue of Gauss theorem and with help of Eq. (A3), Eq. (A4) reads: 
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As the system is at equilibrium at time t , 
( )
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which finally gives: 
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APPENDIX 2 

The discrete Element Method (DEM) in brief 

 

Down to the microscale, granular materials are modeled as poly-disperse assemblies of non-

deformable spheres interacting through contact laws. In the present paper, we use the simple 

elasto-frictional contact law proposed by Cundall (1979) and illustrated in Fig. A1. 

 

Two spherical particles are said to be in contact if they overlap.  Then, the repulsive normal 

force reads n n nF k u=  where nu  is the overlapping distance and nk  is the contact normal 

stiffness. In addition to the normal force, a tangential force tF  develops depending on the 

grains’ relative displacements. This tangential force is defined in an incremental form by 

computing the tangential component of the incremental relative displacement tu  at the 

contact point between two contacting grains. tu  depends on the relative translation and 

rotation speeds of the two grains in contact. tF  is then updated according to the tangential 

stiffness t nk k=  expressed as a fraction   of its normal counterpart. The tangential 

elasticity is capped by a maximum value depending on the contact friction angle  . 

Following Coulomb’s friction law, the ratio /t nF F  must remain smaller than tan . 

After computing all inter-particle contact forces, the induced particles displacements are 

integrated based on Newton's second law of motion using an explicit integration scheme over 

a time step dt . 
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Fig. A1. Elasto-frictional contact law used in DEM simulations. 

 

In the simulations presented in this paper, all the boundary walls are considered rigid, 

although flexible membranes or periodic boundary conditions could be used as well. The 

choice of the type of boundary conditions influences both the occurrence and the pattern of 

the shear band. Hence, the results presented here should be understood in the context of the 

boundary condition chosen. However, it is believed that these results remain generic enough 

to illustrate the matter of bifurcation as addressed in this work. 

 

From DEM simulations, it is straightforward to compute the elastic energy of the system as 

the sum of elastic energy stored at each contact ‘c’. The elastic energy thus reads: 

2 2

2 2

el n t

c n t

F F
E

k k

 
= + 

 
  (A8) 

 

Computing the plastic dissipation directly at the contact level is trickier as it requires 

decomposing the incremental tangential displacement into elastic and plastic parts at every 

time step. For the sake of computation time, we wrote the energy balance directly at the 

sample scale. From the knowledge of the forces and velocities acting on the sample boundary, 

and assuming mechanical equilibrium between the inner granular specimen and the boundary 

loading, the external power extW  provided to the system reads: 

ext el pl

i i
V

W f u ds E E


= = +  (A9) 

 

where plE  is the plastic power. The advantage of using such a macroscopic approach for 

computing plE  is that we can use a time step t  much larger than the DEM time step dt , 

which is very convenient from a computation point of view. We have therefore: 
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APPENDIX 3 

Piecewise fitting method using polynomials 

 

Based on the energy computation described in Appendix 2, the evolution of the plastic energy 

plE  can be obtained directly along the biaxial loading path. However, due to the numerical 

fluctuations, the rate of energy dissipation int
pldE

P
dt

 =  displays a very noisy evolution, 

which makes it difficult to be analyzed. Thus, the raw evolution of plastic energy plE  with 

respect to axial strain 1  is fitted piecewise with a sixth-order polynomial function over every 

1.0% of axial strain range. By differentiating the resulting fitted function ( )1f  , the rate of 

energy dissipation is directly obtained as follows: 

int
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 


=  (A11) 

 

 



- 33 - 

REFERENCE 

 

Aziz-Alaoui, M., and Bertelle, C. (Eds.) (2009): From system complexity to emergent 

properties. Springer Science & Business Media. 

Bažant, Z.P (1988): Stable states and paths of structures with plasticity or damage. Journal of 

Engineering Mechanics, ASCE, Vol. 114(12), pp. 2013-2033. 

Bažant, Z.P, and Feng-bao, Lin (1989): Stability against localization of softening into 

ellipsoids and bands: Parameter study. International Journal of Solids and Structures, Vol. 

25(12), pp. 1483-1498. 

Bénard, H. (1901): Les tourbillons cellulaires dans une nappe liquide transportant de la 

chaleur par convection en régime permanent. Annales de chimie et de physique, Vol. 

7(23), pp. 62-144. 

Bigoni, D., and Hueckel, T. (1991): Uniqueness and localization, I. Associative and non-

associative elastoplasticity. International Journal of Solids and Structures. Vol. 28(2), pp. 

197–213. 

Chandrasekhar, S. (1961): Hydrodynamic and hydromagnetic stability. Oxford, Clarendon 

Press. 

Collins, I. F., and Houlsby, G. T. (1997): Application of thermomechanical principles to the 

modelling of geotechnical materials. Proceedings - Royal Society of London, A 453, pp. 

1975-2001. 

Collins, I. F., and Muhunthan, B. (2003): On the relationship between stress-dilatancy, 

anisotropy, and plastic dissipation for granular materials. Geotechnique, 53(7): 611-618. 

Collins, I.F. (2005): The concept of stored plastic work or frozen elastic energy in soil 

mechanics. Géotechnique, 55(5), pp. 373–382. 

Cundall, P.A, and Strack, O.D.L. (1979): A discrete numerical model for granular assemblies. 

Geotechnique, Vol. 29(1), pp. 47-65. 

Damper, R.I. (2000): Emergence and levels of abstraction. Editorial for the Special Issue on 

'Emergent Properties of Complex Systems’, International Journal of Systems Science, Vol. 

31(7), pp. 811-818. 

Darve, F., and Vardoulakis, I. (2005): Instabilities and degradations in geomaterials. Darve 

and Vardoulakis Eds., Springer publ. 

Deng, N., Wautier, A., Thiery, Y., Yin, Z.Y., Hicher, P.Y., and Nicot, F. (2021): On the 

attraction power of critical state in granular materials. J. Mech. and Physics of Solids, Vol. 

149, 104300. 



- 34 - 

Deng, N., Wautier, A., Tordesillas, A., Thiery, Y., Yin, Z.Y., Hicher, P.Y., and Nicot, F. 

(2022): Lifespan dynamics of cluster conformations in stationary regimes in granular 

materials. Physical Review/E, in press. 

Desrues, J., and Andò, E. (2015): Strain localisation in granular media. Comptes Rendus. 

Physique, Académie des sciences (Paris), Vol. 16 (1), pp.26-36. 

Desrues, J., and Chambon, R. (2002): Shear band analysis and shear moduli calibration. 

International Journal of Solids and Structures. Vol. 39, pp. 3757–3776. 

Dewar, R. C. (2005). Maximum entropy production and the fluctuation theorem. Journal of 

Physics A: Mathematical and General, 38(21): L371-L381. 

Evans, D., and Searle, D.  (2002): The fluctuation theorem. Advances in Physics, 51(7): 1529-

1585. 

Glansdorff, P., and Prigogine, I. (1954): Sur les propriétés différentielles de la production 

d’entropie. Physica, Vol. 20(7-12), pp. 773–780. 

Glansdorff, P., and Prigogine, I. (1963): Generalised entropy production and hydrodynamic 

stability. Physics Letters, Vol. 7(4), pp. 243–244. 

Glansdorff, P., and Prigogine, I. (1964): On a general evolution criterion in macroscopic 

physics. Physica, Vol. 30(2), pp. 351–374. 

Glansdorff, P., and Prigogine, I. (1971): Thermodynamic theory of structure, stability and 

fluctuations. Wiley-Intersçience, N.Y. 

Hill, R. (1958): A general theory of uniqueness and stability in elastic-plastic solids. Journal 

of the Mechanics and Physics of Solids, Vol. 6 (3), pp. 236-249. 

Hill, R. (1962): Acceleration waves in solids. Journal of the Mechanics and Physics of Solids, 

Vol. 10(1), pp. 1-16. 

Hudson, J.L., and Mankin, J.C. (1981). Chaos in the Belousov–Zhabotinskii reaction. J. 

Chem. Phys., Vol. 74 (11), pp. 6171–6177. 

Lefever., R. (1978): Stabilité globale et mécanismes de fluctuations des structures 

dissipatives.  Journal de Physique, 39 (C5), pp.C5-83-C5-92. 

Liu, J., Nicot, F., and Zhou, W. (2018): Sustainability of internal structures during shear band 

forming in 2D granular materials. Powder Technology, Vol. 338, pp. 458–470. 

Liu, J., Wautier, A., Bonelli, S., Nicot, F., and Darve, F. (2020): Macroscopic softening in 

granular materials from a mesoscale perspective. Int. J. Solids Structures, 93-194, pp. 222-

238. DOI 10.1016/j.ijsolstr.2020.02.022. 



- 35 - 

Liu, J., Wautier, A., Nicot, F., Darve, F., and Zhou, W. (2022): How meso shear chains bridge 

multiscale shear behaviors in granular materials: a preliminary study. Int. J. Solids 

Structures, in Press. 

Mandel, J. (1966) : Conditions de stabilite et Postulat de Drucker. In: Kravtechenko, Sirieys 

(Eds.), Rheology and Soil Mechanics. Springer-Verlag Publisher, pp. 58–68. 

Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proc Natl 

Acad Sci USA, 30(9): 244-247. 

Nicolis, G. (1970): Thermodynamic theory of stability, structure and fluctuations. Pure and 

Applied Chemistry, Vol. 22, pp. 379 – 392. 

Nicolis, G., and Prigogine, I. (1977), Self-Organization in Nonequilibrium Systems: From 

Dissipative Structures to Order through Fluctuations. New York, John Wiley & Sons. 

Nicot, F., and Darve, F. (2006): On the elastic and plastic strain decomposition in granular 

materials. Granular Matter, Vol. 8(3-4), pp. 221-237. 

Nicot, F., and Darve, F. (2007a): Basic features of plastic strains: from micro-mechanics to 

incrementally nonlinear models. Int. Journal of Plasticity, Vol. 23, pp. 1555-1588. 

Nicot, F., and Darve, F. (2007b): Micro-mechanical bases of some salient constitutive features 

of granular materials. Int. J. of Solids and Structures, Vol. 44, pp. 7420–7443. 

Nicot, F., and Darve, F. (2011): Diffuse and localized failure modes: two competing 

mechanisms. International Journal for Numerical and Analytical Methods in 

Geomechanics, Vol. 35, Issue 5, pp. 586–601. 

Nicot, F., Sibille, L., and Darve, F. (2012): Failure in rate-independent granular materials as a 

bifurcation toward a dynamic regime. Int. Journal of Plasticity, Vol. 29, pp. 136–154. 

Parisi, G., and Sourlas, N. (2002): Scale invariance in disordered systems: the example of the 

random-field ising model. Phys. Rev. Lett., Vol. 89, 257204. 

Parisi, G., Procaccia, I., Rainone, C., Singh, M. (2017): Shear bands as manifestation of a 

criticality in yielding amorphous solids. Proc. Natl. Acad. Sci. U. S. A., Vol. 114, pp. 

5577–5582. https://doi.org/10.1073/pnas.1700075114. 

Petryk, H. (1993): Theory of bifurcation and instability in time-independent plasticity. In 

Bifurcation and Stability of Dissipative Systems, Nguyen QS (ed.). CISM Courses and 

Lecturers, vol. 327. Springer: Berlin, pp. 95–152. 

Prigogine I., and Stengers, I. (1979): The New Alliance. Gallimard Ed., Paris. 

Prigogine, I. (1945). Modération et transformations irréversibles des systèmes ouverts. 

Bulletin de la Classe des Sciences., Académie Royale de Belgique. Vol. 31, pp. 600–606. 



- 36 - 

Prigogine, I. (1947): Étude thermodynamique des phénomènes irréversibles. Paris et Liège, 

Dunod et Desoer Eds. 

Prigogine, I., and Lefever, R. (1968): Symmetry Breaking Instabilites in Dissipative Systems. 

The Journal of Chemical Physics, vol. 48, no 4, pp. 1695–1700. 

Prigogine, I., and Lefever, R. (1975): Stability and Self-Organization in Open Systems. 

Advances in Chemical Physics, Vol. 29, pp. 1–28. 

Prigogine, I., Lefever, R., et al. (1969): Symmetry Breaking Instabilities in Biological 

Systems. Nature, Vol. 223(5209), pp. 913–916. 

Rayleigh, J. W. (1916): On convection currents in a horizontal layer of fluid, when the higher 

temperature is on the underside. The London, Edinburgh, and Dublin Philosophical 

Magazine and Journal of Science, Sixth series, Vol.32(192), pp. 529-546. 

Regenauer-Lieb, K., Hu, M., Schrank, C., Chen, X. et al. (2021): Cross-diffusion waves 

resulting from multiscale, multi-physics instabilities: theory. Solid Earth, 12(4): 869-883. 

Rice, J.R. (1975): Continuum mechanics and thermodynamics of plasticity in relation to 

microscale deformation mechanisms. Constitutive equations in plasticity, A.S. Argon Ed., 

MIT Press, Cambridge, pp. 23-79. 

Rudnicki, J.W., and Rice, J. (1975): Conditions for the localization of deformation in pressure 

sensitive dilatant materials. International Journal of Solids and Structures. Vol. 23, pp. 

371–394. 

Sun, Q., Jin, F., Wang, G., Song, S., and Zhang, G. (2015): On granular elasticity. Sci. Rep. 5, 

9652; DOI:10.1038/srep09652. 

Teixeira-Dias, J.C. (2017): Molecular physical chemistry: a computer-based approach using 

Mathematica and Gaussian. Springer International Publishing, pp. 1-82. 

Tordesillas, A. (2007): Force chain buckling, unjamming transitions and shear banding in 

dense granular assemblies. Phil. Mag. Vol. 87(32), pp. 4987-5016. 

Tordesillas, A., and Muthuswamy, M. (2009): On the modeling of confined buckling of force 

chains. Journal of the Mechanics and Physics of Solids, Volume 57(4), pp. 706-727. 

Turing, A.M. (1952): The Chemical Basis of Morphogenesis », Philosophical Transactions of 

the Royal Society of London B: Biological Sciences, Vol. 237(641), pp. 37–72. 

Veveakis, E., and Regenauer-Lieb, K. (2015): Review of extremum postulates. Current 

Opinion in Chemical Engineering, 7(C), pp. 40-46. 

Walker, D.M., and Tordesillas, A. (2010): Topological evolution in dense granular materials: 

a complex networks perspective. Int. J. of Solids and Structures, Vol. 47, pp. 624-639. 



- 37 - 

Wan, R., Nicot, F., and Darve, F. (2017): Failure in geomaterials, a contemporary treatise. 

Wiley. 

Wautier, A., Bonelli, S., and Nicot, F. (2018): Flow impact on granular force chains and 

induced instability. Physical Review E, Vol. 98(4): 042909. 

Ziegler, H. (1983): An Introduction to Thermomechanics. Amsterdam, North Holland. 

Ziegler, H., and Wehrli, C. (1987). On a principle of maximal rate of entropy production. J. 

Non-Equilib. Thermodyn., Vol. 12 (3), pp. 229–243. 

 

 

 


