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Testing autonomous driving algorithms on mobile systems in simulation is an essential step to validate the model and prepare the vehicle for a wide range of (potentially unexpected and critical) conditions. Transferring the model from simulation to reality can be challenging because of the reality gap. Mixed-reality environments enable the evaluation of models on actual vehicles with limited financial or safety risks. Additionally, by allowing for quicker testing and debugging for mobile robots, it could reduce the system's development costs. This paper presents a tentative work for an autonomous navigation framework based on RGB-D cameras. We use an augmentation approach to represent the objects in two contexts in a single environment. The first experiments use KITTI dataset, and then the capabilities of our system were tested on real data by extracting depth maps from the ZED2 camera. Finally, we assess our fusion process by using a pre-trained object detection model.

I. INTRODUCTION

During the past few years, the development and deployment of automated and autonomous vehicles (AV) has gained an increasing interest in both academia and industry. The development and deployment stages of AV technologies face the following challenges: (i) enhancing road safety, (ii) improving commute experience, (iii) saving fuel costs, (iv) and ameliorating mobility for everyone [START_REF] Favarò | Examining accident reports involving autonomous vehicles in california[END_REF]. Despite the big number of companies investing in AV, the deployment of fully autonomous vehicles remains challenging due to the lack of validation tools. AV systems need to go through the essential stages of testing, verification and validation. The most common validation process is based on the following steps: [START_REF] Favarò | Examining accident reports involving autonomous vehicles in california[END_REF] training the model in simulation, [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] transferring the model to real-life hardware, (3) fine-tuning the parameters. Since simulation is a crucial step in the process, researchers have put a lot of effort into elaborating efficient simulators adapted to self-driving applications. For instance, CARLA [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF], a simulator released in 2017, has got important attention from the community since it is most suited for endto-end testing of functionalities such as perception, mapping, localization, and vehicle control. Alternatively, studies use robotic simulators such as Gazebo [START_REF] Koenig | Design and use paradigms for gazebo, an open-source multi-robot simulator[END_REF], which is very popular because of its high flexibility; and CarSim [START_REF] Benekohal | Carsim. car-following model for simulation of traffic in normal and stop-and-go conditions[END_REF], that specializes in vehicle dynamics simulations. However, even with the latest advancements in self-driving simulators allowing for different levels of realism, the reality gap remains a challenge during the transfer of models from simulation to *This work was supported by the ANR RAIMo under grant reference ANR-20-CHIA-0021 1 Authors are with INSA Rouen Normandy, LITIS laboratory, UR4108 76000 Rouen, France firstname.lastname@insa-rouen.fr reality due to the vehicle dynamics and sensor data. Additionally, common standards to evaluate simulation results are missing. Meanwhile, training a model directly on the vehicle can be costly and risky. Recent studies demonstrated that in order to prove safety and reliability, fully autonomous vehicles would have to be driven hundreds of millions of miles [START_REF] Kalra | Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?[END_REF] (sometimes hundreds of billions). Even if this requirement is met, the behavior of the vehicle in a critical or unusual situation remains uncertain. To enhance the safety of autonomous vehicles, alternative testing techniques are required to complement real-world testing. A way to combine the advantages of simulation with real-world conditions is to use mixed-reality testing.

Enabling the vehicle to operate in an environment where virtual and physical objects co-exist can be one way to test, train and validate in safer conditions. Mixed-Reality (MR) testing is an emerging solution that has been used lately for robotics and self-driving cars in order to test critical situations, repeat experimentations, and train models on unusual scenarios. While virtual reality enables the vehicle to interact with a fully virtual world (environment and obstacles), mixed reality can be considered as a subset of virtual reality where there is a fusion of the real and virtual world [START_REF] Milgram | A taxonomy of mixed reality visual displays[END_REF]. In MR, the vehicle is fully aware of its real environment but is also able to interact with the virtual elements.

The main focus of this study is vision-based autonomous systems since they rely on the detection and recognition of complex roadside information (traffic lights, traffic signs, etc.). By using a mixed-reality framework, it is possible to train a model to face dangerous situations in a safer environment. This paper introduces a tentative work at creating the first block of this framework: the perception block. We present a method to augment an agent's perception by including elements that are modeled in a virtual environment using depth information. The effectiveness and the outcomes of the developed augmentation strategy are tested on several datasets and simulators.

II. RELATED WORK

The steps required for learning and training a model for autonomous driving are: (i) pre-training, (ii) testing, and (iii) validation. To evaluate the system, it is crucial to ensure its safety and reliability. According to ISO 26262 1 , the software responsible for safety-critical vehicular functions should be evaluated within its actual system setting. Since testing in critical situations is costly and risky, researchers are developing alternative methods to test the model on real vehicles. Virtual Reality (VR) simulators have been used for many years to simplify the testing and training of the vehicles [START_REF] Riegler | A systematic review of virtual reality applications for automated driving: 2009-2020[END_REF]. Even though it could be a safer way to ensure the safety of the vehicle, it is about immersing the agent in a fully virtual environment that does not finely reproduce realworld conditions. On the other hand, mixed reality (MR) is a combination of a virtual and a real world, where the environment is fully physical, and the agent gets to interact with both virtual and physical objects, therefore ensuring its safety and reliability, and reducing the reality gap. Mixed-Reality simulation has been investigated and used for several applications such as robotics and AV domains that suffer from reality gap. Training an agent for selfdriving requires learning in a multi-agent context. This can be done by simulating a great number of agents virtually, thus reducing the cost and the time to train the model in a realistic way. For instance, researchers tested different scenarios for multi-agent applications: (i) mobile delivery [START_REF] Liu | Mobile delivery robots: Mixed realitybased simulation relying on ros and unity 3d[END_REF], where the authors proposed a framework that uses laser scans to create a mutual awareness between virtual and real agents, (ii) automated valet parking [START_REF] Kneissl | Mixed-Reality Testing of Multi-Vehicle Coordination in an Automated Valet Parking Environment[END_REF], where mixed-reality testing was used as a way to validate a proposed multi-vehicle coordination method. (iii) platooning as in the work of Barrufa et al. [START_REF] Baruffa | Mixed reality autonomous vehicle simulation: Implementation of a hardware-in-the-loop architecture at a miniature scale[END_REF] in which a real agent follows a simulated bus using ArUco markers. The authors measured the difference in computation time between simulation and reality and proved that the mixed-reality architecture produced a similar dynamic behavior when sensory information comes from both worlds. Interestingly, the tests made in mixed reality facilitate the repeatability of experiments which benefits from having a wide range of measurements (computation time) and results (training a model) for a qualitative and quantitative evaluation. Even if these approaches [START_REF] Liu | Mobile delivery robots: Mixed realitybased simulation relying on ros and unity 3d[END_REF], [START_REF] Kneissl | Mixed-Reality Testing of Multi-Vehicle Coordination in an Automated Valet Parking Environment[END_REF], [START_REF] Baruffa | Mixed reality autonomous vehicle simulation: Implementation of a hardware-in-the-loop architecture at a miniature scale[END_REF] demonstrate the benefits of mixed reality, the perception part was missing since they rely on telemetry data. To train an agent for autonomous driving, accurate and realistic perceptual information needs to be provided. It can be obtained through sensors such as cameras and LiDAR. This enables the agent to maintain a continuous understanding of the environment, reducing the risk of losing scene information. Other studies used LiDAR to improve training in the real world while maintaining the same goal of testing in a secure environment. In particular, the authors in [START_REF] Marc | The sleepwalker framework: Verification and validation of autonomous vehicles by mixed reality LiDAR stimulation[END_REF] used an augmentation module that computes an augmented laser scan based on input from both real and virtual laser scans. To verify and validate their strategy, they tested the planning and obstacle avoidance components on a real vehicle in a parking and introduced semi-static and dynamic obstacles. Another recent research [START_REF] Genevois | Augmented reality on lidar data: Going beyond vehicle-in-the-loop for automotive software validation[END_REF] used also LiDAR to augment the vehicle's sensing and challenge various navigation software, e.g., crowds of virtual pedestrians. Although LiDAR has recently been viewed as a crucial component of self-driving cars due to its ability to measure a wider range of distances and its demonstrated accuracy and efficiency, it remains unable to interpret roadside information like landmarks and drivable paths, and has high initial and ongoing maintenance costs. Besides, when many cars are producing laser pulses simultaneously, interference may occur, and could potentially blind the vehicles [START_REF] Kim | Occurrence and characteristics of mutual interference between lidar scanners[END_REF]. Due to the low frequency of vehicles using LiDAR scanners, it has not been considered yet to be a concern, but with the growing number of AVs, it might become a dangerous issue. An alternative is to use depth cameras. They are less expensive, less power-consuming, and can be integrated with other sensors to enhance data. The most significant element of ADAS is the capability to interpret roadside information, involving objects and landmarks. While LiDAR and radar can only distinguish the shapes of objects, the camera is able to identify their shapes, appearance, and texture to accurately recognize drivable paths free-space delimiters, and lane marking. The main focus of this work is to propose an MR framework that relies on depth cameras, by comparing the depth maps of the virtual and real sensors and then generating a mixed map that correctly renders the position of all the objects while considering occlusions.

III. METHODOLOGY

The aim of this paper is to demonstrate the potential of a vision-based mixed-reality framework using depth cameras. The main idea is to combine one real image I 1 with one virtual image I 2 into a final image I f inal using depth information acquired from RGB-D sensors. The fusion process consists of three main steps:

1) Histogram equalization, in order to adjust the pixel intensities of the images before the combination. 2) Otsu thresholding to separate the objects of interest from the background in virtual images.

3) Depth comparison to place the objects (real and virtual)

in their exact position thanks to the depth information. Figure 1 is an illustration of all the operations on the initial images (I 1 and I 2 ) before the application of the augmentation strategy and obtaining the final image I f inal .

A. Histogram equalization

To equally compare two depth images, we need virtual and real data, but the simulated camera and the real sensor may have different characteristics or settings which results in a different distribution of the information within the range of intensities. One way to tackle this issue is to use histogram equalization. This technique is commonly used in computer vision applications to improve the contrast of images by rearranging the pixel intensity values of the image, the final histogram has a uniform distribution. This technique can be formalized as follows:

t(f ) = L -1 N . f i=0 h(i) (1) 
where L is the gray level, N is the number of pixels of the image, and h is the histogram of the image. Figure 2 shows an example of the virtual and real histograms before histogram equalization. The difference between maximal and minimal values can be observed: in the real image, the maximal value is 35 while the maximal value in the virtual depth map is 255. As a consequence, the comparison between the two depth maps will eventually fail and all the pixels of the final image will be replaced by the virtual image. 

B. Thresholding

The main goal of the augmentation is to add virtual elements in the real environment, consequently, the background from the virtual environment is no longer required. One way to separate the objects of interest from the background is by using Otsu thresholding [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. It is a simple but efficient method in this application where we control the objects added in the virtual environment. This image segmentation technique automatically determines the best threshold value to distinguish between the image's foreground and background. It is useful when the image has a bimodal histogram. In this case, this technique can be used to find the optimal threshold value that differentiates the two peaks. This thresholding is applied to the virtual image after histogram equalization in order to only compare the extracted objects in the virtual image with the real image. The thresholding is applied on the grayscale image to extract the elements, as illustrated in Figure 4. 

C. Augmentation strategy

The augmentation strategy relies on the comparison of the depth parameters between the real and virtual images. Let I be the virtual depth image, and let M be the threshold mask resulting from III-B, the first operation is described as follows:

I ∩ M = p|p ∈ I ∧ p ∈ M (2)
The mask M is used in Equation 2 to create a virtual depth map of the scene that only shows the objects and leaves out the background, enabling depth comparisons between two objects. Figure 5 is an illustration of the depth map before and after the application of the mask and histogram equalization. The next step is to compare the depth values of two maps. This strategy takes into account the occlusions between elements. Let I 1 be the real depth image, and I 2 be the 

I1 = I1 × (I1 > I2) + I2 × (I2 > I1) (3) 
Equation 3 addresses two possibilities:

• Case 1: The first term (I 1 × (I 1 > I 2 )) detects if the objects in image 1 are closer than the objects in image 2, if that is the case, the pixels in image 1 maintain their initial values. • Case 2: The second term (I 2 × (I 2 > I 1 )) determines whether the items in image 2 are closer than the objects in image 1 and if so, it replaces the concerned pixels in image 1 with those in image 2.

IV. IMPLEMENTATION AND EXPERIMENTATIONS A. Hardware and software setup

As stated in section I, different simulators exist for selfdriving applications depending on the need of the user. The proposed strategy was evaluated using a set of virtual images (from two different simulators) and real images (from a depth camera). The two simulators chosen are Gazebo [START_REF] Koenig | Design and use paradigms for gazebo, an open-source multi-robot simulator[END_REF] and Unity3D [START_REF] Haas | A history of the unity game engine[END_REF]. Gazebo is a powerful tool for AV applications as it enables the simulation of many scenarios and the testing of various perception and control algorithms. Although Unity3D is a technology that is popular with video games, it is also being employed more and more for other applications including training, simulation, and visualization. It enables the creation of virtual worlds and the testing of the algorithmic performance of the vehicle. The idea behind testing on different simulators is to prove that this strategy is independent of the chosen simulator, and can be applied to different images. The camera used during this work is the ZED2 2 , developed by Stereolabs. It is designed to provide robotics and autonomous systems access to high-resolution 3D perception. This stereo system uses two 4K resolution sensors with a wide field of view of 170 degrees and has the ability to simultaneously record video and depth data. Additionally, the sensor has an integrated processor that can identify objects and compute depth in real-time. 

B. Ground truth experiments

To test the strategy proposed in Section III, we used depth images from KITTI dataset [START_REF] Uhrig | Sparsity invariant cnns[END_REF]. The first experiments focus on the fusion of the virtual images from Gazebo and the real images. In the initial images, we placed different elements (pedestrian, robot, stop sign, etc.) in various positions. After applying the algorithm, we can observe that the objects present in the initial images are placed in their exact position within a single image. Figure 6 represents the two initial images we used for testing. Since the virtual and real Fig. 6. Initial images before the fusion images do not have the same resolution, we added a preprocessing step where the data is reshaped before applying the augmentation strategy. 

C. Real data sensors

Once the benefits of the approach were shown on a widely used dataset, and following the findings of Section IV-B, we tested the augmentation strategy on a data recorder using a real sensor.

Figure 8 is an illustration of the fusion of two images where the robots are superposed. Here, the virtual robot (which is closer than the real robot according to the depth maps) has been placed in front of the real robot.

Once the augmentation strategy was tested with different real images, the following step was to test it on a set of virtual images, i.e., generated from different simulators. Tests were carried out with images acquired from Unity3D under different conditions (indoor, outdoor, night, etc.). Figure 9 is 

D. Evaluation of the proposed method

We chose to test object detection algorithms on the fusion's results in order to demonstrate that we were able to successfully augment the scene and that the agent can perceive both virtual and physical objects. We used FASTER R-CNN [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] algorithm, an extension of the FAST R-CNN. This network's architecture combines two modules: RPN that generate region proposals, and FAST R-CNN that make sure that many objects are detected in the proposed regions. The pre-trained network was applied to the large-scale object identification, segmentation, and captioning dataset MS-COCO 2017 [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] with the intention of testing the proposed augmentation technique. It contains 38,000 pictures of people and common objects. Figure 10 is the augmented image (from KITTI dataset) after the application of the object detection algorithm. The results were promising and confirmed that object detection performs well on the augmented images where it detected the virtual objects as well as the real objects (stop signs, pedestrians, trucks, motorcycles, etc.). To further evaluate the robustness and reliability of the augmentation algorithm, we created a test scenario where two elements were overlapped: a virtual pedestrian and a real robot. This test was made to challenge the algorithm's ability to recognize multiple objects in a complex environment. Figure 11 shows the result of this experiment. It can be seen that the object detection algorithm was effective in identifying both the simulated pedestrian and the actual robot. 

E. Discussion

The results of the proposed strategy have opened up new avenues for exploration and provide important insights into mixed-reality vision-based frameworks. In this section, we explore these results in more detail. First, the algorithm was tested and verified by using different datasets and simulators. While the results of the fusion were mostly satisfying, it is necessary to highlight the limitations of the algorithm. Some results were not successful due to the poor accuracy of the depth map that is altered when the camera is placed too close to the ground. For this matter, two solutions may be considered:

• Positioning the camera higher, which could be acceptable for vehicles, but is not feasible on small robots.

• Changing the camera or the depth map, which implies computing our own depth map. To further evaluate the augmentation strategy, an object detection algorithm was applied to the resulting images. The experiments (presented in Section IV-D) demonstrate the potential of the image augmentation algorithm in realworld applications. The implementation of an object detection algorithm serves as a proof of concept for the proposed strategy and provides qualitative results to support the method. However, while qualitative results are a useful indicator of the approach performance, it's also necessary to take quantitative results into account. Future evaluations of the technique could incorporate object detection measures like precision, recall, and F1 score to give a more thorough review of the algorithm's effectiveness.

V. CONCLUSION

Although the performance of autonomous vehicles may be enhanced by using advanced simulators during their development, there are still challenges to be addressed, including the reality gap. In this paper, we demonstrate that a mixed-reality framework based on a depth camera could be a promising approach with the potential to improve the safety of testing. The augmentation strategy proposed integrates virtual objects in the real environment by taking occlusions into consideration.

However, there are still challenges that need to be addressed. Future work directions can be classified into two categories:

• Short-term improvements will focus on improving depth generation algorithms since testing on real data showed that the proposed strategy has limitations when it comes to inaccurate depth maps. Moreover, testing the framework proposed online will also be considered, where dynamic obstacles can be added in order to examine time delays. • Long-term work will consist of introducing a real robot.

The learning of the agent will be evaluated before and after mixed-reality training in order to verify if it can provide performance improvements in the learning leading to a reduction of collisions. These improvements in reduced-size robots will help verify the relevance and performance of the framework and could result in the deployment of an autonomous vehicle framework.
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All the images tested and the results are publicly available on https://github.com/ArguiIm/Results.git