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Recently we have predicted, solely on the basis of symmetry arguments, the existence of strong
magneto-chiral anisotropy in the displacement current in chiral dielectrics and reported its ex-

perimental observation in chiral ferroelectrics near their ferroelectric-paraelectric phase transitions
(G.L.J.A. Rikken and N. Avarvari, Nat. Comm. 13, 3564 (2022)). Here we present a microscopic
model that describes both direct and inverse dielectric magneto-chiral anisotropy (dMChA) in the

chiral ferroelectric triglycine sulfate (TGS), based on the specifics of the charge movement in a
time-varying electric field. We predict a strong inverse dMChA in TGS that should be within reach
of experimental observation and we find good agreement between our model and the experimental

observation of the direct dMChA in TGS.

Chirality is vital in many areas of physics, chem-

istry and biology, where entities exist in two non-

superimposable forms (enantiomers), one being the mir-

ror image of the other. Chirality corresponds to an ab-

sence of inversion symmetry and if time-reversal sym-

metry is also absent because of a magnetization or

an external magnetic field, an entire class of effects

called magneto-chiral anisotropy (MChA) becomes al-

lowed. Optical MChA corresponds to a difference in the

absorption and refraction of unpolarized light propagat-

ing through the chiral medium parallel or anti-parallel

to the field [1],[2]. Initially observed in the visible wave-

length range [3],[4],[5], its existence was later confirmed

across the entire electromagnetic spectrum, from mi-

crowaves [6] to X-rays [7]. MChA was further generalized

to other transport phenomena [8]. It was experimentally

observed in the electrical transport in bismuth helices [8],

in carbon nano tubes [9], in bulk organic conductors [10],

in metals [11],[12], in superconductors close to the tran-

sition temperature [13] and in semiconductors [14] as an

electrical resistance  that depends on the handedness of

the conductor and on the relative orientation of electrical

current I and magnetic field B:

(B I) = 0(1 + ̃B · I) (1)

with ̃ = −̃ referring to the right- and left-handed
enantiomer of the conductor. Electrical MChA should be

considered a generalization of chirality-induced spin se-

lectivity (CISS) which involves strong non-reciprocities

in spin polarized electronic transport through very thin

layers or across interfaces of chiral materials [15]. For

a recent review of this rapidly expanding field, see [16].

Another manifestation of MChA was recently observed in

the propagation of ultrasound in a chiral crystal [17], fur-

ther illustrating its universal character. Inverse MChA,

a longitudinal magnetization induced in a chiral medium

by an unpolarized flux, first proposed in the optical do-

main [18], and later for an electrical current [19], has also

been observed [20]. MChA has become a prominent rep-

resentative of the wider class of non-reciprocal transport

phenomena in broken-symmetry systems, that play an

import role in topological quantum systems and in Berry

phase physics [21]. For a recent review of MChA, see

[22].

Recently we have claimed, using solely symmetry argu-

ments, that MChA should also exist in the displacement

current in chiral dielectrics, and have conjectured in par-

ticular that this type of MChA should be relatively strong

near the ferroelectric-paraelectric phase transition of chi-

ral ferroelectrics [23]. We have named this effect dielec-

tric MChA (dMChA) and have experimentally observed

it in the chiral ferroelectrics triglycine sulfate (TGS) and

Rochelle salt (RS). Quite surprisingly, dMChA was was

found to be orders of magnitude stronger than the any

resistive MChA ever reported before [23]. No micro-

scopic mechanism nor theoretical estimate for its mag-

nitude were given in Ref. [23]. In this Letter we will

present a microscopic model that describes both direct

and inverse dMChA in TGS. This model is found to be

in good agreement with the reported experimental values

for direct dMChA in TGS, predicts accessible values for

inverse dMChA in TGS and provides the basis to under-

stand dMChA in any chiral dielectric.

Insulating dielectrics when submitted to a time-varying

electric field E() will still carry a displacement cur-

rent density J() because of the movement of bound

charges. This displacement current density is given by

J = Ṗ = 0χĖ where P is the polarization density and

χ the permittivity. Similar to Eq. 1 we can write a gen-

eral form for the symmetry-allowed displacement current

density in a chiral dielectric subject to a magnetic field
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up to first order as

J = 0χĖ(1 + 0
B · χĖ) (2)

where  quantifies the dielectric MChA, now ex-

pressed in terms of the current density. The main differ-

ence with Eq. 1 is that the latter also applies to constant

currents whereas the parameter  in Eq. 2 is only

meaningful in the presence of time-varying electric fields.

In the case of a periodic driving electric field,  is

independent of the field’s frequency, apart from any non-

trivial time-dependence of the charge dynamics, as is also

the case for ̃ in Eq. 1. Eq. 2 shows that the dM-

ChA appears at the second harmonic frequency of this

driving field. dMChA can therefore be quantified by the

current anisotropy ratio  ≡ (2()− 2(−)).
Very large dMChA, of opposite signs for the two handed-

nesses of the crystals, was observed in TGS with a mag-

netic field parallel to the polar -axis, with values for  up

to 10−3 −1 at a frequency of 50 kHz, which corresponds
to values of  up to 3 · 10−52, at temperatures

just below the ferroelectric-paraelectric phase transition

at 322 K [23]. Quite surprisingly, this value for  in

TGS is several orders of magnitude larger than any value

reported before for MChA in (semi)conducting materials

[22] which may open a road to practical applications of

this novel effect. Note that its existence is solely derived

from symmetry arguments and that it should therefore

exist in all chiral dielectrics, which represents an enor-

mous materials class, of particular interest in biological

and pharmaceutical contexts.

When neglecting spin effects, to first order, the only

magnetic field effect on charge movement is through the

Lorentz force, wich is only effective for charge movements

perpendicular to the magnetic field, the latter being par-

allel to the driving electric field for dMChA. A chiral

medium however can support charge movements perpen-

dicular to these fields, as symmetry arguments tell us that

a longitudinal magnetization density will be induced in

any chiral medium by a time varying electric field:

M =  E


=  J



0χ
(3)

where  = −. Eq. 3 is the generalization of inverse
electrical MChA [19] to chiral dielectrics. The simplest

physical picture behind this formal symmetry argument

is to consider the chiral medium as consisting of heli-

coidal units with their axis parallel to E In this picture,

charge movement along E will be intrinsically accompa-

nied by an azimuthal charge movement around E. This

azimuthal component in the charge movement around the

electric field then generates a longitudinal magnetization.

This electrically induced magnetization couples to the ex-

ternal magnetic field, leading to a magneto-chiral energy

density difference

∆ = −M ·B = −


0χ
J ·B (4)

depending on the relative orientation of current and mag-

netic field and on the handedness of the medium, ex-

actly the characteristics of dMChA. Eq. 4 is general and

will apply to all chiral dielectrics. The modern theory

for electrical polarization in general, and ferroelectricity

in particular, is based on a quantum-mechanical Berry

phase formalism [25], and a general theory for dMChA

will probably also have to be based on that. However,

in molecular dielectrics, charges are quite localized and

a classical approach should be adequate. In the follow-

ing we will first present a specific classical microscopic

model for charge movement in TGS that allows to calcu-

late ∆. Subsequently, we will present a general

thermodynamic method based on the Landau-Ginzburg-

Devonshire model to translate ∆ into the current

anisotropy factor .

The combination of chirality and ferroelectricity is by

no means exotic, as 5 of the 10 polar point groups that

support ferroelectricity are also chiral. The first ferro-

electric ever discovered, Rochelle salt, is chiral, and in-

troducing chirality is one of the appproaches in the search

for new molecular ferroelectrics [26]. The most studied

and widely used chiral ferroelectric, TGS, is a so-called

gyroelectric crystal [27], a chiral ferroelectric where the

handedness of its chirality is coupled to the sign of the

remanent polarization along the polar axis, in this case

the crystalline  axis [24] [28]. This remanent polariza-

tion, and thereby the handedness of the crystal, can be

reversed by an electric field parallel to this axis, with

a strength above the coercive field . TGS is most

accurately described as (NH+3 CH2 COOH)2·NH+3 CH2
COO−· SO2−4 and is an order-disorder type ferroelectric.
It is the NH+3 -C dipole of one of the two glycine cations

that is principally responsible for the ferroelectricity, the

projection of this dipole on the crystal -axis having two

bistable opposite values, as illustrated in Fig. 1. Switch-

ing between the two polarities happens through a rota-

tion of this dipole around the -axis. This charge move-

ment corresponds essentially to a displacement of charge

along the -axis, which is to first order not influenced

by a magnetic field B along the -axis, and indeed no

effect of such a magnetic field on the phase transition

was detected [29]. The acompanying chirality related

azimuthal charge movement around the polar axis, the

existence of which was inferred above from symmetry ar-

guments, can be recognized in the transfer of the two H26

protons between neighboring glycine molecules [30] (See

Fig. 1). Such proton tautomerism is quite common in

molecular crystals, and has also been identified as the un-

derlying mechanism for ferroelectricity in some crystals

[31]. This movement can be approximated as a rotation

of the H26 protons in the - plane, over an angle of ap-



103

FIG. 1: View of the unit cells of the two enantiomers of the

TGS crystal, with the corresponding macroscopic polariza-
tions Ps

proximately ∆ = 120 ◦, on a radius  equal to the O-H
bond length, i.e.  = 01 nm. In the paraelectric phase

above the transition temperature, these protons oscillate

rapidly between the two glycine units but in the ferroelec-

tric phase they are mostly localized on one glycine mole-

cule, depending on the sign of the polarization/chirality,

and an external electric field can drive a partial transfer.

Such an induced movement of the H26 protons generates

a transient magnetic moment m parallel to the -axis.

For a periodic applied electric field () =  cos

with  ¿  ≈ 25 , and linearizing the response,
we can estimate


 = 2

∆







= 2
∆





0

(5)

This leads to the MChA energy density

∆ = −
 = −22∆

0

 ≡ 

(6)

where  is the H26 proton density (3 · 1027 m−3) and.
 = − .
In the above, we have assumed that the response to an

applied electric field of the NH+3 -C dipole-H26 protons

in a given unit cell is independent of what happens else-

where in the crystal. This is clearly not the case close to

the ferroelectric-paraelectric phase transition, where the

charge dynamics becomes correlated over a large num-

ber of unit cells. This is most evident from the value of

the permittivity close to the transition, which is orders

of magnitude larger than what would be expected for

an ensemble of independent, thermally disordered elec-

tric dipoles. Clearly, close to the transition temperature,

a correlation across many unit cells exists in the charge

movements and we can quantify this through a correla-

tion number , given by the ratio between the exper-

imentally observed AC polarization and the theoretical

polarization of a dipole gas

 ≡ 0


 


(7)

where  = 1 4 Debye is the NH
+
3 -C dipole strength. In

Ref. [23] typical values of  ≈ 1500 were reported close
to T, from which follows that  ' 106. Much higher val-
ues of  have been reported in TGS crystals with lower

defect concentrations [29], implying even larger correla-

tion numbers in those crystals. This correlation will also

manifest itself in the MChA energy density which be-

comes ∆ =  ≡ . For the TGS

crystals used in [23] we find a value for the inverse dM-

ChA parameter  ≈ 35 · 10−2. For comparison,

the inverse MChA parameter in the chiral semiconductor

tellurium is experimentally found to be 6 · 10−5

[20] and in the chiral metal CrNb3S6 the maximum re-

ported value is 3 · 10−4 [32]. So the predicted

inverse dMChA in TGS is several orders of magnitude

bigger than any reported experimental value for inverse

MChA in (semi)conductors. This stems mainly from the

strong amplifying effect of the charge movement correla-

tion, expressed by the large correlation factor . The ex-

perimental observation of inverse dMChA in TGS there-

fore seems feasible.

The next step will be to calculate the effect of the

MChA energy density on the macroscopic polarization

response of the medium. For this we will consider the

thermodynamics of the ferroelectric-paraelectric phase

transition which can be described by the phenomenolog-

ical Landau-Ginzburg-Devonshire (LGD) model, which

defines a Gibbs’ free energy density of the form

(  ) = 0 +
1

2
( ) 2 +

1

4
 4 +

1

6
 6 −

(8)

with ( ) = ( −  ) where  is the so-called Curie

constant and for a second order transition, like the one

in TGS,   0 [33]. We extend this model heuristi-

cally through the addition of the correlated MChA en-

ergy density defined above:  = + .

Although such an addition is not a priori justified, it is

considered valid as long as it respects the symmetry of

the problem [34], which is the case here. The inclusion of

this time-dependent additional term will be valid as long

as the frequency is much lower than the inverse intrinsic

relaxation time scale of the material’s response, which

for TGS is in the sub-microsecond range [35]. We can

therefore write the free energy for dielectric MChA as

 =  +  (9)

From the steady state condition  = 0 we obtain

 −  =  +  3 +  5 (10)

We look for an approximate solution of this equation for

 through the Ansatz  =  + ̃ () where  is the
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static remanent polarization, found from ( =

0) = 0, assuming that ̃ ¿  and retaining only

terms up to ̃ 2. A series expansion of the solution of the

resulting quadratic equation for ̃ gives

̃ =
 − 


+
3

16

³
 − 

´2
2

+

+
9

16

³
 − 

´3
3 2

+  (11)

As () =  cos, ̃ will have components at , 2 3

etc. By collecting the second harmonic terms in Eq. 11

up to the second order, we arrive at

 = (̃ 2()− ̃ 2(−))̃ ' 3

2



2 2
(12)

In the LGD model  = (0)
−1
and with the experimen-

tal values of  = 10
−22,  ≈ 1500,  = 3 · 105−1

and  = 10  and the result obtained above from

our microscopic model for the inverse dMChA parameter

 ≈ 35 · 10−2, Eq. 12 predicts  = 4 · 10−4−1
which is to be compared with the typical experimental

values reported in [23] of  ≈ 5 · 10−4−1. From the dif-

ferent approximations in the derivation of Eq. 12, an un-

certainty in the calculated result of 50% can be estimated,

and the agreement between calculation and experiment is

therefore satisfactory. From this agreement we can there-

fore conclude a posteriori that our heuristic extension of

the LGD model is valid. The good agreement also auto-

matically confirms our calculation of the inverse dMChA

parameter of TGS. Note that the term  in Eq.

10 plays the role of a dynamic "magneto-chiral" electric

field. By defining the corresponding magneto-chiral po-

larization  ≡ 0 we can rewrite Eq. 12 in a

more easily interpretable form as

 · =
3

2








(13)

Our model therefore identifies the ratios between three

material factors that determine the direct dMChA

strength: the ratio between the electrically induced po-

larization and the remanent polarization and the ratio be-

tween the magneto-chiral polarization and the remanent

polarization. Although  ¿ , the collective charge

dynamics close to the transition results in a very large

value of , and thereby of , which means that

Eq. 13 can still result in significant values of . Values

for (1) of 105, up to frequencies of 100 MHz have been

reported for TGS [36], suggesting that even larger  val-

ues than those reported in [23] are possible in this mater-

ial. This would open the door to practical applications of

this effect, for instance the possibility of non-destructive

readout of a ferroelectric memory. Whereas the micro-

scopic part of our model is specific for TGS, the basic

constituents, expressed by Eqs.4, 10 and 13 will apply to

all chiral ferroelectrics, with material specific values for

. This is supported by the observation in Ref. [23]

of dMChA in another chiral ferroelectric, Rochelle salt,

albeit one order of magnitude weaker than in TGS.

TGS is a ferroelectric of the order-disorder type, in

which one or more electric dipoles fluctuate in the para-

electric phase, and become collectively ordered in the fer-

roelectric phase, generating a macroscopic polarization.

As we outlined above, the electrically induced magneti-

zation is not directly linked to the alignement of these

dipoles, but results from other, secondary, charge re-

arrangements in the ferroelectric phase. Although the

approach of our calculation is of general validity, it is dif-

ficult to quantitatively generalize it to an arbitrary order-

disorder ferroelectric as the secondary charge rearrange-

ment will subtly depend on the details of the crystal

structure. RS belongs to another classe of ferroelectrics

called displacive, where, at least partially, the macro-

scopic polarization is induced by the linear displacement

of charged entities [37]. As for the case of order-disorder

ferroelectrics, it is not this primary source of macroscopic

polarization that is responsible for dMChA, but other,

more subtle, secondary charge rearrangements will be at

its origin. Calculations of the strength of dMChA in

Rochelle salt and in other chiral displacive ferroelectrics

will therefore also have to be made on a case-by-case ba-

sis, depending on the details of the charge movement in

those materials. Such moving charges may be electrons,

protons or even larger charged entities as in the case of

RS, where the tartrate ions are displaced. As large dielec-

tric constants, corresponding to large correlation factors

 are ubiquitous in molecular ferroelectrics, we believe

that many other chiral ferroelectrics with similarly large

dMChA will exist. Although dMChA is not restricted to

ferroelectrics, our analysis shows that its strength scales

strongly with the value of the permittivity , in partic-

ular for our model  ∝ 3, which suggests that ex-

perimental observation of dMChA in ’normal’ dielectrics

with typical dielectric constants in the range of 10-30 will

be an experimental challenge. Taking advantage of the

linear frequency dependence of the anisotropy factor may

be a way to (partially) meet this challenge.

We have limited our model to diamagnetic chiral di-

electrics, as to our knowledge, no chiral ferromagnetic

ferroelectrics have been reported so far, wich the excep-

tion of helimagnetic ferroelectrics, in which the chirality

resides in a helicoidal spin structure [38]. In such me-

dia even larger dMChA could be expected, the remanent

magnetization interacting strongly with the electrically

induced magnetization resulting in a large ∆.

More subtle magneto-electric couplings will also con-

tribute to the dMChA. Such materials represent therefore

interesting topics for further experimental and theoreti-
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cal studies.

In summary, we have presented a microscopic model for

direct and inverse dielectric MChA in TGS, and a general

thermodynamical approach to calculate direct dMChA

in any chiral ferroelectric. The predictions of our model

for direct dMChA in TGS are in good agreement with

recent experiments and its prediction for inverse dMChA

is within reach of experimental observation.
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