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ANALYTICAL STUDY OF THE PANTOGRAPH EQUATION

USING JACOBI THETA FUNCTIONS

CHANGGUI ZHANG

Abstract. The aim of this paper is to use the analytic theory of linear q-

difference equations for the study of the functional-differential equation y′(x) =
ay(qx)+by(x), where a and b are two non-zero real or complex numbers. When

0 < q < 1 and y(0) = 1, the associated Cauchy problem admits a unique power

series solution,
∑
n≥0

(−a/b; q)n

n!
(bx)n, that converges in the whole complex x-

plane. The principal result obtained in the paper explains how to express

this entire function solution into a linear combination of solutions at infinity
with the help of integral representations involving Jacobi theta functions. As

a by-product, this connection formula between zero and infinity allows one to

rediscover the classic theorem of Kato and McLeod on the asymptotic behavior
of the solutions over the real axis.

Mathematics Subject Classification 2010: 34K06, 34M40, 33E30
Keywords: pantograph equation, q-difference equation, connection problem,

Jacobi θ-function.

Introduction

Let’s denote two non-zero real or complex numbers a and b. The following
functional differential equation

(0.1) y′(x) = ay(qx) + by(x)

has been first studied in detail in [6, 11] in the seventies of the last century. Since
these works, many authors have worked on several extensions to systems or even
to some nonlinear or variable-coefficients equations; while not claiming to be ex-
haustive or complete, we are content, for instance, to mention [3, 4, 8, 12] and the
references therein. According to [6], the functional equation (0.1) with real coeffi-
cients a and b arises as a mathematical model of an industrial problem involving
wave motion in the overhead supply line to an electrified railway system, so Eq.
(0.1) is often called the pantograph equation.

As is often the case in the theory of q-difference equations [20,21], the situations
are usually very different and may remain opposed to each other when 0 < q < 1
is replaced by q > 1. This important fact has been developed in [11] by stating
that the equation (0.1) with the boundary condition y(0) = 1 is well-posed only if
0 < q < 1. In what follows, we shall treat only the case 0 < q < 1; see §7 for some
of the remarkable results due to Kato and McLeod [11] for this case.

In addition, the above-mentioned work [11] has been done within the real anal-
ysis’ framework, while our present paper is devoted to an analysis of the functional

This work was supported by Labex CEMPI (Centre Européen pour les Mathématiques, la
Physique et leurs Interaction).
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differential equation (0.1) in the complex plane. This is the reason why the bound-
ary problem studied in [11] will be transformed into a Cauchy problem. Accordingly,
the real asymptotic behavior will be replaced with the asymptotic expansion over
open sectors of the complex plane.

However, one can also notice that the analytic theory of linear functional q-
difference equations is intimately linked with the theory of elliptic functions; see
[2, 17]. It may probably be natural to make use of elliptic functions to study the
functional differential equation (0.1), and that is exactly what we shall do in the
present paper. More precisely, all analytic solutions of (0.1) will be represented,
as often as possible, with the help of Jacobi’s theta function, and it will be shown
that almost all results given in [11] under the hypothesis 0 < q < 1 can be obtained
entirely from our analysis. It is also worth noticing that a family of non-lacunary
power series having a natural boundary is deduced from the present work; see [25]
and also §1.3 and §7, below.

At the same time, as Eq. (0.1) is a functional equation involving both the
differential and q-difference operators, it will be shown that its power series solutions
are made up of hypergeometric-type terms and their q-analogs, such as (α)n and
(α; q)n. Therefore, our present work may be seen as a preliminary step towards a
theory of special functions including both usual and basic hypergeometric series;
see (0.7) for the notations (α)n and (α; q)n, and see our paper [20] for a general
description of power series satisfying an analytic differential-q-difference equation.

The present paper is entirely devoted to the only case of 0 < q < 1. We will treat
the case of q > 1 in a future paper. The most important change in this case is that
the functional differential equation (0.1) does not, in general, possess any analytic
solution at the neighborhood of the origin or at infinity. Indeed, all power series

solutions are divergent everywhere, and their coefficients have a growth such as qn
2/2

or n! as the index n tends to infinity. In order to obtain analytic solutions in sectors
of the complex plane, one could apply some very different summation processes,
that is Borel-Laplace summation and some of its q-analogs; see [15,16,21–23].

Organization of the paper. Throughout the whole paper, we will always suppose
that b ̸= 0 in the functional differential equation (0.1); by considering y(−bx)
instead of y(x) in (0.1), one can suppose that b = −1, and this is what we shall do.
Therefore, we are led to consider the equation

(0.2) y′(x) = αy(qx)− y(x), α = qµ ∈ C∗,

where µ ∈ C.
We will start by establishing the fact that every C1-solution of (0.2) given on

an interval [0, r), r ∈ C∗, can be continued into an entire function in the whole
complex plane; see Proposition 1.1 in §1.1. Therefore, our study focuses on the
analytic solution of (0.2) satisfying y(0) = 1, and this leads us to the power series
F (µ; q, x) defined as being a combination of usual and basic-hypergeometric types of
series; see (0.3). Concerning the point at infinity, one can find a system of solutions
of the form x−µkGk(

1
x ), where k ∈ Z, µk = µ − 2πki

ln q , and where Gk(z) denotes

some analytic function at z = 0 given also as a mix of two types of series; see (1.4).
Understanding the analytic structure of all solutions of (0.2) constitutes the main

object of the present paper. For doing that, we shall express F (µ; q, x) in terms

of all members of the infinite system {x−µkGk(
1

x
)}k∈Z, as given in Theorem 1.1.
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This allows us to obtain, at infinity, an asymptotic expansion of F possessing as
coefficients a family of q-periodic functions. Surprisingly, these functions can be
represented by explicit non-lacunary power series and have a natural boundary; see
Theorem 1.2 and Remark 1.2.

The principal steps we shall follow for proving Theorems 1.1 and 1.2 are inspired
by the following observations:

(1) written as Dirichlet series, the following power series (qµ = α)

(0.3) F (µ; q, x) =
∑
n≥0

(qµ; q)n
n!

(−x)n

can be viewed as a Laplace integral in the sense of the theory of q-integrals
of Jackson; see Proposition 2.1 in §2.1, and Proposition 3.1 in §3.1;

(2) applying Laplace transform to functional equation (0.2) yields a first order
homogeneous q-difference equation which admits a Fuchsian singularity at
the origin and an irregular singularity at infinity; see §3.2;

(3) by considering the classical θ-modular relation as a connection formula for
the functional equation xy(qx) = y(x), that relates the analytic solution

θ(x) on C∗ and the ramified solution e− log2 x/(2 ln q), the q-difference equa-
tion obtained in (2) admits two types of solutions, and they are related via
q-periodic functions; see Theorem 4.1 in §4.2.

Accordingly, we are led to consider, in Section 5, two families of Laplace integrals,
one of which represents the solution F and the other, the functions Gk. Thanks
to the well-known θ-modular formula, we can finish the proof of Theorems 1.1 and
1.2 in Section 6.

Finally, it may be interesting in this context to note that somewhat similar
analysis was done in our previous works [24] and [9], establishing, respectively,
connection formulae for q-Bessel functions and Ramanujan’s entire function.

Notation. In what follows, we will denote by log the complex logarithm function
defined over its Riemann surface C̃∗, and xα = eαlog x for all α ∈ C and x ∈ C̃∗. As
usual, the set C̃∗ will be identified with the product set ]0,∞[×R via the relation
x = |x|ei arg x. Moreover, the following notation will be used:

• for all a, b ∈ R such that a < b, we denote by S(a, b) the open sector of C̃∗

given by

(0.4) S(a, b) = {x ∈ C̃∗ : a < arg x < b} ;

by convention, one will write the right half-plane as C+ = S(−π
2 ,

π
2 );

• we denote by θ(q, x) the Jacobi theta function

(0.5) θ(q, x) =
∑
n∈Z

qn(n−1)/2xn ;

we will write θ(x) instead of θ(q, x) if any confusion does not occur;
• we denote by κq or simply κ the positive number given by the relation

(0.6) κ = κq = − 2π

ln q
> 0 ;
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• for any α ∈ C, let (α)n and (α; q)n be the sequences given as follows:
(α; q)0 = (α)0 = 1, and for n ≥ 1:

(0.7) (α; q)n =

n−1∏
j=0

(1− αqj), (α)n =

n−1∏
j=0

(α+ j).

It is clear to see that (α; q)n can be extended to (α; q)∞ by taking n→ ∞.

1. Preliminary remarks and statement of results

Consider the functional differential equation (0.2), recalled as follows:

(0.2) y′(x) = αy(qx)− y(x), α ∈ C∗.

In what follows, we will fix a µ ∈ C such that α = qµ. Moreover, if k ∈ Z, we will
write

(1.1) µk = µ+ kκi ,

where κ is as given in (0.6) in the above.

1.1. C∞ or analytic solutions. Let Ω be a non-empty open set of C or R such
that qΩ ⊂ Ω. For any x0 ∈ Ω, it follows that qnx0 ∈ Ω for all positive integer n,
so that 0 ∈ Ω̄. Moreover, if y denotes any given C1-solution of (0.2) on Ω, one may
notice that y belongs necessarily to the set C∞(Ω,C), by taking into account the
following relations deduced from (0.2) by iteration:

(1.2) y(n+1)(x) = α qn y(n)(qx)− y(n)(x), ∀n ∈ N.

Lemma 1.1. Let Ω be a connected open set of C such that qΩ ⊂ Ω ̸= ∅, and let
y ∈ C∞(Ω;C). If y is a solution of (0.2) such that supx∈Ω,|x|<R |y(x)| < ∞ for
some R > 0, then y can be analytically continued into an entire function.

Proof. Firstly, one can notice that the following relation holds for any positive
integer n :

(1.3) y(n)(x) =

n∑
k=0

(−1)n−kαk qk(k−1)/2

[
n
k

]
q

y(qkx) ,

where [
n
k

]
q

=
(q; q)n

(q; q)k (q; q)n−k
.

This can be easily checked by making use of (1.2), and we left the details to the
interested reader.

Let x0 ∈ Ω be such that |x0| < R. By hypothesis, it follows that |y(qnx0)| ≤
K < ∞ for all integer n ≥ 0, so that, from (1.3) and [1, p. 484, (10.0.9)], one
obtains easily that

|y(n)(x0)| ≤ K

n∏
k=0

(1 + |α|qk) ≤ K(−|α|; q)∞ .

Accordingly, we find that y has a Taylor series expansion whose radius of conver-
gence equals to infinity; in other words, y can be analytically continued over the
whole complex-plane C. □

By almost the same way as what done for Lemma 1.1, one can find the following
result:
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Proposition 1.1. Let d ∈ R mod 2πZ and let R > 0. Every given C∞ solution of
(0.2) on [0, Reid) can be analytically continued to be an entire function.

Accordingly, Eq. (0.2) has no nontrivial C∞-solution on [0, Reid) such that
y(0) = 0.

Proof. Let y be a C∞ solution of (0.2) on [0, Reid). For any x0 ∈ (0, Reid), by
considering the relation (1.3) with x = x0 and by noticing y(qnx0) → y(0) for
n → ∞, one finds that y admits a Taylor expansion that converges on the whole
plane. This implies that y can be extended into an entire function on C.

Moreover, when y(0) = 0, the above-obtained Taylor expansion is zero and
represents the trivial solution of (0.2). □

Consequently, we shall only consider the analytic solutions of (0.2) on C.

1.2. Connection formula between power series-type solutions. Let y be an
analytic function solution to (0.2) in a neighborhood of x = 0 in C. If an = y(n)(0)
for all integer n ≥ 0, then putting x = 0 into Eq. (1.2) gives rise to the relation

an+1 = −(1− αqn) an .

Therefore, we are led to the power series solution F (µ; q, x) defined in (0.3). Since
(qµ; q)n admits a finite limit as n → ∞, one finds that F (µ; q, x) defines an entire
function.

Proposition 1.2. Let α = qµ as before, d ∈ R mod 2πZ, and R > 0. Then the
entire function F (µ; q, x) represents the unique C∞ solution of (0.2) on [0, Reid)
such that y(0) = 1.

Proof. It follows on immediately from Proposition 1.1. □

In order to study the asymptotic behavior of F (µ; q, x) at infinity, we introduce
the following power series:

(1.4) G(a; q, x) =
∑
n≥0

(a)nq
n(n+1)/2

(q; q)n
(−x)n ,

which obviously defines an entire function.
One main result that we shall establish in the paper is the following

Theorem 1.1. Let µ ∈ C, α = qµ ∈ C∗, and let µk as in (1.1). Let F and G be
as in (0.3) and (1.4), respectively. Then the following properties hold:

(1) the functions F (µ; q, x) and x−µkG(µk; q,
1

x
), k ∈ Z, all satisfy the func-

tional differential equation (0.2);
(2) moreover, if µ ∈ C \ (Z≤0 ⊕ κZi), then for all x ∈ C+, we have

(1.5) F (µ; q, x) =
κ (qµ; q)∞
2π (q; q)∞

∑
k∈Z

Γ(µk)x
−µkG(µk; q,

1

x
) ,

where Γ denotes the usual Euler Gamma function.

If µ = −m− ϵ and m ∈ N, one has (qµ; q)∞ = (q−m−ϵ; q)m (1− q−ϵ) (q1−ϵ; q)∞
and Γ(µ) = π

sin(π(−m−ϵ))
1

Γ(1+m+ϵ) . This implies that

lim
ϵ→0

(qµ; q)∞ Γ(µ) = (−1)m+1 ln q (q−m; q)m (q; q)∞/m! ,

so that we can observe the following
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Remark 1.1. When µ ∈ Z≤0 ⊕ κZi, the relation (1.5) is reduced to the following
one:

F (−m; q, x) =
(q; q)m
m!

q−m(m+1)/2 xmG(−m; q,
1

x
) (m ∈ N),

that can be directly verified as the functions F and G become polynomial.

1.3. Natural boundary for the analytic continuation in terms of modular
variable. As in [25], let Ψ(u, v, z) be the Laurent series of x associated with (u, v) ∈
C× R such that u /∈ Z≤0 ⊕ 2vi

π Z :

(1.6) Ψ(u, v, z) =
∑
n∈Z

Γ(u+
2ivn

π
) zn .

By the Stirling’s formula on Γ (see [1, §1.4]), it follows that Ψ(u, v, z) is convergent
over the annulus Cν , where

Cν = {z ∈ C : e−|v| < |z| < e|v|} .

By [25, Théorème 1], the function z 7→ Ψ(u, v, z) cannot be analytically continued
beyond the borders ∂Cν of Cν . Thus, the relation (1.5) can be stated as follows.

Theorem 1.2. Let µ be as in Theorem 1.1 (2). Then, for all x ∈ C+, it follows
that

(1.7) F (µ; q, x) =
κ (qµ; q)∞
2π (q; q)∞

( 1
x

)µ ∑
n≥0

qn(n+1)/2

(q; q)n
Ψ(µ+ n,

κπ

2
, x∗)

(
− 1

x

)n
,

where we denote by x∗ the modular variable defined as follows:

x∗ = x−κi = e2πi
log x
ln q .

From the formulas (1.5) and (1.7), one finds that F (µ; q, x) = O(x−µ) as x→ ∞
in the right half plane C+. On the other hand, it will be seen that F (µ; q, x) is
exponentially large if ℜ(x) → −∞; see Theorems 2.1 and 2.2 in Section 2.

Remark 1.2. The formulas (1.5) and (1.7) are only valid for ℜ(x) > 0, and this
explains why each function Ψ(n+ µ, κπ2 , x

∗) has a natural boundary on the

imaginary axis ℜ(x) = 0 or, equivalently, on the circles |x∗| = e±π2/ ln q.
This is exactly the subject of [25, Théorème 1], which is proved by making use of
lacunary Dirichlet series.

For the proof of Theorems 1.1 and 1.2, see §6.2.

2. Power series-type solutions and Dirichlet series representation

The Dirichlet series expansion techniques are often used for the investigations of
pantograph equations; see [6–8, 14]. In what follows, the entire function F (µ; q, x)
will be expanded as a Dirichlet series from the point of view of the q-series. This
expansion will be used for the study of the asymptotic behavior of F (µ; q, x) while
x→ ∞ inside the left half plane ℜ(x) < 0.
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2.1. A Dirichlet series representation of F (µ; q, x). The following expression
of F (µ; q, x) may be known to the researchers of pantograph-type equations, but
unfortunately the author has not found a precise reference about it. However, the
proof we shall give seems somewhat interesting, combining the Hadamard product
with a Heine formula for the q-series.

Proposition 2.1. If qµ = α and ℜ(µ) > 0, then the following relation holds for
all x ∈ C:

(2.1) F (µ; q, x) = (α; q)∞
∑
n≥0

αne−qnx

(q; q)n
.

Proof. By considering F (µ; q, x) as the Hadamard product of the following power
series: ∑

n≥0

(α; q)nx
n,

∑
n≥0

(−1)n

n!
xn,

one can find that

F (µ; q, x) =
(α; q)∞
2πi

∑
n≥0

∫
|t|=r<1

1

(q; q)n

αn

1− qnx
t

e−t dt

t
,

where the integral is taken over the circle in the anti-clockwise sense. Moreover, by
hypothesis, |α| < 1; setting a = q, b = α and c = 0 in [1, p. 521, Theorem 10.9.1]
implies that ∑

n≥0

(α; q)nx
n = (α; q)∞

∑
n≥0

1

(q; q)n

αn

1− qnx
.

The wanted relation (2.1) is thus obtained by Cauchy’s formula. □

The right-hand side of (2.1) represents a Dirichlet series in the sense of [18,
Chapter IX, §8, p. 432-440]. An alternative proof of Proposition 2.1 can be done
by checking merely that this Dirichlet series converges really to an analytic solution
in the complex x-plane of the Cauchy problem of (0.2) with the initial condition
y(0) = 1; indeed, such an analytic solution is unique.

Remark 2.1. The power series F (µ; q, x) becomes a polynomial of x if, and only
if, (qµ; q)∞ = 0, which means exactly that µ ∈ Z≤0 ⊕ κiZ; see also Remark 1.1.

2.2. An auxiliary functional equation on F (µ; q, x). In order to remove the
condition ℜ(µ) > 0 from Proposition 2.1, one shall make use of the following func-
tional relation:

(2.2) ∂xF (µ; q, x) = (α− 1)F (µ+ 1; q, x) .

Indeed, one can obtain the last formula from direct computation by taking into
account the identity

(α; q)n+1 = (1− α)(qα; q)n , ∀n ∈ N.

Proposition 2.2. For any positive integer k, it follows that

(2.3) ∂kxF (µ; q, x) = (−1)k(α; q)k F (µ+ k; q, x) .

Proof. Direct calculation by induction on k. □

The functional relation (2.2) gives rise to a characterization of the function
F (µ; q, x), in view of the following:
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Proposition 2.3. Consider an analytic function f(α, x) in C× C. If there exists
an entire function α 7→ u(α) such that

∂xf(α, x) = u(α)f(qα, x),

then f is uniquely determined by its values taken at the complex line x = 0 in C2.
More precisely, if we set f0(α) = f(α, 0), then f can be expanded in the following
manner:

(2.4) f(α, x) =

∞∑
n=0

fn(α)

n!
xn ,

where, for all positive integer n,

fn(α) = u(α) · · ·u(qn−1α) f0(q
nα) .

Proof. One may easily notice that fn’s satisfy the recurrent relation

fn(α) = u(α) fn−1(qα) ,

which allows us to conclude the proof. □

In the case of f(α, x) = F (µ; q, x), relation (2.2) implies that u(α) = α− 1, with
f0(α) = 1.

2.3. Asymptotic behavior of F (µ; q, x) in the left half-plane. Under the con-
dition ℜ(µ) > 0, the formula (2.1) implies that the first term (α; q)∞ e−x is a
dominating term of F (µ; q, x) as ℜ(x) → −∞. The general case can be treated
with the help of Proposition 2.2, as shown in the following

Theorem 2.1. Let α = qµ ∈ C∗. The following limit holds as x → ∞ in the left
half-plane C−:

(2.5) lim
ℜ(x)→−∞

exF (µ; q, x) = (α; q)∞ .

More precisely, for any given open sector V = S(a, b) with π
2 < a < b < 3π

2 , there
exists a positive constant CV such that the following inequality holds for all x ∈ V :

(2.6)
∣∣F (µ; q, x)− (α; q)∞ e−x

∣∣ < CV e
−qℜ(x) .

Proof. Let V be an open sector as given in Theorem 2.1. From Proposition 2.1, we
obtain the expected relation (2.6) while the condition ℜ(µ) > 0 is assumed. For an
arbitrary complex number µ, choose an enough large positive integer m such that
m+ ℜ(µ) > 0, and set α′ = αqm = qµ

′
with µ′ = µ+m. Therefore, one can write

F (µ′; q, x) = (α′; q)∞ e−x + h(x) e−qx ,

where h denotes a bounded analytic function over V .
Let β = αqm−1 = qν , with ν = µ′ + 1. From (2.2), it follows that

F (ν; q, x) = (β − 1)

∫ x

0

F (µ′; q, t)dt ,

where the integral is taken over the segment going from the point at origin to the
point of affix x in V . An elementary calculation shows that

F (ν; q, x) = (β; q)∞ e−x +H(x) e−qx ,

where

H(x) = −(β; q)∞ eqx + (β − 1)

∫ x

0

h(x− t) eqt dt .
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Thus, one finds easily that F (ν; q, x) satisfies the relation (2.6) while replacing µ by
ν; therefore, the function H(x) possesses the same property as h(x) for F (µ′; q, x).
Consequently, one can continue this analysis and finally obtain the relation (2.6)
for all µ ∈ C.

The relation (2.5) is an evident consequence of (2.6). □

From Remark 2.1, if (qµ; q)∞ = 0, then F (µ; q, x) becomes a polynomial in x,
thus one obtains the following

Remark 2.2. The function F (µ; q, x) is exponentially large for x ∈ C− if and only
if µ /∈ Z≤0 ⊕ κiZ.

On the other hand, the relation (2.6) can be improved to any order N as follows.

Theorem 2.2. Let µ ∈ C, α = qµ, and let V = S(a, b) be an open sector such
that π

2 < a < b < 3π
2 . Then there exists a positive constant C = CV such that the

following estimates hold for all integers N ≥ 1 and all x ∈ V :

(2.7)
∣∣F (µ; q, x)− (α; q)∞

N−1∑
n=0

αn

(q; q)n
e−qnx

∣∣ < CN e−qNℜ(x) .

Proof. We omit the proof, which can be done in a similar manner as what proposed
for the proof of Theorem 2.1. □

2.4. Power series solutions at infinity involving G(µ; q, 1x ). Replacing respec-
tively α and y by qµ and x−µ (1 +

∑
n≥1 anx

−n) in (0.2) leads us to the following
relations:

(2.8) an+1 =
µ+ n

1− q−n−1
an ,

where n ≥ 0. Thus one finds the following

Proposition 2.4. For any k ∈ Z, let µk be as in (1.1). Then x−µk G(µk; q,
1
x ) is

an analytic solution of (0.2) in the Riemann surface C̃∗ of the logarithm.

Proof. By replacing µ with any µk in the second relation of (2.8), it follows that

an = − (µk + n− 1)

1− qn
(qn) an−1 = ... = (−1)n

(µk)n
(q; q)n

qn(n+1)/2

for all n ∈ N. One gets thus the expression (1.4) for the definition of G(µk; q,
1
x ).

It is obvious that G(µk; q, x) converges for all x ∈ C, so that x−µk G(µk; q,
1
x ) is

analytic on the whole surface C̃∗. □

Remark 2.3. The first assertion of Theorem 1.1 follows from Propositions 1.2 and
2.4.

3. Solving (0.2) by Laplace integrals

In [13], Mahler made use of an integral of the type

∫
R
u(t)exq

it

dt to find a special

solution for the functional equation

(3.1) y(x+ ω)− y(x) = ωf(qx), ω ̸= 0.



10 CHANGGUI ZHANG

Indeed, this integral permits to transform (3.1) into a simple difference equation as
follows:

u(t+ i) =
eωqit − 1

ω
u(t) ;

which is clearly equivalent to a first order q-difference equation if one writes s = qit

and U(s) = u(t).
Almost in the same way, a Laplace-type integral will be applied to the functional

differential equation (0.2), which will be transformed into a first-order q-difference
equation.

3.1. F (µ; q, x) is viewed as q-analogue of the Laplace integral. In the work [10]
of F. H. Jackson (see also [1, §10.1], [5, §1]), the q-integral of a suitable function
f(t) over [0, 1] is defined as follows:∫ 1

0

f(t) dqt = (1− q)
∑
n≥0

f(qn)qn.

By means of this discrete integral, we can express F (α; q, x) as a q-integral of
Laplace type.

Proposition 3.1. If α = qµ and ℜ(µ) > 0, then the following relation holds for
all x ∈ C:

(3.2) F (µ; q, x) =
(α; q)∞

(1− q) (q; q)∞

∫ 1

0

(qt; q)∞ e−tx tµ
dqt

t
.

Proof. Under the assumption, it follows that |α| < 1, so that one can express
F (α; q, x) by the Dirichlet series (2.1). Thus, putting together αn = qnµ and

(q; q)n =
(q; q)∞

(q · qn; q)∞
in the expansion (2.1) permits to get the wanted q-integral representation (3.2). □

3.2. From (0.2) to a q-difference equation via Laplace transform. Let L be
a smooth loop in the complex t-plane and let qL = {qt : t ∈ L} be the loop obtained
as the image of L for the operator t 7→ qt. Consider the following Laplace integral:

(3.3) y(x) =

∫
L

f(t)e−tx dt

t
,

where f denotes a unknown function. If we suppose L and f to be chosen such that

(3.4)

∫
qL

f(t)e−tx dt

t
=

∫
L

f(t)e−tx dt

t
,

then the equation (0.2) will be transformed as follows:

−tf(t) = αf(
t

q
)− f(t),

or, equivalently,

(3.5) (1− qt)f(qt) = αf(t) .

Equation (3.5) is Fuchsian at t = 0 and admits an irregular singular point at
t = ∞; see [2, 19, 21]. If we write f = gh, we may decompose (3.5) into two
q-difference equations:

(3.6) (1− qt)g(qt) = g(t)
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and

(3.7) h(qt) = αh(t).

By iterating (3.6), one obtains easily the following solution:

(3.8) g(t) = (qt; q)∞ =
∑
n≥0

qn(n+1)/2

(q; q)n
(−t)n,

which is an entire function with respect to the variable t. The power series expansion
in (3.8) is due to Euler; see [1, p. 490, Corollary 10.2.2 (b)].

On the other hand, we may make use of several solutions of (3.7) and, by this
way, we will get different solutions of (3.5). The choices we will consider are the
following:

(3.9) h(t) = tν , qν = α,

or

(3.10) h(t) =
θ(λt)

θ(µt)
,

µ

λ
= α.

In Section 4, we shall consider links between the two solutions of (3.7), and in
Section 5, two types of Laplace integrals will be studied.

4. Remarks on character functions

By [19], any Fuchsian type linear q-difference equation whose coefficients are
analytic functions at x = 0 has a fundamental system of solutions made up of
analytic functions in a whole neighborhood of the origin except over some q-spirals.
Here “fundamental” means that the q-Wronskian of the system is not identically

null. One main idea consists of making use of the character function x 7→ θ(µx)

θ(λx)
instead of the multi-valued function xν , the latter being traditionally used in this
domain since Birkhoff [2]. Indeed, if qν = λ

µ = a and σqf(x) = f(qx), it follows:

σqx
ν

xν
=
σq

θ(µx)
θ(λx)

θ(µx)
θ(λx)

= a .

In this case, one finds that xν
θ(λx)

θ(µx)
is σq-invariant or is called to be q-periodic.

In what follows, we shall make use of the θ-modular relation to find the Fourier
expansion of such q-periodic functions.

4.1. Character functions expressed by means of θ-modular relation. Let
κ be as given in (0.6). For any x ∈ C̃∗, let

(4.1) e(q, x) = e(x) = e−
log2 x√

q

2 ln q .

It is easy to see that both θ(x) and e(x) satisfy the functional q-difference equation
xy(qx) = y(x). Furthermore, the well-known modular formula on θ(q, x) states
that if we set

q∗ = e−2πκ, x∗ = ιq(x) = x−κi,

then the following relation holds [1, p. 498, (10.4.2)]:

θ(q,
√
q x) =

√
κ e(q,

√
q x) θ(q∗,

√
q∗ x∗)



12 CHANGGUI ZHANG

or, equivalently,

(4.2) θ(q,−x) =
√
κ e(q,−x) θ(q∗,−x∗),

where −x = eiπx in e(q,−x); see [26] for a point of view of q-series.

Lemma 4.1. The following identity holds for all µ ∈ C∗ ⊂ C̃∗:

(4.3)
θ(q,−qµx)
θ(q,−x)

= q−µ(µ−1)/2 (eπix)−µ θ(q
∗,−e2πiµx∗)
θ(q∗,−x∗)

.

Proof. It follows directly from (4.2). □

Remark that if µ = n ∈ Z, the relation (4.3) can be read as follows:

(4.4) θ(qnx) = q−n(n−1)/2 x−n θ(x) .

4.2. Decomposition of character functions into Laurent series. The Jacobi
triple product formula says that

(4.5) θ(x) = (q,−x,− q

x
; q)∞ .

Therefore, one finds that for any given λ ∈ C∗ \ qZ, the function x 7→ θ(−λx)
θ(−x)

is

analytic over C∗ \ qZ.

Lemma 4.2. Let λ ∈ C∗\qZ and let m ∈ Z. If qm < |x| < qm−1, then the following
Laurent series expansion holds:

(4.6)
θ(−λx)
θ(−x)

=
λ1−m θ(−λ)

(q; q)3∞

∑
ℓ∈Z

(q1−mx)ℓ

1− λqℓ
.

Proof. This can be seen as a special case of Ramanujan’s 1ψ1-summation formula.
Indeed, putting a = λ, b = qλ and replacing x by q1−mx in [1, p. 502, (10.5.3)]
yields our wanted formula. □

4.3. Fourier series expansion of character functions. We shall conclude this
section by proving the following

Theorem 4.1. Let µ ∈ C \ Z and let m ∈ Z. Then, the following relation holds

for all x ∈ S(−2mπ, 2(1−m)π) ⊂ C̃∗:

(4.7)
θ(−qµx)
θ(−x)

= C(q,m, µ)x−µ
∑
ℓ∈Z

e2π(m−1)κℓ

1− e2πi(µ+κiℓ)
x−κiℓ,

where κ is given as in (0.6) and where

(4.8) C(q,m, µ) =
κ (qµ, q1−µ; q)∞
i (q, q; q)∞

e2(1−m)πiµ .

Proof. For any x ∈ S(−2mπ, 2(1−m)π), it follows that

ℑ(log x) = arg x ∈ (−2mπ, 2(1−m)π),

so that the following relation holds:

|x∗| = eκ arg(x) ∈ (q∗m, q∗m−1),
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where q∗ = e4π
2/ ln q = e−2πκ. Thus, by Lemmas 4.1 and 4.2, if one writes

C(q,m, µ) =
q−µ(µ−1)/2 e(1−2m)πiµ θ(q∗,−e2πiµ)

(q∗; q∗)3∞
,

then one gets the following identity:

θ(−qµx)
θ(−x)

= C(q,m, µ)x−µ
∑
ℓ∈Z

q∗(1−m)ℓ

1− e2πiµ q∗ℓ
x∗ℓ .

Applying the θ-modular formula (4.2) to θ(q∗,−e2πiµ) yields that

θ(q∗,−e2πiµ) = q1/8

i
√
κ
eµπi+κπ/4 qµ(µ−1)/2 θ(q,−qµ) .

Thus, by considering the η-modular relation [1, p. 538, Theorem 10.12.8]:

(q∗; q∗)∞ =
q1/24√
κ
eκπ/12 (q; q)∞ ,

one finds the given expression (4.8) for C(q,m, µ). This ends the proof of the
expected relation (4.7). □

The series given in the right-hand side of (4.7) is a Fourier series expansion

with respect to the variable X = log x
ln q , for which we have e2πiX = x−κi = x∗.

Remark 4.1. When µ→ n ∈ Z, one can notice that

C(q,m, µ) ∼ (−1)n
κ

i
q−n(n−1)/2 (1− qn−µ) ,

so that the relation (4.7) reduces to (4.4) up to replacing x with −x.

5. Two Laplace integrals

Let us come back to the Laplace integral (3.3) introduced in §3.2. The loop L
will be chosen among two types of curves: closed curves near the point of origin,
which will be denoted as C, and half straight-lines starting from the point at origin.

5.1. Function I(α; q, x). Let α ∈ C∗. Let C be any smooth and anti-clockwise
Jordan curve whose interior contains the set qN = {1, q, q2, q3, ...}. We consider the
function x 7→ I(α; q, x) defined by the following relation:

I(α; q, x) =
1

2πi

∫
C

θ(−α
t )

( 1t ; q)∞
e−xt dt

t
.

From the analyticity of the function under the integral, one see easily that I(α; q, x)
is independent of the choice of the curve C.

Lemma 5.1. Let α ∈ C∗. The function x 7→ I(α; q, x) is the unique entire function
solution of (0.2) such that y(0) = ( q

α ; q)∞.

Proof. A direct computation shows that x 7→ I(α; q, x) satisfies the given functional
differential equation (0.2). Indeed, let

f(t) =
θ(−α

t )

( 1t ; q)∞
=
θ(− qt

α )

( 1t ; q)∞
, h(t) =

θ(−α
t )

θ(−qt)
=
θ(− qt

α )

θ(−qt)
.

Thanks to Jacobi’s triple product formula (4.5), we find that

f(t) = (q; q)∞ g(t)h(t) ,
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where g(t) denotes the function given by (3.8) and where h satisfies the q-difference
equation (3.7). One may also notice that the conditions required for f and L = 1

qC
permit us to transform the functional equation (0.2) into (3.5).

In order to get the value taken at x = 0 for I(α; q, x), we may suppose that
|α| < 1, the general case resulting from a standard analytic continuation argument.

By applying the residues theorem to the integral

∫
C
f(t)

dt

t

(
=

∫
1
q C
f(t)

dt

t

)
, we

find the following relation:

I(α; q, 0) =
∑
n≥0

θ(− α
qn )

(q−n; q)n(q; q)∞
.

From the relation (4.4) and the fact that

(q−m; q)m = (−1)m (q; q)m q−m(m+1)/2 (m ∈ N)
one deduces that

I(α; q, 0) =
θ(−α)
(q; q)∞

∑
n≥0

1

(q; q)n
(α)n.

By taking into account the following Euler’s identity [1, p. 490, Corollary 10.2.2 (a)]:

(5.1)
∑
n≥0

xn

(q; q)n
=

1

(x; q)∞
(|x| < 1) ,

one finally finds that

I(α; q, 0) =
θ(−α)

(q, α; q)∞
,

which, together with the Jacobi triple product formula (4.5), allows to complete
the proof. □

Proposition 5.1. The following relation holds for any non-zero complex number
α = qµ:

(5.2) I(α; q, x) = (
q

α
; q)∞ F (µ; q, x) .

In other words, if µ /∈ N∗ ⊕ κiZ, then

(5.3) F (µ; q, x) =
1

( q
α ; q)∞

I(α; q, x) .

Proof. By taking into account of Lemma 5.1, one needs only to notice that the
function x 7→ F (µ; q, x) is the unique function analytic over C that satisfies (0.2)
with the condition initial F (µ; q, 0) = 1; see Proposition 1.2. □

5.2. Function Iν(α; q, x). Let ν ∈ C, α = qµ ∈ C∗ be such that the following
inequality holds:

(5.4) ℜ(ν + µ) > 0 .

For any real number d ∈ (0, 2π), we define

(5.5) I [d]ν (α; q, x) =

∫ ∞eid

0

θ(−α
t )

( 1t ; q)∞
e−xt tν

dt

t
;

under the condition (5.4), the integral of (5.5) converges for all x belonging to

the open sector S(−d− π
2 ,−d+

π
2 ) of C̃

∗. Therefore, by the analytic continuation



ANALYTICAL STUDY OF THE PANTOGRAPH EQUATION 15

process, we get an analytic function defined over the sector S(− 5π
2 ,

π
2 ); this function

will be denoted by Iν(α; q, x).
By taking into account of the functional equation (4.4), one may remark that

the following relation holds for any integer k ∈ Z:

(5.6) Iν(q
kα; q, x) =

q−k(k−1)/2

(−α)k
Iν+k(α; q, x) .

In particular, when ν = 0, the last formula can be read as follows:

(5.7) Ik(α; q, x) = (−α)k qk(k−1)/2 I0(q
kα; q, x) .

Lemma 5.2. The function x 7→ Iν(α; q, x) satisfies the following functional diffe-
rential equation:

(5.8) y′(x) + y(x)− qναy(qx) = 0.

Proof. The result may be proved by a direct computation, in the same spirit as the
beginning of the proof of Lemma 5.1; see also §3.2. □

If we take the derivation with respect to x in the integral (5.5) of Iν(α; q, x), we
find that for any positive integer k, the following identity holds:

∂kxIν(α; q, x) = (−1)kIν+k(α; q, x).

Thus, from (5.6) one deduces the following relation:

(5.9) ∂kxIν(α; q, x) = αk qk(k−1)/2 Iν(q
kα; q, x),

which is similar to that satisfied by F (µ; q, x); see (2.3).

5.3. Two special cases for Iν(α; q, x). Let us consider two particular cases: (1)
ν ∈ Z; (2) α ∈ qZ. In particular, the first case contains the case of ν = 0.

Proposition 5.2. Let ν = k ∈ Z, α = qµ ∈ C∗ to be such that the condition (5.4)
is satisfied. Then, the following relation holds for all x ∈ C+ = S(−π

2 ,
π
2 ):

(5.10) Ik(α; q, e
−2πi x)− Ik(α; q, x) = Ck(α)F (µ+ k; q, x) ,

where

Ck(α) = 2πi (−α)k (q
1−k

α
; q)∞ qk(k−1)/2 .

Proof. Notice that when x ∈ C+, both x and xe−2πi belong to S(− 5π
2 ,

π
2 ), so the

left-hand side of (5.10) is well-defined on C+. By using the relation (5.7), one can
only consider the case of k = 0. Since, by Cauchy formula,

I0(α; q, x)− I0(α; q, xe
−2πi) = 2πi I(α; q, x) ,

one completes the proof, with the help of Proposition 5.1. □

Proposition 5.3. Let m ∈ Z and ν ∈ C. If ℜ(ν) + m > 0, then the following
relation holds in the sector S(− 5π

2 ,
π
2 ):

(5.11) Iν(q
m; q, x) = Kν(m)

( 1
x

)m+ν
G(m+ ν; q,

1

x
) ,

where

Kν(m) = (−1)m (q; q)∞ q−m(m−1)/2 Γ(m+ ν) .
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Proof. Putting α = 1 and k = m in (5.6) implies that

Iν(q
m; q, x) = (−1)mq−m(m−1)/2Iν+m(1; q, x),

so that one needs only to prove (5.11) with m = 0 and Kν(0) = (q; q)∞ Γ(ν). Thus,
we shall suppose that m = 0 in the statement of Proposition 5.3.

By making use of the triple product formula (4.5) and the Euler’s formula (5.1),
we may write

θ(− 1
t )

( 1t ; q)∞
= (q; q)∞

∑
n≥0

qn(n+1)/2

(q; q)n
(−t)n .

With the help of Fubini Theorem and the Euler’s Gamma function, as
∑∫

=
∫ ∑

,
one may obtain that∫ ∞

0

θ(− 1
t )

( 1t ; q)∞
e−tx tν

dt

t
= (q; q)∞

∑
n≥0

(−1)n
Γ(ν + n)

(q; q)n
qn(n+1)/2 x−n−ν .

The proof is thus completed. □

Remark 5.1. Putting m = 0 in Proposition 5.3 yields the following integral rep-
resentation:

(5.12) G(ν; q,
1

x
) =

xν

Γ(ν)

∫ eid∞

0

(qt; q)∞ e−xt tν
dt

t
,

where d ∈ R, ℜ(ν) > 0 and x ∈ S(−π
2 − d, π2 + d).

In order to get the asymptotic expansion of Iν(α; q, x) as x → ∞, we will make
use of the relation (4.3), which is reduced from the θ-modular formula (4.2).

6. End of the Proof of Theorems 1.1 and 1.2

For any δ ∈ R and q ∈ (0, 1), we denote by Dδ,q or simply Dδ the following
annulus:

(6.1) Dδ,q = Dδ := {z ∈ C̃∗ : e−3κπ/2 < |zeδ| < e3κπ/2},
where κ = κq.

For any u ∈ C+, µ ∈ C \ Z, consider the function z 7→ Φ(u, µ; q, z) given by the
following relation:

(6.2) Φ(u, µ; q, z) = z−
µi
κ

∑
ℓ∈Z

Γ(u+ µ+ κiℓ)

1− e2πi(µ+κiℓ)
zℓ .

By using the Stirling formula

Γ(u+ µ± κiℓ) = O(ℓu+µ− 1
2 e−

κπ
2 ℓ)

for ℓ→ +∞, the Laurent series of (6.2) converges in the domainDκπ. Consequently,

Φ(u, µ; q, z) represents an analytic function on the annulus Dκπ of C̃∗. Consider the
function Ψ(u, v, x) given in (1.6), which is related with Φ(u, µ; q, z) in the following
manner:

Proposition 6.1. The following relation holds for all z ∈ D−κπ ∩Dκπ:

(6.3) Φ(u, µ; q, z)− Φ(u, µ; q, z e−2κπ) = z−
πi
κ Ψ(u+ µ,

κπ

2
, z) .

Proof. It follows from a direct computation by making use of the definition (1.6)
of Ψ. □
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By considering the fact that Ψ(u, v, x) has a natural boundary (see [25]), one may
notice that Φ(u, µ; q, z) can not be analytically continued beyond the boundaries of

his convergence ring Dκπ in the Riemann surface C̃∗.

6.1. Expansion of Iν(α; q, x) by means of Φ(u, µ; q, z). Let α = qµ, with µ ∈ C;
we will consider the behavior of Iν(q

µ; q, x) as x → ∞. The main result of this
section is the following

Theorem 6.1. Let µ ∈ C and ν ∈ C be such that ℜ(µ+ ν) > 0; let Φ(u, µ; q, z) be
the function given in (6.2). If qµ /∈ qZ, then the following relation holds for all x
belonging to the open sector S(− 5π

2 ,
π
2 ):

(6.4) Iν(q
µ; q, x) = C(q, µ)

( 1
x

)ν ∑
n≥0

qn(n+1)/2

(q; q)n
Φ(n+ ν, µ; q, x∗)

(
− 1

x

)n
,

where C(q, µ) denotes the constant given in the following manner

C(q, µ) =
κ (qµ, q1−µ; q)∞

i (q; q)∞
,

(which is related to the constant C(q,m, µ) of Theorem 4.1)

Proof. Consider the integral (5.5) of Iν(α; q, x) and write

θ(− qµ

t )

( 1t ; q)∞
= (q; q)∞ g(t)h(t),

where, as in the proof of Lemma 5.1 (α = qµ), we set

g(t) = (qt; q)∞, h(t) =
θ(− qµ

t )

θ(− 1
t )

.

We apply Theorem 4.1 to expand h(t) into a Fourier series for t ∈ S(0, 2π): since
1
t ∈ S(−2π, 0), putting m = 1 in (4.7) allows us to obtain the following expression:

h(t) =
κ (qµ, q1−µ; q)∞
i (q, q; q)∞

∑
ℓ∈Z

tµ+κiℓ

1− e2πi(µ+κiℓ)
,

where q∗ was replaced by e−2πκ and κ = κq = − 2π
ln q .

Therefore, from the Euler’s relation (3.8) it follows that

(6.5)
θ(− qµ

t )

( 1t ; q)∞
= C(q, µ)

∑
n≥0

∑
ℓ∈Z

(−1)nqn(n+1)/2

(q; q)n

tn+µ+κiℓ

1− e2πi(µ+κiℓ)
,

where

C(q, µ) =
κ (qµ, q1−µ; q)∞

i (q; q)∞
.

In (6.5), the double series indexed by n and ℓ is normally convergent on any compact
of S(0, 2π). At the same time, in view of the relation x∗ = e−κi, one may notice
that ∫ ∞

0

tn+µ+ν+κiℓ e−tx dt

t
= Γ(n+ µ+ ν + κiℓ)

(
x∗

)ℓ−µi
κ
( 1
x

)n+ν
.

Hence, if one considers the expansion (6.5) in the integral (5.5) and makes use of
the termwise integration for each e−tx tγ , one can finally obtain the formula (6.4),
according to Lebesgue’s dominated convergence theorem. The proof of Theorem
6.1 is thus completed. □
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Theorem 6.1 states a remarkable fact in relation to the asymptotic behavior at
infinity of the function Iν(q

µ; q, x): it can be expanded as a power series of 1
x having

q-periodic functions as coefficients. This phenomenon will also occur for F (α; q, x)
and other functions.

6.2. End of the Proof of Theorems 1.1 and 1.2. The assertion (1) of Theorem
1.1 can be easily checked; see Remark 2.3. The relations (1.5) and (1.7) can be
obtained directly one from the other, so we shall make use of Proposition 5.2 and
of Theorem 6.1 to conclude only the proof of Theorem 1.2.

Let x ∈ S(−π
2 ,

π
2 ) and let µ ∈ C+ such that qµ /∈ qZ. In light of the relation

(xe−2πi)∗ = x∗ q∗ = x∗ e−2πκ, combining the formulas (6.3) and (6.4) implies the
following identity:

I0(q
µ; q, x)−I0(qµ; q, xe−2πi) = C(q, µ)

( 1
x

)µ ∑
n≥0

qn(n+1)/2

(q; q)n
Ψ(n+µ,

κπ

2
, x∗)

(
− 1

x

)n
,

where C(q, µ) is the constant defined in Theorem 6.1
By letting k = 0 and α = qµ in the relation (5.10), one finds finally that

F (qµ; q, x) = C0(q, µ)
( 1
x

)µ ∑
n≥0

qn(n+1)/2

(q; q)n
Ψ(n+ µ,

κπ

2
, x∗)

(
− 1

x

)n
,

where

C0(q, µ) = −C(q, µ)
C0(qµ)

=
κ (qµ; q)∞
2π (q; q)∞

.

Remark that one can remove the restriction ℜ(µ) > 0 from the above-done
analysis (see (2.2)), by reasoning with a standard analytic continuation process.
Thus the proof of Theorem 1.2, and therefore that of Theorem 1.1, are achieved.2

7. Revisit one Theorem due to Kato and McLeod

By Theorem 1.5, one can give more precision to the following result, which
constitutes probably one of the most important steps for the investigations of the
asymptotic behavior of solutions of the functional differential equation (0.1).

Theorem 7.1 (Theorem 3, [11]). Consider the boundary problem associated with
equation (0.1) for 0 ≤ x < ∞, and the boundary condition y(0) = 1, and suppose
that 0 < q < 1, a ∈ C∗ and b < 0. Let µ to be a complex number such that
qµ = −a/b. Then the following assertions hold:

(1) There exists no solution y(x) such that y(x) = o(x−ℜ(µ)) as x→ ∞.
(2) Every solution y(x) is O(x−ℜ(µ)) at the infinity and may be written as

follows:

(7.1) y(x) = x−µ
{ ∞∑
n=0

qn(n+1)/2

(q; q)n
gn(log x) (−

1

bx
)n
}
,

where g0 = g denotes some C∞(R;C)-periodic function of period | ln q| ver-
ifying

(7.2) |g(n)(s)| ≤ Knq−n2/2, ∀n ∈ N
for some constant K > 0, and where all the functions gn are recursively
given by the following relation:

(7.3) gn+1 = g′n − (µ+ n)gn .
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Indeed, if one writes f(x) = y(−bx), then f will satisfies the boundary problem
about the equation (0.2) with α = −a/b, 0 ≤ x <∞ and f(0) = 1. By Proposition
1.2, the function f is unique and is necessarily represented by F (µ; q, x). Let s =
log x and write x∗ = e−iκs in relation (1.7) of Theorem 1.1; one finds that the
functions gn, n ≥ 0, appearing in (7.1) can be defined as follows:

gn(s) = (−1)n
κ (qµ; q)∞
2π (q; q)∞

Ψ(n+ µ,
κπ

2
, e−iκs) .

Therefore, one can easily get the conditions (7.2) and (7.3) by the definition (1.6)
of Ψ; see also [25, §1.2] for the functional equation (7.3).
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