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We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.

Introduction

Contact mechanics is a branch of solid mechanics which studies the behavior of loaded deformable structures in mutual contact. Besides non-penetration conditions one should take into account the influence of friction on contacting surfaces to get a more realistic model. Although Coulomb friction is the classical one, its mathematical treatment remained open for a long time. The first mathematically justified existence proof for the static case was done in [START_REF] Nečas | On the solution of the variational inequality to the Signorini problem with small friction[END_REF]. Later, results were extended to quasistatic and dynamic problems in [START_REF] Eck | Unilateral contact problems. Variational methods and existence theorems[END_REF]. Typically the existence of at least one solution is shown for sufficiently small coefficients of friction F . On the other hand there is no information on the structure of solutions in a general case. Some partial results are known provided that the solution enjoys a priori given properties ( [START_REF] Hild | Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity[END_REF], [START_REF] Renard | A uniqueness criterion for the Signorini problem with Coulomb friction[END_REF]). The situation is rather different in the discrete case. In examples with a small number of degrees of freedom one can find solutions "by hand". The structure of solutions is relatively complicated even for models with one degree of freedom ( [START_REF] Janovský | Catastrophic features of Coulomb friction model, in: The mathematics of finite elements and applications IV[END_REF], [START_REF] Ligurský | Theoretical analysis of discrete contact problems with Coulomb friction[END_REF], [START_REF] Basseville | Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction[END_REF]). For models arising from finite element discretizations the situation is more involved but still we have certain knowledge on the qualitative behavior of their solutions which is not available in the continuous case. Indeed, the discrete model has at least one solution for any friction coefficient F , and this solution is unique if F is small enough. On the other hand, the bounds on F guaranteeing uniqueness of the solution are meshdependent. In other words, the uniqueness property of the discrete problem depends on the size of the problem. Thus it may happen that a small change of F leads to a large change of the solution but this phenomenon appears only when sufficiently fine discretizations are used. This "catastrophic" behavior can be observed in numerical experiments ( [START_REF] Raous | Quasistatic Signorini problem with Coulomb friction and coupling to adhesion[END_REF], [START_REF] Haslinger | Bifurcations in contact problems with local Coulomb friction[END_REF]). The first step towards better understanding of the discrete model is to establish the existence of local Lipschitz continuous branches of solutions parametrized by F . The present paper extends results from [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF], where F was assumed to be constant, to the case when F depends on the spatial variable. Such results are important for the development of continuation algorithms, which is another goal of this paper.

The paper is organized as follows: in Sections 2 and 3 we formulate a 3D static contact problem with orthotropic Coulomb friction and solution-dependent friction coefficients. We use the fixed-point formulation of both, the continuous as well as the discrete problem. We show that the discrete problems have a solution for any friction matrix F belonging to an appropriate class and have a unique solution under additional assumptions on F . Then we analyze how these assumptions depend on the size of the discrete problem, i.e. on the norms of finite element partitions. The new results extend and cover the classical ones for isotropic Coulomb friction with a coefficient which does not depend on the solution ( [START_REF] Haslinger | Approximation of the Signorini problem with friction, obeying the Coulomb law[END_REF]). In Section 4 we formulate sufficient conditions for isotropic Coulomb friction in 2D under which there exists a Lipschitz continuous solution branch in a vicinity of a reference value of F . In Section 5 we propose a piecewise smooth variant of the Moore-Penrose continuation algorithm, which enables to follow the solution branch. Finally in Section 6 we apply this algorithm for solving very simple model examples with a small number of contact nodes.

Throughout the paper we shall use the following notation: H k (D), k ≥ 0 integer, stands for the standard Sobolev space of functions in the set D (H 0 (D) = L 2 (D)) equipped with the norm ∥ ∥ k,D and the scalar product ( , ) k,D . For vectors, vector functions and matrices we use bold characters. The scalar product of two vectors x, y ∈ R p is denoted by x • y. The Euclidean norm in R p , which is frequently used in the text, is simply written as ∥ ∥. The set of all x ∈ R p such that x i ≥ 0, x i > 0 ∀ i = 1, . . . , p will be denoted by R p + and R p ++ , respectively. Finally, the fact that a constant C depends on parameters t 1 , . . . , t s will be emphasized by writing C := C(t 1 , . . . , t s ).

Fixed-point formulation of contact problems with orthotropic Coulomb friction law

Let a deformable body be represented by a bounded domain Ω ⊂ R 3 whose sufficiently smooth boundary ∂Ω is decomposed into non-empty, non-overlapping parts Γ u , Γ P and Γ c . On Γ u the body is fixed, surface tractions of density P = (P 1 , P 2 , P 3 ) act on Γ P . Along Γ c the body is unilaterally supported by a rigid half-space S . For simplicity of our presentation we shall suppose that Γ c is flat and there is no gap between Ω and S . Finally, body forces of density F = (F 1 , F 2 , F 3 ) are applied to Ω.

Our aim is to find an equilibrium state of Ω taking into account effects of friction between Ω and S . By a classical solution of this problem we mean any displacement vector u = (u 1 , u 2 , u 3 ) : Ω → R 3 satisfying the following system of differential equations and boundary conditions (here and in what follows the summation convention will be used): (equilibrium equations)

∂σ i j ∂x j (u) + F i = 0 in Ω, i = 1, 2, 3, (2.1) 
where

σ i j (u) = c i jkl ε kl (u), ε kl (u) = 1 2 ∂u k ∂x l + ∂u l ∂x k , i, j, k, l, = 1, 2, 3
, is given by linear Hooke's law and c i jkl are elements of the bounded 4 th order elasticity tensor C satisfying the usual symmetry and ellipticity conditions, (kinematical boundary conditions)

u = 0 on Γ u , (2.2) 
(static boundary conditions)

σ i j ν j = P i on Γ P , i = 1, 2, 3, (2.3) 
where ν = (ν 1 , ν 2 , ν 3 ) is the outward unit normal vector to ∂Ω, (non-penetration conditions)

u ν := u • ν ≤ 0, T ν (u) := σ i j (u)ν i ν j ≤ 0, T ν (u)u ν = 0 on Γ c . (2.4)
To formulate orthotropic Coulomb friction law, we introduce principal orthotropic axes

t 1 = {t 1,1 , t 1,2 , t 1,3 }, t 2 = {t 2,1 , t 2,2 , t 2,3
} on the tangent plane at a point on Γ c so that {t 1 , t 2 , ν} forms a local orthonormal basis. Let F 1 , F 2 be the respective coefficients of friction in the directions t 1 and t 2 , respectively. By u t ∈ R 2 we denote the vector whose components are the coordinates of u with respect to t 1 and t 2 on Γ c , i.e. u t = (u t 1 , u t 2 ),

u t i = u • t i .
In what follows we shall suppose that both F 1 and F 2 may depend also on the Euclidean norm of u t on Γ c , i.e.

F i := F i (x, ∥u t (x)∥), x ∈ Γ c , i = 1, 2. Finally let F = diag(F 1 , F 2 ) be the (2 × 2) diagonal matrix.
To guarantee the existence of the inverse F -1 we suppose that F 1 and F 2 do not vanish. Orthotropic Coulomb friction law with the solution-dependent matrix of friction coefficients reads as follows:

(orthotropic Coulomb friction law)

u t (x) = 0 =⇒ ∥F -1 (x, 0)T t (u)(x)∥ ≤ -T ν (u)(x), x ∈ Γ c , u t (x) 0 =⇒ F -1 (x, ∥u t (x)∥)T t (u)(x) = T ν (u)(x) F (x, ∥u t (x)∥)u t (x) ∥F (x, ∥u t (x)∥)u t (x)∥ , x ∈ Γ c ,                                (2.5)
where T t (u) = (T t 1 (u), T t 2 (u)), T t i (u) := σ jk (u)ν k t i, j , is the tangential contact stress.

To give the weak and fixed-point formulation of our problem we shall need the following function spaces and sets:

V = {v ∈ (H 1 (Ω)) 3 | v = 0 on Γ u }, K = {v ∈ V | v ν ≤ 0 on Γ c }, X ν = {φ ∈ L 2 (Γ c ) | ∃ v ∈ V : φ = v ν on Γ c }, X t+ = {φ ∈ L 2 (Γ c ) | ∃ v ∈ V : φ = ∥v t ∥ on Γ c }.
Further, let X ′ ν be the dual space to X ν with the duality pairing denoted by ⟨ , ⟩ ν and Λ ν be the cone of nonnegative elements of X ′ ν :

Λ ν = {µ ν ∈ X ′ ν | ⟨µ ν , v ν ⟩ ν ≤ 0 ∀ v ∈ K}.
The weak formulation of the contact problem with orthotropic Coulomb friction and the solution-dependent matrix of friction coefficients reads as follows:

Find u ∈ K such that a(u, v -u) + j(∥u t ∥, -T ν (u), v t ) -j(∥u t ∥, -T ν (u), u t ) ≥ ℓ(v -u) ∀ v ∈ K,            (P)
where

a(v, w) = Ω c i jkl ε i j (v)ε kl (w) dx, v, w ∈ V, ℓ(v) = Ω F • v dx + Γ P P • v ds, v ∈ V, j(φ, g, v t ) = ⟨g, ∥F (φ)v t ∥⟩ ν , g ∈ Λ ν , φ ∈ X t+ , v ∈ V,
with F ∈ (L 2 (Ω)) 3 , P ∈ (L 2 (Γ P )) 3 . Problem (P) is an implicit variational inequality of elliptic type. One of possible ways how to prove the existence of a solution to (P) is to use the fixed-point approach. Let (φ, g) ∈ X t+ × Λ ν be given and define the auxiliary problem

Find u := u(φ, g) ∈ K such that a(u, v -u) + j(φ, g, v t ) -j(φ, g, u t ) ≥ ℓ(v -u) ∀ v ∈ K.            (P(φ, g))
This is a contact problem with orthotropic friction of Tresca type and the fixed matrix of friction coefficients F (φ). Let Ψ : X t+ × Λ ν → X t+ × Λ ν be defined by

Ψ(φ, g) = (∥u t ∥, -T ν (u)), (φ, g) ∈ X t+ × Λ ν , (2.6) 
where u solves (P(φ, g)). Then u ∈ K solves (P) if and only if (∥u t ∥, -T ν (u)) is a fixed point of Ψ.

For discretization purposes we introduce the equivalent definition of the mapping Ψ which uses the Lagrange multipliers associated with the unilateral constraint u ∈ K. Instead of (P(φ, g)) we consider the following problem:

Find (u, λ ν ) ∈ V × Λ ν such that a(u, v -u) + j(φ, g, v t ) -j(φ, g, u t ) ≥ ℓ(v -u) -⟨λ ν , v ν -u ν ⟩ ν ∀ v ∈ V, ⟨µ ν -λ ν , u ν ⟩ ν ≤ 0 ∀ µ ν ∈ Λ ν .                  (M(φ, g))
It is well-known that (M(φ, g)) has a unique solution (u, λ ν ) := (u(φ, g), λ ν (φ, g)). In addition, u solves (P(φ, g)) and λ ν = -T ν (u) on Γ c . Then Ψ defined by (2.6) takes the form

Ψ(φ, g) = (∥u t ∥, λ ν ).
(2.7)

3. Discretization of contact problems with orthotropic Coulomb friction.

Existence and uniqueness results.

This section deals with a discretization of (P) and the analysis of the resulting discrete problem. Unlike the continuous setting we prove that the discrete counterpart has a solution for any F = diag(F 1 , F 2 ) satisfying (3.7). Moreover, it has a unique solution under the additional assumptions on F 1 and F 2 . Furthermore, we shall investigate how the uniqueness result depends on the size of the discrete problem. The discretization of (P) will be based on the fixed-point formulation for an appropriate discretization of the mapping Ψ given by (2.7).

To get it we use a mixed finite element discretization of (M(φ, g)).

Let T Ω h , T Γ c H be a partition of Ω and Γ c into finite elements T and R, respectively. The norm of T Ω h , T Γ c H is denoted by h and H, respectively. We use the symbol H to point out that the partition of Γ c is generally independent of T Ω h , but the case when

T Γ c H = T Ω h | Γc is not excluded. With any T Ω h and T Γ c
H we associate finite dimensional spaces V h and L H consisting of piecewise polynomial functions of degree less or equal k and s, respectively:

V h = {v h ∈ C(Ω) | v h | T ∈ P k (T ) ∀ T ∈ T Ω h , v h = 0 on Γ u }, L H = {µ H ∈ L 2 (Γ c ) | µ H | R ∈ P s (R) ∀ R ∈ T Γ c H }
and set

V h = (V h ) 3 , Λ H ν = {µ H ∈ L H | µ H ≥ 0 on Γ c }, W h = V h | Γc , W h + = {φ h ∈ W h | φ h ≥ 0 on Γ c }.
Clearly, V h and Λ H ν serve as the natural discretizations of V and Λ ν , respectively (observe that L H may consist also of discontinuous functions). Next we shall suppose that the couple (V h , L H ) which will be used in the discretization is chosen in such a way that the following condition is satisfied: H is coarser than the partition of Γ c given by T Ω h | Γc (see [START_REF] Haslinger | Numerical Methods for Unilateral Problems in Solid Mechanics[END_REF]).

µ H ∈ L H & (µ H , v h ν ) 0,Γ c = 0 ∀ v h ∈ V h =⇒ µ H = 0. ( 3 

Let φ h ∈ W h

+ and g H ∈ Λ H ν be given and define the problem:

Find (u h , λ H ν ) ∈ V h × Λ H ν such that a(u h , v h -u h ) + j(φ h , g H , v h t ) -j(φ h , g H , u h t ) ≥ ℓ(v h -u h ) -(λ H ν , v h ν -u h ν ) 0,Γ c ∀ v h ∈ V h , (µ H ν -λ H ν , u H ν ) 0,Γ c ≤ 0 ∀ µ H ν ∈ Λ H ν ,                            (M hH (φ h , g H ))
where the meaning of all symbols has been introduced in Section 2. Because of (3.1), this problem has a unique solution (u

h , λ H ν ) := (u h (φ h , g H ), λ H ν (φ h , g H )) for any (φ h , g H ) ∈ W h + × Λ H ν .
Before we give the definition of the discrete contact problem with orthotropic Coulomb friction we formulate assumptions needed in what follows. First we shall suppose that the vector field x → (t 1 (x), t 2 (x)) associating any x ∈ Γ c with the principal orthotropic axes is sufficiently smooth so that

v h t = (v h t 1 , v h t 2 ) ∈ (H 1 (Γ c )) 2 ∀ v h ∈ V h (3.2)
and there exists a constant c t > 0 independent of v h ∈ V h and h such that

∥v h t ∥ 1,Γ c ≤ c t ∥v h ∥ 1,Γ c ∀ v h ∈ V h . (3.3)
Since the function ∥v h t ∥ does not belong to W h + we have to introduce "a return" operator r h : H 1 (Γ c ) → W h possessing the following approximation and monotonicity property:

∥φ -r h φ∥ 0,Γ c ≤ c r h Γ c ∥φ∥ 1,Γ c ∀ φ ∈ H 1 (Γ c ), (3.4) φ ∈ H 1 (Γ c ), φ ≥ 0 on Γ c =⇒ r h φ ∈ W h + , (3.5) 
where c r is a positive constant which does not depend on the norm

h Γ c of T Ω h | Γc . If k = 1 and T Ω h | Γc
belongs to a regular family of partitions of Γ c then (3.4) and (3.5) are satisfied by the Clément interpolation operator ( [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]). We shall need also the satisfaction of the following inverse inequality for elements of V h | Γc : there exists a positive constant c (1,0) inv which does not depend on h Γ c such that

∥v h ∥ 1,Γ c ≤ c (1,0) inv h -1 Γ c ∥v h ∥ 0,Γ c ∀ v h ∈ V h . (3.6) Let us recall that (3.6) is satisfied provided that T Ω h | Γc
belongs to a regular family of partitions of Γ c satisfying the so-called inverse assumption (see [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems, volume 4 of Studies in Mathematics and its Applications[END_REF]Th. 3.2.6]). Finally, we shall suppose that the coefficients of friction F 1 and F 2 are continuous and bounded:

F 1 , F 2 ∈ C(Γ c × R 1 + ), 0 < F min ≤ F i (x, ξ) ≤ F max , i = 1, 2, ∀ (x, ξ) ∈ Γ c × R 1 + ,              (3.7)
where F min , F max are given positive numbers.

Let

Ψ hH : W h + × Λ H ν → W h + × Λ H ν be defined by Ψ hH (φ h , g H ) = (r h ∥u h t ∥, λ H ν ), (φ h , g H ) ∈ W h + × Λ H ν , (3.8) 
where (u h , λ H ν ) is the unique solution of (M hH (φ h , g H )). This definition is meaningful since (3.2) implies that ∥u h t ∥ ∈ H 1 (Γ c ). The mapping Ψ hH serves as the approximation of Ψ.

Analogously to the continuous setting we say that u h ∈ V h is a solution of the discrete contact problem with orthotropic Coulomb friction and the solution-dependent coefficients of friction iff the couple (r h ∥u h t ∥, λ H ν ) is a fixed point of Ψ hH . Next we shall examine the existence, eventually the uniqueness of the fixed points of Ψ hH . To this end we introduce the following norm in W h × L H :

∥(φ h , µ H )∥ W h ×L H = ∥φ h ∥ 0,Γ c + ∥µ H ∥ -1/2,h , (φ h , µ H ) ∈ W h × L H , (3.9)
where

∥µ H ∥ -1/2,h = sup 0 v h ∈V h (µ H , v h ν ) 0,Γ c ∥v h ∥ 1,Ω . (3.10) 
In view of (3.1), the formula (3.10) defines a meshdependent norm in L H . To prove the existence of a fixed point we use Brouwer's fixed-point theorem. Since the mapping Ψ hH is continuous in virtue of (3.7), it remains to show that it maps a closed convex set into itself. This property follows from the next lemma. Lemma 3.1. Let (3.1)-(3.6) be satisfied. Then there exist positive constants R 1 , R 2 which do not depend on h and H such that

Ψ hH maps W h + × Λ H ν ∩ B into itself, where B is the ball B = {(φ h , µ H ) ∈ W h ×L H | ∥φ h ∥ 0,Γ c ≤ R 1 , ∥µ H ∥ -1/2,h ≤ R 2 }.
Proof. Inserting v h = 0, 2u h into the first inequality in (M hH (φ h , g H )) and using the V-ellipticity of a with the constant of ellipticity α > 0 we easily obtain that u h is bounded:

∃ R := R(∥F∥ 0,Ω , ∥P∥ 0,Γ P ) > 0 : α∥u h ∥ 1,Ω ≤ R. (3.11) Furthermore, ∥r h ∥u h t ∥∥ 0,Γ c ≤ ∥r h ∥u h t ∥ -∥u h t ∥∥ 0,Γ c + ∥∥u h t ∥∥ 0,Γ c (3.4) ≤ c r h Γ c ∥u h t ∥ 1,Γ c + ∥u h t ∥ 0,Γ c (3.3) ≤ c r c t h Γ c ∥u h ∥ 1,Γ c + ∥u h ∥ 0,Γ c (3.6) 
≤ (c r c t c (1,0) inv + 1)c tr ∥u h ∥ 1,Ω , where c tr is the norm of the trace mapping from (H 1 (Ω)) 3 into (L 2 (Γ c )) 3 . From this and (3.11) the existence of R 1 := R 1 (∥F∥ 0,Ω , ∥P∥ 0,Γ P , α) > 0 bounding ∥r h ∥u h t ∥∥ 0,Γ c follows. Restricting ourselves to functions from V h such that v h t = 0 on Γ c we easily get:

∥λ H ν ∥ -1/2,h ≤ ∥a∥∥u h ∥ 1,Ω + R ≤ R ∥a∥ α + 1 := R 2 ,
where R is from (3.11) and ∥a∥ is the norm of a.

Remark 3.2. It is worth mentioning that R 1 and R 2 are independent of F .

A natural question arises, namely under which conditions the fixed point of Ψ hH is unique. To this end let us suppose that the friction coefficients F 1 , F 2 are smooth enough and denote

L = max i=1,2 sup x∈Γ c , ξ>0 ∂F i (x, ξ) ∂ξ and κ(F ) = sup x∈Γ c , ξ>0 max{F 1 (x, ξ), F 2 (x, ξ)} min{F 1 (x, ξ), F 2 (x, ξ)} .
The quantity κ(F ) can be considered as a "measure" of orthotropy (for the isotropic friction κ(F ) = 1). It can be shown (see [START_REF] Haslinger | [END_REF]) that

Ψ hH is Lipschitz continuous in W h + × Λ H ν ∩ B, i.e. there exists C > 0 such that ∥Ψ hH (φ h , g H ) -Ψ hH ( φh , ḡH )∥ W h ×L H ≤ C∥(φ h , g H ) -( φh , ḡH )∥ W h ×L H (3.12)
holds for every (φ h , g H ), ( φh , ḡH )

∈ W h + × Λ H ν ∩ B, where B is the same as in Lemma 3.1. Moreover, the Lipschitz constant C in (3.12) is of the form C = max{C 1 (F max , H), C 2 (L, κ(F ), H, h Γ c )}
, where the constants C 1 , C 2 enjoy the following properties:

(a) C 1 (F max , H) → 0 if F max → 0+ for any H > 0 fixed, C 2 (L, κ(F ), H, h Γ c ) → 0 if L → 0+ for any H, h Γ c fixed and κ(F ) bounded; (b) if F does not depend on ∥u h t ∥, i.e. L ≡ 0, then C 2 (0, κ(F ), H, h Γ c ) = 0 for any F and any H, h Γ c > 0; (c) if F is fixed then C 1 (F max , H), C 2 (L, κ(F ), H, h Γ c ) behaves as H -1/2 and (Hh Γ c ) -1/2 , respectively, for H, h Γ c → 0+ provided that the Babuška-Brezzi condition for {V h , L H } is satisfied: sup 0 v h ∈V h (µ H , v h ν ) 0,Γ c ∥v h ∥ 1,Ω ≥ β∥µ H ∥ * ,Γ c ∀ µ H ∈ L H
where β > 0 does not depend on h and H and

∥µ H ∥ * ,Γ c = sup 0 v∈V ⟨µ H , v ν ⟩ ν ∥v∥ 1,Ω .
Suppose that κ(F ) is bounded. From (a) it follows that for any H, h Γ c fixed one can find F crit := F crit (H) > 0 and L crit := L crit (H, h Γ c ) > 0 such that if F max ≤ F crit and L ≤ L crit then the mapping Ψ hH is contractive. Therefore there exists a unique fixed point of Ψ hH and the method of successive approximations converges. Recall that each iterative step of the method of successive approximations is represented by a contact problem with Tresca friction and in the case of solutiondependent friction coefficients we update not only the slip threshold but also the matrix F . If F does not depend on the solution, i.e. L ≡ 0, then using (b) we recover the classical result (see [START_REF] Haslinger | Approximation of the Signorini problem with friction, obeying the Coulomb law[END_REF]). If both H and h Γ c tend to zero then to preserve the contractivity of Ψ hH , the parameters F max , L have to decay at least as fast as H 1/2 and (Hh Γ c ) 1/2 , respectively. This is a consequence of (c). The mesh dependency of discrete models can be read in two ways: either (i) the matrix F is fixed, then passing from coarser to finer meshes we may loose unicity of the approximate solution or (ii) finite element meshes are fixed, then setting F ζ = ζF , ζ ≥ 0, one can find ζ crit > 0 such that the discrete model has a unique solution for ζ ≤ ζ crit and eventually multiple solutions if ζ > ζ crit . This behavior has been observed in computations (see [START_REF] Haslinger | Bifurcations in contact problems with local Coulomb friction[END_REF]).

Existence of local Lipschitz continuous branches of solutions

In this section we shall consider solutions to discrete contact problems to be a function of friction coefficients. We restrict ourselves to 2D-case and isotropic Coulomb friction with the coefficient F which depends on the spatial variable x ∈ Γ c . From the previous section we know that if F ≤ F crit then there exists a unique solution of our problem. Moreover, it can be shown ( [START_REF] Ligurský | Theoretical analysis of discrete contact problems with Coulomb friction[END_REF]) that for such F the mapping u h : F → u h (F ) is Lipschitz continuous if (3.12) is satisfied. In what follows we shall investigate the case when F > F crit . More precisely, if F 0 > F crit is a reference point, under which conditions there exists a neighborhood U δ (F 0 ) such that the mapping u h : F → u h (F ), F ∈ U δ (F 0 ), has a Lipschitz continuous branch, implying (among others) local uniqueness of the respective solution. To this end we use the algebraic formulation of the discrete contact problem with Coulomb friction which involves two Lagrange multipliers: one releasing the unilateral constraint and the other regularizing the non-smooth frictional term. It reads as follows:

Find (u, λ ν , λ t ) ∈ R n × Λ ν × Λ t (λ ν ) such that Au = f -B T ν λ ν -B T t Fλ t , (µ ν -λ ν ) • B ν u + F(µ t -λ t ) • B t u ≤ 0 ∀ (µ ν , µ t ) ∈ Λ ν × Λ t (λ ν ),                    (4.1)
where A is an (n × n) stiffness matrix, u ∈ R n is the nodal displacement vector, B ν , B t are (p × n) matrices representing the linear mappings u → u • ν and u • t, respectively, and p is the number of the contact nodes. We shall suppose that

B T ν µ ν + B T t µ t = 0 ⇐⇒ (µ ν , µ t ) = (0, 0) ∈ R p × R p .
Further, f ∈ R n is the load vector, F = diag(F 1 , . . . , F p ) is the diagonal matrix with F i being the value of F at the i th contact node, Λ ν = R p + and

Λ t ( g) = {µ ∈ R p | |µ i | ≤ g i ∀ i = 1, . . . , p}, g ∈ Λ ν .
It is well-known that λ ν and Fλ t is the opposite of the discrete normal and tangential contact stress, respectively.

Let f ∈ R n be fixed. Using tools of convex analysis, problem (4.1) can be equivalently written as the following system of generalized equations:

Find y ∈ R n+2p such that 0 ∈ C f (F , y) + Q(y), (4.2)
where C f : R p ++ × R n+2p → R n+2p and Q : R n+2p ⇒ R n+2p is the single-valued and the set-valued mapping, respectively, defined by

C f (F , y) =           A B T ν B T t F -B ν 0 0 -FB t 0 0                     u λ ν λ t           -           f 0 0           , Q(y) =           0 N Λ ν (λ ν ) N Λ t (λ ν ) (λ t )           , F := (F 1 , . . . , F p ) ∈ R p ++ , y := (u, λ ν , λ t ) ∈ R n+2p , with N Λ ν (µ), N Λ t (λ ν ) (µ) denoting the normal cones of Λ ν and Λ t (λ ν ) at µ ∈ R p , respectively.
The system (4.2), in which F plays the role of the perturbation parameter, can be analyzed by using the generalized implicit-function theorem ( [START_REF] Robinson | Strongly regular generalized equations[END_REF]).

Let S f : R p ++ ⇒ R n+2p be the solution (multi-valued) mapping of (4.2):

S f (F ) = {y ∈ R n+2p | 0 ∈ C f (F , y) + Q(y)}, F ∈ R p ++ ,
and (F 0 , y 0 ) ∈ R p ++ × R n+2p be a reference point such that y 0 ∈ S f (F 0 ). Theorem 2.1 in [START_REF] Robinson | Strongly regular generalized equations[END_REF] states that S f has a local Lipschitz continuous branch passing through y 0 at F 0 if the so-called strong regularity condition is satisfied at (F 0 , y 0 ). This condition pertains to the properties of the multi-valued mapping Σ f : R n+2p ⇒ R n+2p , where

Σ f (η) = {y ∈ R n+2p | η ∈ C f (F 0 , y 0 ) + ∇ y C f (F 0 , y 0 )(y -y 0 ) + Q(y)}, η ∈ R n+2p ,
i.e. Σ f (η) is the solution set of the system of generalized equations arising from the partial linearization of the smooth part C f in (4.2) at (F 0 , y 0 ) with respect to the second variable.

Taking

η := (η u , η ν , η t ) ∈ R n+2p , Σ f (η) consists of all y satisfying 0 = Au + B T ν λ ν + B T t F 0 λ t -f -η u , 0 ∈ -B ν u -η ν + N Λ ν (λ ν ), 0 ∈ -F 0 B t u -η t + N Λ t (λ ν ) (λ t ),              (4.3) with F 0 = diag(F 0 1 , . . . , F 0 p ). Setting û := u + B ν F 0 B t + η ν η t , where B ν F 0 B t + stands for the Moore-Penrose pseudo- inverse of B ν F 0 B t , we have B ν F 0 B t û = B ν F 0 B t u + B ν F 0 B t B ν F 0 B t + η ν η t = B ν u + η ν F 0 B t u + η t
and (4.3) transforms into

0 = A û + B T ν λ ν + B T t F 0 λ t -f -A B ν F 0 B t + η ν η t -η u , 0 ∈ -B ν û + N Λ ν (λ ν ), 0 ∈ -F 0 B t û + N Λ t (λ ν ) (λ t ).                          (4.4)
Comparing this with (4.2), it is readily seen that the triplet ( û, λ ν , λ t ) satisfies (4.4) iff it is a solution to the discrete contact problem with Coulomb friction with the coefficient F 0 and the perturbed load vector

η f := f + A B ν F 0 B t + η ν η t + η u .
Hence, introducing the set-valued mapping

S F : R n ⇒ R n × R p × R p for F ∈ R p ++ fixed by S F (η f ) = {(u, λ ν , λ t )}, η f ∈ R n ,
where {(u, λ ν , λ t )} denotes the set of all solutions to the discrete contact problem with Coulomb friction with the coefficient F and the load vector η f , we get the following result.

Theorem 4.1. Let us suppose that S F 0 has a local Lipschitz continuous branch containing y 0 in a vicinity of f ∈ R n , i.e. there exist: a single-valued Lipschitz continuous function ϕ F 0 from a neighborhood O of f into R n+2p and a neighborhood Ŷ of y 0 such that

ϕ F 0 ( f ) = y 0 & ϕ F 0 (η f ) = S F 0 (η f ) ∩ Ŷ ∀ η f ∈ O.
Then there are neighborhoods U, Y of F 0 and y 0 , respectively, and a single-valued Lipschitz continuous function

σ f : U → Y satisfying σ f (F 0 ) = y 0 & σ f (F ) = S f (F ) ∩ Y ∀ F ∈ U.
This theorem says that locally the dependence of a solution on F can be deduced from the dependence of the solution on the load vector keeping F fixed. It is worth mentioning that the latter one is much simpler since the dependence on the load vector is piecewise linear. The local behavior of the set-valued mapping f → S F ( f ), f ∈ R n , for F ∈ R p ++ fixed can be studied in more details by writing (4.1) as a system of piecewise smooth equations (see (5.1)) and applying the implicit-function theorem for such a class of functions (Theorem 4.2.2 in [START_REF] Scholtes | Introduction to piecewise differentiable equations[END_REF]). From it one concludes that the existence of local Lipschitz continuous branches is not guaranteed only around points y ∈ S F ( f ) for f belonging to the union of subspaces of dimension strictly lower than n. (For more details see [START_REF] Ligurský | Theoretical analysis of discrete contact problems with Coulomb friction[END_REF].)

Numerical continuation of solution curves

In this section we shall propose the algorithm for tracing the (local) Lipschitz continuous branches of solutions, the existence of which was established in the previous section. More precisely, taking a smooth path

α ∈ I → F (α) = (F 1 (α), . . . , F p (α)) ∈ R p + , I ⊂ R 1 open,
we shall approximate the curve consisting of all solutions to the discrete contact problem with Coulomb friction and the coefficient F (α) for α running over I.

Next we use the equivalent formulation of (4.1) as the system of non-smooth equations involving the projection mappings P Λ ν : R p → Λ ν and P Λ t (F λ ν ) : R p → Λ t (F λ ν ), where Λ ν = R p + and

Λ t (F g) = {µ ∈ R p | |µ i | ≤ F i g i ∀ i = 1, . . . , p}, g ∈ Λ ν .
Taking F := F (α), α ∈ I, this system becomes:

Find x ∈ R n+2p × I such that H(x) = 0, (5.1) 
where H : R n+2p × I → R n+2p is defined by

H(x) =           Au + B T ν λ ν + B T t λ t -f λ ν -P Λ ν (λ ν + rB ν u) λ t -P Λ t (F (α)λ ν ) (λ t + rB t u)           , x := (u, λ ν , λ t , α) ∈ R n+2p × I.
Here r > 0 is a parameter and the components of P Λ ν , P Λ t (F (α)λ ν ) are given by

(P Λ ν ) i (µ) = P [0,+∞) (µ i ), (P Λ t (F (α)λ ν ) ) i (µ) =        P [-F i (α)λ ν,i ,F i (α)λ ν,i ] (µ i ) if λ ν,i ≥ 0, -P [F i (α)λ ν,i ,-F i (α)λ ν,i ] (µ i ) if λ ν,i < 0, i = 1, . . . , p, µ ∈ R p , with P [0,+∞) , P [a,b] being the projections of R 1 onto [0, +∞) and [a, b], -∞ < a ≤ b < +∞, respectively.
The meaning of the remaining symbols in the definition of H is the same as in (4.1).

Note that H is a piecewise smooth function, i.e. for every x ∈ R n+2p × I there exists an open neighborhood O ⊂ R n+2p × I, x ∈ O, and a finite number of smooth functions H (i) : O → R n+2p , i = 1, . . . l, (the so-called selection functions) such that H(x) ∈ {H (1) (x), . . . , H (l) (x)} for every x ∈ O. The set

I H ( x) ≡ {i ∈ {1, . . . , l} | H( x) = H (i) ( x)}
is known as the active index set at x and the functions H (i) , i ∈ I H ( x), are termed the active selection functions for H at x.

Classical continuation techniques require H in (5.1) to be smooth. Next, we shall show how these techniques can be adapted to our non-smooth case. In particular, we shall modify the Moore-Penrose continuation, which is presented e.g. in [START_REF] Dhooge | MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs[END_REF]. This continuation procedure consists of two steps. In the correction, we use the piecewise smooth Newton method (7.2.14 Algorithm in [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF]) instead of the smooth one when the gradient ∇H is replaced by the gradient of one of its active selection functions if necessary.

On the other hand, a generalization of the prediction is more complicated. Indeed, if one tries to use the tangential direction of the form

H ′ (x j ; τ j ) = 0, ∥τ j ∥ = 1, j = 1, 2, . . . ,
where H ′ (x j ; τ j ) denotes the directional derivative of H at x j in the direction τ j , the continuation may fail when approaching a point of non-differentiability on the solution curve. It is caused by the fact that the Newton corrections are only locally convergent and one has to take a suitable tangential vector to reach their zone of convergence (see Figure 1 for illustration). This is why we have to develop a special approach to pass through such points. Clearly, the non-differentiability of H is caused by the functions:

r x j-1 r x j r x H(x) = 0 h j τ j
x → λ ν -P Λ ν (λ ν + rB ν u), x → λ t -P Λ t (F (α)λ ν ) (λ t + rB t u).      (5.2)
With (5.2) the following selection functions will be associated:

x → λ ν,i , x → -r(B ν u) i and

x → λ t,i + F i (α)λ ν,i , x → -r(B t u) i , x → λ t,i -F i (α)λ ν,i , x → (2λ t + rB t u) i , i = 1, .
. . , p, respectively, representing all possible values of the mappings in (5.2). Furthermore, we define the so-called test functions

θ k = (θ k 1 , . . . , θ k p ) : R n+2p × I → R p , k = 1, 2, 3, by θ 1 i (x) = (λ ν +rB ν u) i , θ 2 i (x) = (λ t +rB t u) i -F i (α)λ ν,i , θ 3 i (x) = (λ t + rB t u) i + F i (α)λ ν,i , i = 1, . . . , p, x ∈ R n+2p × I.
From their definition it immediately follows that there is the one-to-one correspondence between the signs of the components of θ 1 (x), θ 2 (x) and θ 3 (x) and the selection functions for H which are active at x. (Possible zero components indicate that more than one selection function is active.) Suppose that x ∈ R n+2p × I is a point where only one selection function is active, i.e. all components of the test functions are nonzero there. Assembling the signs of the test functions into a (p × 3) array in such a way that the i th column corresponds to θ i (x), i = 1, 2, 3, we see that every selection function for H can be represented by a (p × 3) array and this representation is unique. Let x j be a current point which is close to a point x of non-differentiability of H as illustrated in Figure 1. Assume that exactly two selection functions H (i 1 ) and H (i 2 ) are active at x and there exists a piecewise smooth curve of solutions passing through x which consists of two smooth branches belonging to the solution sets to H (i 1 ) (x) = 0 and H (i 2 ) (x) = 0. Supposing that x j is a root of H (i 1 ) , we shall describe how to reach the unknown smooth branch of the curve corresponding to

H (i 2 ) (x) = 0.
Clearly, one of the test functions, say θ k , has a zero component at x, say the m th one, and this component changes its sign when passing through x. Moreover, continuity of θ k ensures that θ k m (x j ) is close to zero. If the (p × 3) array represents H (i 1 ) then changing the sign of θ k m we obtain the representative of the selection function H (i 2 ) . This leads us to the following choice of the tangential vector τ j at x j :

∇H (i 2 ) (x j )τ j = 0, ∥τ j ∥ = 1.
To select the direction of this vector, the notion of orientation is adapted from the theory of smooth continuations.

Definition 5.1. Let H be smooth at a point x ∈ R n+2p × I. The tangential vector τ ∈ R n+2p+1 satisfying

∇H(x)τ = 0, ∥τ∥ = 1, is called positively oriented iff det ∇H(x) τ T > 0.
In the opposite case it is called negatively oriented.

In our non-smooth case, we determine the direction of τ j to preserve the orientation in the following sense:

det ∇H (i 1 ) (x j-1 ) (τ j-1 ) T det ∇H (i 2 ) (x j ) (τ j ) T > 0.
Let us note that the expounded procedure can be also applied when the point of non-differentiability x is met exactly, i.e. x j = x. Nevertheless, this situation is highly improbable.

On the basis of the above considerations we propose the following algorithm. 

Data: ε, ε ′ > 0, h max ≥ h init ≥ h min > 0, h inc > 1 > h dec > 0, k max ≥ k thr > 0 and x 0 ∈ R n+2p × I, τ 0 ∈ R n+2p+1 satisfying: ∥H(x 0 )∥ < ε, H ′ (x 0 ; τ 0 ) = 0, ∥τ 0 ∥ = 1.
Step 1: Set h 0 := h init , j := 0.

Step 2: Set m dec := 0.

Step 3 (prediction): Set X 0 := x j + h j τ j , T 0 := τ j , k := 0.

Step 4 (correction): Select an index i k in I H (X k ) and set:

B := ∇H (i k ) (X k ) (T k ) T , R := 0 1 , Q := H(X k ) 0 , T := B -1 R, T k+1 := T ∥ T∥ , X k+1 := X k -B -1 Q.
Step 5: If ∥H(X k+1 )∥ < ε and ∥X k+1 -X k ∥ < ε ′ , set x j+1 := X k+1 , τ j+1 := T k+1 and go to Step 9.

Step 6: If k < k max , set k := k + 1 and go to Step 4.

Step 7: If h j > h min , set h j := max{h dec h j , h min }, m dec := m dec + 1 and go to Step 3.

Step 8: According to a component of θ 1 (x j ), θ 2 (x j ) or θ 3 (x j ) close to 0 select a function H (i) which is likely to be active in a vicinity of x j and compute a vector τ j satisfying

∇H (i) (x j )τ j = 0, ∥τ j ∥ = 1
and preserving the orientation. Set h j := h init and go to Step 2.

Step 9: Set

h j+1 :=        min{h inc h j , h max } if k < k thr and m dec = 0 h j otherwise and j := j + 1; go to Step 2.
Here ε and ε ′ are convergence tolerances, h min , h max and h init is the minimal, maximal and initial step length, respectively, and h inc , h dec are the scale factors for adjustment of the step length. Further, k max stands for the maximal number of corrections allowed and m dec denotes the number of the step length reductions of the current value of h j .

In Step 7 the current step length is shortened in case of non-convergence of the corrections. Step 9 defines the step length for the prediction in the next iteration. The new step length h j+1 can be larger than h j only if the number of corrections (Step 4) does not exceed k thr given a priori and m dec = 0. These parts of the routine together with the prediction and the corrections are taken directly from the classical Moore-Penrose continuation. Step 8 is added to handle the situation when the corrections do not converge even for h = h min . Then we determine a new tangential prediction, making use of our test functions, and return to the classical part of the procedure.

Remark 5.1. (i) This algorithm can be also used to pass through a point where more than two selection functions for H are active. In this case, however, one has more possibilities to choose a new selection function when "switching" between smooth branches. (ii) Control of changes of the signs of components of θ 1 , θ 2 and θ 3 during the continuation routine enables us to detect points of non-differentiability with an arbitrarily chosen accuracy.

Numerical examples

The last section is devoted to the application of Algorithm 5.1. We shall restrict ourselves to very simple model examples with one and two contact nodes (see Figures 2 and3). In the forthcoming computations, we will use the following parameter setting: ε = ε ′ = 10 -6 , h min = 10 -5 , 0.1 ≤ h max ≤ 5, h init = 0.05, h inc = 1.3, h dec = 0.5, k max = 10, k thr = 4.

One contact node

This subsection deals with an elementary problem involving a single linear triangular finite element shown in Figure 2. This problem was suggested and analyzed in [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]: let f = ( f ν , f t ) be the load vector, x = (u ν , u t , λ ν , λ t , α) be the solution of the piecewise smooth system (5.1) with n = 2, p = 1, F (α) = α > 0 and λ, µ > 0 be the Lamé coefficients. Then

(j) if ((λ + 3µ) f ν + (λ + µ) f t ≤ 0 & f ν ≤ 0) ∨ ((λ + 3µ) f ν + (λ + µ) f t > 0)
then there exists just one solution branch;

(jj) if ((λ + 3µ)

f ν + (λ + µ) f t < 0 & f ν > 0)
then there exist two separated solution branches;

(jjj) if ((λ+3µ) f ν +(λ+µ) f t = 0 & f ν > 0) then there exist two solution branches which meet one another in a bifurcation point.

The respective solution branches are given explicitly in [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]. For comparison, we will compute them numerically. The following three examples pertain to the cases (jj), (j) and (jjj) with λ = µ = 1. bottom, respectively. Although the whole branch 1 consists of the grazing contact points, i.e. u ν = λ ν = 0, and two selection functions are active on it, the algorithm copes even with this situation. Observe that the direction of continuation during the transition between The performance of Algorithm 5.1 is illustrated in Figure 10: the continuation is initialized at the points marked by the asterisk corresponding to the value α = 5 and each point is computed with a guaranteed precision given by the tolerances ε = ε ′ = 10 -6 .

The crucial problem is to find starting points x 0 for the continuation routine. In general, we can fix α > 0 and compute a corresponding solution to (5.1) by the piecewise smooth Newton method, see e.g. [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF]. Remark 6.1. In order to find all roots, we proceed as follows: let us fix α > 0. We determine all particular selection functions for H. For each selection function, which is linear, we solve (5.1). Finally, we sort out the classes of the roots. Obviously, such an algorithm has the exponential complexity. Example 6.5. Data: f 1 = (0.4, -1.4), f 2 = (1.5, -1.3).

We found three branches depicted in Figures 11 and12.

It is worth mentioning that the points on branch 3 in the graph α → λ ν,1 has to be viewed twice, i.e. there are two solutions with the same λ ν,1 but different λ ν,2 . The numerical performance is illustrated in Figure 13.

Next, we give an example of a bifurcation, similar to that one shown in Figure 6. Remark 6.2. It is worth mentioning that a simple adaptation of Algorithm 5.1 enables us to continue along a loading path α ∈ I → f (α) keeping F fixed, see [START_REF] Janovský | Computing non unique solutions of the Coulomb friction problem[END_REF].

Example 6.7. Data: F = (4, 4), f (α) = ( f 1 (α), f 2 (α)) with f 1 (α) = (-0.1α + 0.4, 1.1α + 0.2), f 2 (α) = (0.2α + 1.8, 0.8α -0.1), -3 < α < 3. The linear loading path results in the piecewise linear solution branch (see Figure 16). Again, it suffices to plot the relation α → λ ν,1 , λ ν,2 . Note that we encounter at most five solutions of the corresponding contact problem for α fixed. For example, there are three intersections of the branch with the vertical line at α = -1.6 at the first contact node and five intersections at the second contact node. However, any point between transition points 1 and 2 of the first contact node has to be counted three times as seen from Figure 16. 

Conclusions

Mathematical models of contact problems with friction in elastostatics have at least one solution provided that the coefficient of friction F is sufficiently small. On the other hand there is no information on the structure of solutions (uniqueness, multiplicity) in a general case. The situation is somewhat different for discrete versions of these problems. It is well-known that appropriate discretizations have a solution for any F belonging to a suitable class of coefficients and this solution is unique for F small enough. The aim of this paper was twofold: a) to show how the uniqueness property depends on the number of degrees of freedom, i.e. on the norm of finite element meshes used to get the discrete model; b) how (eventually) multiple solutions to the discrete problems can be captured. Sections 2 and 3 of this paper were devoted to a). We considered the orthotropic Coulomb friction law with friction coefficients which may depend on the solution itself. The discrete solutions are represented by fixed points of the mapping Ψ hH acting on the contact zone. This mapping was defined by means of the mixed finite element formulation of auxiliary contact problems with Tresca friction. We presented conditions under which Ψ hH is contractive, implying not only the uniqueness of the fixed point but also convergence of the method of successive approximations. Unfortunately, these conditions are mesh-dependent. To fulfill them, the coefficient F has to decay in an appropriate rate depending on the mesh norms. The rest of the paper deals with b). To understand better the structure of discrete solutions, we analyzed conditions ensuring the existence of local Lipschitz continuous branches of solutions assumed to be a function of F . This was done in Section 4 by using a variant of the implicit-function theorem for generalized equations. In a standard way of solving contact problems with Coulomb friction one finds some solution (which depends for example on the choice of the initial approximation) but without any further information on its position within other potential solutions. This is why we proposed a piecewise smooth variant of the Moore-Penrose continuation in Section 5 which allows us to follow branches of solutions parametrized by the friction coefficient F , the load vector f , etc. Unlike the classical Moore-Penrose continuation for smooth (differentiable) problems, some modifications in the prediction step ensuring the transition through points of non-differentiability have to be done. Using this technique, various graphs of solutions were obtained in the model examples presented in Section 6. Therefore, the proposed method seems to be promising for solving larger models arising from finite element discretizations of contact problems.
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 312 Figure 12: Example 6.5, branch 3. Continuing in the negative direction, α goes back and forth while λ ν,1 remains the same.
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 114 Figure 14: Example 6.6. The abscissa connecting transition points 3 and 4 at the top corresponds to a single point at the bottom. The dotted line at the top denotes solutions corresponding to grazing contact.
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 16 Figure 16: Example 6.7. Between transition points 1 and 2 at the top, α goes forth, back and forth while λ ν,1 remains the same.
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branches 1 and 2 is determined in such a way that the orientation is preserved. Nevertheless, if one changes the orientation in the corresponding transition point, the other part of branch 1 is revealed. It is worth mentioning that an arbitrarily small perturbation of f destroys the bifurcation. For example, if we set f = (0.98, -2) then we arrive at (jj): the solution set consists of two distinct branches, see Figure 7.

Two contact nodes

Next we shall consider a discrete contact problem with two contact nodes (see Figure 3), i.e. n = 4, p = 2 in (5.1). We set and 9 (one has to be aware of different scaling of the figures). Again we plot only the relation α → λ ν,1 , λ ν,2 , i.e. the normal stresses in the first and the second contact node. Solutions of the system (5.1) can be deduced from the figures in the following way: for a fixed α they consist of pairs (λ ν,1 , λ ν,2 ) whose components are the intersection of the vertical line at α with the same branch i associated with the first and the second contact node. Nevertheless, when coupling the components λ ν,1 and λ ν,2 from the same branch, one has to take into account also the order in which they were obtained during the continuation. Let us take α = 5, for example. Then (5.1) has (at least) five solutions -one on branch 1, two on branch 2 (the upper intersection in the first component with the upper intersection in the second component and the lower one with the lower one) and two on branch 3 (the lower intersection in the first component with the upper intersection in the second component and vice-versa).