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Abstract

In the present study, the efficiency of preconditioners for solving linear systems associated
with the discretized variable-density incompressible Navier–Stokes equations with semi-
implicit second-order accuracy in time and spectral accuracy in space is investigated.
The method, in which the inverse operator for the constant-density flow system acts as
preconditioner, is implemented for three iterative solvers: the General Minimal Residual,
the Conjugate Gradient and the Richardson Minimal Residual. We discuss the method,
first, in the context of the one-dimensional flow case where a top-hat like profile for the
density is used. Numerical evidence shows that the convergence is significantly improved
due to the notable decrease in the condition number of the operators. Most importantly,
we then validate the robustness and convergence properties of the method on two more
realistic problems: the two-dimensional Rayleigh–Taylor instability problem and the
three-dimensional variable-density swirling jet.

Keywords: Variable-density flows, incompressible Navier–Stokes equations, direct
numerical simulation, preconditioning, elliptic solver

1. Introduction

Flows with large spatial density variations play an important role in widespread
industrial and environmental applications such as fluid mixer found in pharmaceuticals
processes or pollutant dispersion phenomenon.

Especially, the generation of baroclinic vorticity due to the interaction of non-parallel
pressure and density gradients, and mass diffusion effects yield to a large variety of scale
motions that presents a significant numerical challenge. In this context, accurate and
fast numerical simulations of these types of flows require the development of efficient
numerical solvers.

Since the prior work of Bell and Marcus [1], several authors proposed a second-
order fractional time-step technique for solving incompressible flows with large density
variations where Boussinesq approximation is no longer verified. For instance, Almgren
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et al. [2] improve the convergence by using adaptive mesh refinement and Calgaro et al.
[3] propose a hybrid method where the mass conservation is solved by a finite volume
method and the velocity field is computed using a finite element method, just to name a
few. The common feature of all the projection-like methods cited above is that at each
time-step the pressure is determined by solving an elliptic equation which can be written
in its most general form as

Lρ(ϕ) = ∇ · (a∇ϕ) = f (1)

due to the divergence-free constraint. Especially, ϕ is a scalar quantity related to the
pressure, a = 1/ρ with ρ the approximation of the density for a given time and f some
right hand-side term that changes with time. Concus and Golub [4] first discuss of how
to tackle the numerical solution of equation (1) with an iterative algorithm. For that
purpose, the authors suggest solving iteratively the discrete counterpart of equation (1)
where the system is rewritten as a Helmholtz-like equation using change of variable. The
technique introduces a suitable choice of parameters to accelerate the convergence. In
particular, the authors show that for a second-order finite difference scheme, the rate
of convergence is independent of the mesh size for a smooth a(x, t) function. However,
the choice of an optimal set of parameters for a rapid convergence of equation (1) is
directly connected to the condition number of the resulting operators. The high con-
vergence rate is therefore not guaranteed for high-order schemes. Within the context of
variable-density flows, Duffy et al. [5], Cook et al. [6], and more recently El Ouafa et al.
[7], show that the discrete system associated with equation (1) is indeed ill-conditioned,
which has for consequence of significantly slow down the performance of widely used iter-
ative solvers. To overcome this difficulty, Guermond and Salgado [8] develop a numerical
scheme where equation (1) is replaced by a Poisson equation using a penalty function
to verify the incompressibility constraint. However, the proposed method requires the
introduction of an additional term proportional to the divergence of the velocity fields
onto the mass equation and its amplitude has to be fixed. More recently, Cook et al.
[9] develop a hybrid Fourier spectral high-order compact finite-difference scheme to in-
vestigate variable-density flows which achieves tera-scalable computations on massively
parallel machines [9]. Using a conservative variable formulation, they solve a Poisson
equation for the pressure by introducing an estimation of the update velocity. As a
consequence, their projection onto the divergence-free vector space is no longer exact.
Finally, several authors suggest the use of preconditioning. As underlined by El Ouafa
et al. [7], the incomplete LU (ILU) preconditioning is generally used. Nevertheless, this
preconditioner does not scale well in parallel implementation with distributed memory.
In an effort to enhance convergence properties, Duffy et al. [5] propose to combine a
multigrid technique with a preconditioning. While the method improves the classical
multigrid projection used for example by Ravier et al. [10], the efficiency of the precon-
ditioning is not discussed within the context of spectral methods.

The problem of the variable-coefficient discrete Poisson equation is also considered
by Knikker [11] for low-Mach-number flows for which an extension of the projection-
type method proposed by Bell and Marcus [1] is used. Focusing on high-order finite
difference schemes, extensive numerical experiments are then carried out by Knikker
[11] to illustrate the performance of various algorithms such as Conjugate Gradient
(CG)-like methods with different preconditioning techniques. Besides, the problem of
ill-conditioned matrices associated with spectral discretization of the Helmholtz equa-
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tion is discussed by Haldenwang et al. [12]. The authors present an iterative algorithm
well-suited or Chebyshev polynomial approximation which uses a preconditioning built
on a second-order difference discretization of the Laplacian operator. The more general
case corresponding to equation (1) is not considered in the work of Haldenwang et al.
[12].

From the above discussion, it appears that the evaluation of an efficient preconditioner
combined with widely used iterative linear solvers for the resolution of the variable-
density incompressible Navier–Stokes equations (VDINSE) with spectral spatial accuracy
and second-order time-accurate scheme has not yet been fully addressed. Motivated by
this question, it is the objective of the present work to present a preconditioning technique
and its performance along with some iterative solvers for solving the VDINSE system.

This paper presents a numerical method for solving VDINSE that includes the motion
induced by Fick’s mass diffusion law, with spectral spatial accuracy, using a semi-implicit
method for the viscous and diffusive term and a second-order fractional time step to hold
incompressibility. It extends the previous work of Di Pierro and Abid [13] where the influ-
ence of preconditioning is not addressed. In a first section, after having briefly presented
the system of equations and numerical schemes, the preconditioning technique based on
the constant-density operator is introduced for both the velocity and pressure equations.
In the second section, the cost of the preconditioner is investigated through numerical
test cases carried out on the implicit systems associated with both the velocity and pres-
sure equations for various iterative solvers. The third section highlights the robustness
of the methods by time-marching the VDINSE system for representative numerical flow
cases.

2. Governing equations and numerical schemes

2.1. Mathematical model

We consider hereafter the motion of a viscous fluid in an inhomogeneous medium
that takes place in a bounded rectangular domain Ω (with boundaries noted ∂Ω) where
the Cartesian coordinate system is defined by the x, y, z axes and in a time interval
t ∈ [0, T ]. The mathematical model for the variable-density incompressible Navier–Stokes
equations (VDINSE) used in the present contribution is detailed by Frank-Kamenetskii
[14], Kazhikhov and Smagulov [15], Antontsev et al. [16] and Guillén-González et al. [17].
As in previous cited studies, we introduce the mean density ρ(x, t) and the mean-volume
velocity u = (u, v, w)T(x, t), then the dimensionless equations of motion read

∂u

∂t
+ u ·∇u+

∇p

ρ
= ζ(ρ,u) + f , (2a)

dρ

dt
+ u ·∇ρ =

1

Re Sc
∇2ρ, (2b)

∇ · u = 0, (2c)

ζ(ρ,u) =
1

ρRe
∇2u+

1

ρRe Sc

(
u ·∇∇ρ+ (∇ρ ·∇)u

)
. (2d)

Here, the mass diffusion is modeled according to the Fick’s diffusion law. In the momen-
tum equation (2d), p is a potential function analogous to the pressure and f represents
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an external body force. In equation (2a) and equation (2b), Re and Sc are the Reynolds
and Schmidt numbers, respectively, defined as

Re =
ρ̄UL

µ
, Sc =

µ

ρ̄λ
, (3)

with µ and λ the dynamic viscosity and mass diffusivity of the fluid respectively, and ρ̄,
U , L being characteristic density, velocity and length scales.

The system ((2)) is then closed with boundary conditions. Two different types of
boundary conditions are used in the present study: no-slip and periodic boundary con-
ditions. For wall-bounded flows, the same boundary conditions as in Guillén-González
et al. [17] are imposed:

u|∂Ω = 0,
∂ρ

∂n |∂Ω
= 0. (4)

Finally, one may note that while many fundamental results have been found with periodic
boundary conditions [18, 19, 20], such boundary conditions could also be used for spatially
developing flows by introducing a fringe region method [21].

The system (2) is solved using a fractional-step scheme with second-order accuracy.
The viscous and diffusive terms are discretized by using a semi-implicit Crank–Nicholson
scheme (by extension of the prior study of Bell and Marcus [1]):

un+1 − un

δt
= −

[
u ·∇u

]n+1/2 −
[
∇p

ρ

]n+1/2

(5a)

+
1

2

(
ζ(ρn+1/2,un+1) + ζ(ρn+1/2,un)

)
,

ρn+1 − ρn

δt
= −

[
u ·∇ρ

]n+1/2
+

1

2

1

Re Sc

(
∇2(ρn+1) +∇2(ρn)

)
, (5b)

∇ · un+1 = 0, (5c)

where δt is the time step, the n superscript denotes the solution at time tn = nδt and n+
1/2 represents a second-order approximation at time tn+1/2. Here, [u ·∇u]n+1/2 and [u ·
∇ρ]n+1/2 are estimated through an Adams–Bashforth scheme whereas the viscous/mass
diffusion term ζ is computed with ρn+1/2 = (ρn+1+ρn)/2 for stability considerations [22].

Following Bell and Marcus [1], equations (5a) and (5b) are time-integrated by intro-
ducing an intermediate velocity u∗:

u∗ − un

δt
= −

[
u ·∇u

]n+1/2 − ∇pn−1/2

ρn+1/2
+

1

2

(
ζ(ρn+1/2,u∗) + ζ(ρn+1/2,un)

)
, (6a)

ρn+1 − ρn

δt
= −

[
u ·∇ρ

]n+1/2
+

1

2

1

Re Sc

(
∇2(ρn+1) +∇2(ρn)

)
. (6b)

The velocity un+1 is then updated by performing the projection of u∗ onto a divergence-
free subspace

un+1 = u∗ − δt
∇ϕ

ρn+1/2
= Pρ(u

∗), (7)
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where the scalar ϕ is solution of the equation

Lρ(ϕ) = ∇ ·
(

1

ρn+1/2
∇ϕ

)
=

1

δt
∇ · u∗ (8)

with the same boundary condition used for the density field (periodic or (∂ϕ/∂n)|∂Ω = 0)
to preserve precision order.

At this point, the choice of the update pressure pn+1/2 is crucial to truly verify a
second-order accurate time scheme as shown by Brown et al. [23] in the case of constant-
density flows. By injecting u∗ from equation (7) into equation (6a) and by comparing
with the requested scheme from equation (5a) one can get the update pressure pn+1/2 in
gradient form

∇pn+1/2 = ∇pn−1/2 +∇ϕ− δt

2
ρn+1/2ζ(ρn+1/2,∇ϕ/ρn+1/2) (9)

or in (equivalent) scalar form

pn+1/2 = pn−1/2 + ϕ− (∇2)−1

(
∇ ·

(
δt

2
ρn+1/2ζ(ρn+1/2,∇ϕ/ρn+1/2)

))
, (10)

with
(
∇2
)−1

the inverse of Laplacian operator. As mentioned by Di Pierro and Abid
[13], the projection operator Pρ is an exact projection operator. Indeed,

Pρ(u) = u− 1

ρ
∇L−1

ρ ∇ · u (11)

and then, for any divergence-free vector field v and any vector field w one gets:

Pρ(v) = v, (Pρ ◦ Pρ)(w) = Pρ(w). (12)

3. Elliptic solver

The solution of an elliptic equation with constant coefficients using spectral approx-
imation can be computed with fast and accurate algorithms which exploit properties
of the spectral basis [24, 12, 25]. The main difficulty for solving VDINSE is that the
pressure equation (8) is far more complicated than just a standard Poisson equation.
Especially, such an elliptic problem discretized with spectral methods yields to very
ill-conditioned full matrices for which direct solvers are inefficient. As underlined by
Canuto and Quarteroni [26] and Peyret [25], systems such as equation (8) have to be
solved with an iterative process. Then, the choice of an effective preconditioner is crucial
for increasing convergence speed and improving the accuracy of iterative solvers [27].
Since the density variations considered here are sufficiently smooth to be accurately
projected onto a spectral basis, this paper proposes to use the inverse of the operator
associated with constant-density flow as preconditioner for three-dimensional Direct Nu-
merical Simulation (DNS). Within a Galerkin formulation, the inverse matrix can be
easily computed. Indeed, constant-coefficients elliptic problems lead to diagonal systems
using Fourier decomposition and to quasi-tridiagonal operators with Chebyshev poly-
nomials as basis functions. Hence, for three-dimensional DNSs, these elliptic problems
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are reduced to diagonal systems with Fourier–Fourier–Fourier (F–F–F) decomposition
or N2 quasi-tridiagonal systems for Chebyshev–Fourier–Fourier (C–F–F) decomposition.
As presented by Di Pierro and Abid [28]and Alizard et al. [29], such decompositions are
sufficient to study many fundamental configurations. The case of Chebyshev–Chebyshev–
Fourier and fully Chebyshev decompositions are not treated here because they lead to
very large pentadiagonal or heptadiagonal matrices. For the C–F–F case, the solution
of the preconditioned system is determined by using the algorithm of Thual [30]. More
specifically, the solution of the tridiagonal system if computed using the recurrence re-
lation detailed in Peyret [25, appendix B]. The algorithm requires O(N) operations,
without storing the operator used for the preconditioning. As mentioned by [25], the
algorithm is stable is the solution remains nicely bounded. For that purpose, sufficient
conditions to ensure such a property are given by Peyret [25], which are satisfied for the
following cases. The efficiency of such preconditioning is discussed in the next section.

3.1. Implicit viscous solver

For illustration purposes, we focus in this section on the one-dimensional case where
quantities are expressed using Chebyshev collocation discretization. For that purpose,
the viscous linear operator associated with the discrete equation (6a) can be rewritten
in the form

Vρ(u) =

(
I − a

ρ

(
D2 +

∂2ρ

∂x2
+

∂ρ

∂x
D1

))
u (13)

where Dk is the Chebyshev differentiation matrix of order k, I the identity matrix, and
a = 1

2δt/Re by assuming here Sc = 1 for simplicity’s sake. We recall that an efficient
resolution of Vρ(u) = b is strongly correlated with the condition number of the operator
Vρ. We introduce the constant-density counterpart of Vρ

V =
(
I − aD2

)
(14)

which is used for preconditioning Vρ. For the numerical tests presented below, a classical
top-hat like profile

ρ(x) = 1 +
s− 1

2

(
tanh

(
x+ x0

d

)
− tanh

(
x− x0

d

))
(15)

is used for the density field where d = 0.1 is the gradient length scale, s is the density
ratio, and x0 is chosen as one fifth of the domain length.

Figures 1 to 3 show the condition number κ — computed by a singular values decom-
position — of Vρ and V when increasing the number of collocation points N , the density
ratio s, and the viscous coefficient a. The changes of κ with respect to the variations
in N , s and a for the left- and right-preconditioning (V−1 Vρ and Vρ V

−1, respectively)
are also illustrated. The same behavior is obtained with a Fourier expansion, not de-
tailed here for the sake of conciseness. It is clear from the figures that even if κ(Vρ)
and κ(V) reach high values (O(104)−O(108)), the proposed preconditioning technique
greatly reduces the condition number. Moreover, those last two are quasi-independent
of the collocation point number N and remains small (< O(102)) even for larger values
of a (i.e. for viscous dominated flows) or s (i.e. strongly stratified flows).

Let us now focus on the effect of such a preconditioning technique onto the conver-
gence speed of the algorithms for the resolution of Vρ(u) = b. To this end, three iterative
algorithms — based on the minimization of the residual ∥b−Vρ(u)∥22 — are investigated:
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Figure 1: Condition number of the viscous operators versus the Chebyshev collocation points number
N with s = 2 and a = 0.01.
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Figure 2: Condition number of the viscous operators versus the density ratio s with a = 0.01 and
N = 256 Chebyshev collocation points.
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Figure 3: Condition number of the viscous operators versus a with s = 2 and N = 256 Chebyshev
collocation points.
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Figure 4: Convergence history for the five preconditioned iterative solvers to solve Vρ(u) = b with
a = 10−3 and s = 2 with Fourier differentiation (left side) and Chebyshev differentiation (right side)
and N = 256 collocation points. Convergence history for different parameters can be found in Appendix
A.

• Richardson Minimal Residual (RMR) [26],

• Conjugate Gradient (CG) [27],

• General Minimal Residual (GMRES) [31].

One may note that the Biconjugate Gradient (BiCG) and stabilized Biconjugate Gradient
(BiCGStab) methods are not proposed here, since for DNSs, matrices are never formed
explicitly. As a consequence, computing the operator transposition used in BiCG method
yields some difficulties. The convergence history of such algorithms — assuming a zero
function as initial guess for any iterative process — is shown in figure 4 for s = 2 and
a = 10−2, as an example. Similar investigations over a wide range of (a, s) values are
reported in Appendix A. For these cases, the convergence history of BiCG and BiCGStab
are presented as well for readers interested in other applications. The independence of
the convergence rate with the number of collocation points N has also been verified and
is not detailed here for the sake of conciseness.

Results are summarized below. The CG method provides the slower convergence and
do not reach a residual smaller than 10−6 (for all numerical tests performed here): it
turns out not to be competitive with other methods in terms of accuracy and compu-
tational time. This behavior is probably due to the non-symmetric properties of the
operator associated with equation (13) For s = 2, RMR and GMRES methods converge
both towards a residual value of ≈ 10−12 in about 20 iterations independently of a (see
figure B.14 in Appendix A). For a = 10−2, it can be seen in figure B.15 (see Appendix
A) that the RMR does not converge when s > 10. For this value of a, the GMRES algo-
rithm is the only method that reaches a residual value smaller than 10−9 for extremely
stratified flows (s > 100). One may note that the convergence of the GMRES algorithm
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Number of iterations RMR GMRES
5 5.6 10−3 1.0 10−2

10 1.1 10−2 3.4 10−2

20 2.0 10−2 9.7 10−2

40 4.2 10−2 2.2 10−1

Table 1: Computational time in seconds of the preconditioned RMR and GMRES to solve Vρ(u) = b,
with s = 1000 and N = 256 Chebyshev basis collocation points. Computations are performed with an
Intel Xeon E5-2670 CPU mounted on a Dell PowerEdge C8220 Compute Node.

is here sufficiently fast to not require a restart process. Let M the number of iterations
necessary to reach a convergence criterion, the complexity of RMR method is O(N ×M)
whereas the GMRES complexity is O(N×M2), due to the additional orthonormalization
process. Hence, the latter is expected to be much slower even for a few iterations (es-
pecially if the numerical method is parallelized with a domain decomposition strategy).
This can be seen in table 1 which shows the computational time of RMR and GMRES
methods without an explicit construction of differentiation matrices.

Finally, to accelerate the convergence, the previously converged solution un is used as
an initial guess for solving un+1. This leads to a fast convergence for both the RMR and
GMRES methods: only 3 to 5 iterations are required to obtain a residual value varying
from O(10−12) to O(10−14). Hence, the RMR method should be adopted for solving
equation (6a) when the density ratio is lower than s = 10 and the GMRES method
should be adopted for steeper cases.

3.2. Pressure equation

As previously mentioned, equation (8) for the scalar ϕ is very ill-conditioned and
has to be solved accurately for ensuring mass conservation. The scalar Φ = ϕ/

√
ρ is

introduced in order to rewrite equation (8) as a modified Helmholtz equation

Kρ(Φ) = ∇2Φ+

(
∇2ρ

2ρ
− 3

4

||∇ρ||2

ρ2

)
Φ =

√
ρf (16)

with f = (∇ · u∗) /δt. One may recall that Concus and Golub [4] use a similar technique
for the general case of elliptic equations with variable coefficients. It’s worth noting that
when using fully periodic boundary conditions, Φ remains periodic. When wall boundary
conditions

∂ρ

∂n |∂Ω
= 0,

∂ϕ

∂n |∂Ω
= 0, (17)

are considered, a Neumann condition is also obtained for Φ and reads

∂Φ

∂n |∂Ω
= 0. (18)

As for the viscous operator, the operator Kρ is solved iteratively and is preconditioned
by the inverse of the discrete Laplacian operator

(
∇2
)−1

which is nothing else than the
inverse of Kρ with constant density. Following the same line of thought as in the previous
section, the behavior of the preconditioned operator is firstly characterized through a
one-dimensional test case discretized with Chebyshev collocation matrices [25].
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Using the density profile described by equation (15), the condition numbers of these
implicit operators (preconditioned or not) are shown in figures 5 and 6 versus either
the collocation point number or the density ratio. One may notice that Kρ and Lρ are
both ill-conditioned even if the use of Kρ instead of Lρ leads to some improvements.
The figures show that both left- and right-preconditioning provide a condition number
κ = O(100–102). Especially, the condition number is seen independent of the collocation
point number N . In figure 6, one may also observe that κ(

(
∇2
)−1

Kρ) < κ(
(
∇2
)−1

Lρ)
for 0.1 ≤ s ≤ 100.

The same algorithms as in the previous section (CG, RMR and GMRES) are studied
and compared with the fixed point (FP) algorithm proposed by Di Pierro and Abid
[13]. The convergence history of these iterative solvers is shown in figure 7 for s = 2 and
a = 10−2 and in Appendix B for different values of the density ratio s. The independence
of the convergence rate with the number of collocation points N has been verified and
is not detailed here for the sake of conciseness. Results are now summarized. As for
the viscous operator, the CG method is inaccurate in comparison to other methods,
especially, the residual exhibits a plateau around 0.5 for all test cases. The GMRES has
the fastest convergence, leading to a decay of the residual by 12 decades in about 10
iterations for all test cases. Besides, the RMR needs 4 times more iterations in order to
reach the same level of convergence as the one obtained using the GMRES for s = 2 and
does not converge for higher density ratios. Finally, the FP method [13] converges faster
than the RMR method for s = 2 and has the same convergence rate as the GMRES for
more stratified cases while being less accurate (its residual saturates around O(10−9)).
In that regard, the RMR method should be adopted for solving equation (16) when the
density ratio is around s = 2 while the GMRES should be used for higher density ratios.

4. Results and validation

4.1. Time accuracy and mass conservation

The derivation of an exact solution of the VDINSE system is not straightforward. To
the best of the authors’ knowledge, none has been found until now. Hence, to estimate
the accuracy of the presented method, mass source and body-force terms are added to
the VDINSE equations such that

ue(x, y, z, t) = cos(t) sin(x) cos(y) cos(z) (19a)

ve(x, y, z, t) = cos(t) cos(x) sin(y) cos(z) (19b)

we(x, y, z, t) = −2 cos(t) cos(x) cos(y) sin(z) (19c)

pe(x, y, z, t) = sin(t) sin(2x) sin(2y) sin(2z) (19d)

ρe(x, y, z, t) = 1 + s−1
2 (1 + sin(t) sin(x) sin(y) sin(z)) (19e)

defines an exact solution of the modified VDINSE, where s is (an arbitrary positive)
density ratio. One may note that this corresponds to a Taylor–Green vortex with an
imposed pressure and density field.

Let (u(T ), p(T ), ρ(T )) be the numerical solution extracted at a time t = T computed
by marching forward in time the equations (6a), (6b), (7) and (10) with a time step
δt and an initial condition matching the system (19) for t = 0. Then, the temporal
errors at t = T are defined with respect to the exact solution as ϵu = ||u(T )− ue(T )||2,
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Figure 5: Condition number of the pressure operators versus Chebyshev collocation point number N
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Figure 6: Condition number of the pressure operators versus density ratio s with N = 256 Chebyshev
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ϵp = ||p(T )− pe(T )||2 and ϵρ = ||ρ(T )− ρe(T )||2. The corresponding errors are shown in
figure 8 for 128×128×128 grid discretization points and with Re = 1, Sc = 1, s = 10 and
T = π/4. Figure 8 shows that the numerical solution is, as expected, globally second-
order accurate in time. Additionally, the spectral accuracy has been verified by running
the same simulation with different grid sizes. Machine precision (10−14) is reached from
a 323 mesh for the divergence of the velocity field.

From a more physical point of view, the total mass of the considered system M =∫
Ω
ρ dΩ has to be strictly conserved throughout the simulation. From Fick’s law and

equation (2b), the mass evolution over time is directly given by the divergence of velocity
field

dM

dt
=

∫
Ω

∇ · u dΩ. (20)

Figure 9 shows the time evolution of the L2 norm of ∇ · u for the previous test case.
One can observe that this quantity is nearly equal to the machine precision all along the
simulation.

4.2. 3D solver performance

The performance of the presented method is now discussed by running three-dimensional
DNSs associated with the Taylor–Green vortex discussed above (see system (19)). The
computational times for the pressure iterative solver are shown in table 2 for the dif-
ferent solvers investigated in the previous section (FP, RMR and GMRES) and with
128×128×128 discretization points. Unlike the 1D case detailed in the previous section,
a Fourier (periodic) decomposition is used. For the preconditioning, a singular value
decomposition is performed to compute a pseudo-inverse of the discrete Laplacian. It
is equivalent to remove the first spectral coefficient associated with the polynomial of
degree one. It imposes that ϕ and Φ are zero-mean.

One can see from table 2 that RMR and GMRES solvers are faster than the FP
method. This is due to the problem formulation: Kρ needs only two physical/spectral
transforms whereas four are needed to evaluate Lρ. To accelerate the convergence, the
solution ϕn−1/2 is used as an initial condition for evaluating ϕ at the time-step n+ 1/2.
In agreement with the condition number of the preconditioned operators, the perfor-
mance of each solver is also independent of the density ratio s. Hence, it validates the
performance of the method even for large density ratios. Moreover, the computational
time per iteration per thread and per cell is in the order of magnitude of the CPUs clock
time. Hereafter, the GMRES algorithm is adopted for the DNS test cases for illustration
purposes.

4.3. Rayleigh–Taylor instability

First, the effectiveness and robustness of the present method is illustrated through
a classical configuration of a 2D Rayleigh–Taylor instability (RTI): a heaver fluid is
maintained above a lighter one and gravity acceleration is in the opposite direction of
the density gradient. No-slip boundary conditions are used on the top and bottom
walls, while periodic boundary conditions are used on the left and right boundaries. The
initial density profile is a smoothed Heavyside function in the vertical direction disturbed
horizontally with a small amplitude perturbation η

ρ(x, z, t = 0) = 1 +
s− 1

2

(
tanh

(z
δ
+ η(x, Lx)

)
+ 1
)
. (21)
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Iterative solver FP ([13]) RMR GMRES
s = 2

Iterations 7 5 6
Time 0.5973 0.2124 0.2480
Time/iteration 0.0853 0.0425 0.0413
Time/iteration/thread 0.0107 0.0053 0.0052
Time/iteration/thread/cells 5.1e-09 2.5e-09 2.5e-09

s = 6
Iterations 9 7 8
Time 0.7737 0.3045 0.3573
Time/iteration 0.0860 0.0435 0.0447
Time/iteration/thread 0.0107 0.0054 0.0056
Time/iteration/thread/cell 5.1e-09 2.6e-09 2.7e-09

s = 10
Iterations 10 8 8
Time 0.8232 0.3477 0.3547
Time/iteration 0.0823 0.0435 0.0443
Time/iteration/thread 0.0103 0.0054 0.0055
Time/iteration/thread/cells 4.9e-09 2.6e-09 2.6e-09

Table 2: Computational time in seconds for iterative solvers for the modified pressure equation (16)
and for the test case flow (system (19)) Different values of the density ratio s are investigated, with
128× 128× 128 discretization points. Computations are performed on the 8 CPU cores of an Intel Xeon
E5-2670 mounted on a Dell PowerEdge C8220 Compute Node. CPU Times are averaged over 10 time
steps (10δt ≈ π/2).

The computational box size is fixed to [2Lx, 2Lz] = [2, 2] (discretized with N2 grid points
varying from 2562 to 5122). The initial thickness is δ = 0.2 and s is the density ratio.
The initial velocity field is set to zero. Gravity is added through a volumetric force

f = −Fr−1 ez (22)

with Fr the Froude number. Within this configuration, computations without precondi-
tioning do not converge, and numerical oscillations take over in a few iterations. Figure 10
shows density contours at different times for both a single-mode ((a1), (a2), (a3))

η = 0.1 cos

(
π

x

Lx

)
(23)

and a multi-mode initial perturbation ((b1), (b2), (b3))

η = 0.1

(
sin

(
13π

x

Lx

)
+ cos

(
17π

x

Lx

)
+ cos

(
19π

x

Lx

))
(24)

with dimensionless numbers Re = 1000, Fr = 1, Sc = 1 and s = 10. In the single-
mode case, one can see the characteristic mushroom of the Rayleigh–Taylor instability
growing downward in the middle of the computational domain. As the heavier fluid
penetrates the lighter fluid, the interface rolls up into two vortices as presented in Bell
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(a) Single-mode perturbation

(b) Multi-mode perturbation

(a1) 𝑡 = 3 (a2) 𝑡 = 4 (a3) 𝑡 = 5

(b1) 𝑡 = 1 (b2) 𝑡 = 2 (b3) 𝑡 = 3

Figure 10: Contour plot of the density field at different times from 2D RTI simulations using the
preconditioned RMR for both the viscous and pressure operators with s = 10, Re = 1000, Fr = 1,
Sc = 1 and 2562 grid points. In (a1), (a2), and (a3) a single-mode perturbation is injected in the initial
density field. In (b1), (b2), and (b3) a multi-mode perturbation is injected in the initial density field.
Figure 11 presents the convergence history for the pressure operator corresponding to (b3).

and Marcus [1]. In the multi-mode case, the waves begin to grow independently of
one another before they start to interact strongly with each other reproducing patterns
similar to those presented in Bell and Marcus [1]. In both cases, it can be seen that the
interface is clearly defined without numerical oscillations, which validates the robustness
of the method. Figure 11 presents the convergence history of the three studied methods
(FP, RMR and GMRES) when dealing with the modified pressure equation (16) for the
same range of parameters and a multiple-mode initial perturbation at time t = 3.0. It
can be seen that the convergence rate is independent of the mesh size and both the
RMR and GMRES algorithms converge towards a residual value lower than 10−7 which
demonstrate the effectiveness of the method in dealing with steep problems. For this
case, the FP method does not achieve a good convergence.

The reliability of the proposed method is now illustrated through a representative
three-dimensional variable-density flow case. In that respect, the variable-density swirling
jet studied by Di Pierro and Abid [13] is selected. The Reynolds number — based on
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Figure 11: Convergence history of the different preconditioned iterative solvers to solve the modified
pressure equation equation (16) in the case (b3) of figure 10.

the base flow stream-wise velocity — is fixed to Re = 100 and the others dimensionless
control parameters are set to Sc = 1, s = 2 and q = 0.5. The domain size is 2π×2π×4π.
We consider the following equilibrium state:

ρ0(r) = 1 + (s− 1) exp−r2, (25a)

ωx(r) = 2q exp−r2, (25b)

Vx(r) = exp−r2, (25c)

where V0 = (0, Vθ, Vx)
T is the base velocity field (withVθeθ = −

(
∇2
)−1

(∇× ωxex)),
ωx is the axial vorticity, and q is the swirl number. We then capture the dynamics of
a perturbation ϕ(r) exp (i(kx+mθ)) superimposed to the base flow with a very small
amplitude. In that purpose, 2563 discretization points are used. It is found that the
dynamics is driven for long times by the azimuthal mode m = 4 and the fundamental
stream-wise wave number k = 1 in agreement with the linear stability theory (LST,
see [13] for details about the linear stability analysis). Figure 12 shows the evolution of
the axial velocity perturbation. We then compare the exponential growth rate extracted
from the DNS database with the linear stability results. In that case, the linear stability
analysis gives a temporal growth rate ωi = 0.274. For long times, we found a temporal
growth rate from the DNS

ωi,DNS =
1

2(t1 − t0)
log

(
∥w(t1)∥22
∥w(t0)∥22

)
= 0.2746 ≈ 0.275 (26)

which nearly matches the one computed from the LST. The latter is calculated from the
norm of the axial velocity perturbation w with t0 = 2.0 and t1 = 5.0. Figure 13 shows
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the isosurfaces of the density field in the non-linear saturated regime associated with such
flow case. The interface is well-defined and no oscillations appear. It further illustrates
the robustness of the present method to deal with representative variable-density flow
case.

5. Conclusions

Performances of preconditioners based on the constant-density operators for the nu-
merical resolution of the variable-density and incompressible Navier–Stokes equations
with spectral accuracy and second-order time accuracy are investigated. We first ob-
served that test cases presented here did not converge without any preconditioning,
which motivated this study. It is shown that these preconditioners highly reduce the
condition number of the variable-density elliptic operators for both the pressure and ve-
locity fields equations. Coupled with widely used iterative solvers (Conjugate Gradient,
Richardson Minimal Residual, and General Minimal Residual), we give strong evidence
that the proposed numerical methods highly enhance the convergence of the implicit
systems. Finally, the precision and the robustness of the method is further illustrated on
some representative variable-density flow cases.

We thus believe that the present study can serve as a guide for the development
of faster and more accurate DNS incompressible solvers that take into account large
density variations. For the extension of our method to high-performance simulation
on distributed-memory computers, one may recall that the major drawback of spectral
methods lies in their global approximation. However, some solutions are suggested in
the literature and successfully numerically tested. For instance, one may cite the work
of some members of the same team dealing with high-scalability spectral code on high-
performance distributed-memory [32]. Especially, the authors show that the paralleliza-
tion strategy for spectral schemes based on a domain decomposition method — where the
computational domain is subdivided along spatial directions into subdomains — exhibits
a good scalability and a very fast wall-clock time per iteration on HPC platforms. In the
present work, the three-dimensional computations use the same strategy.
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Appendix A. Viscous operator iterative solvers convergence history

In this appendix, we show the convergence history of the CG, BiCG, BiCGStab, RMR
and GMRES algorithms for the resolution of the viscous equation Vρ(u) = b, where the
viscous operator Vρ is defined equation (13) A wide range of (a, s) is investigated.
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Figure 13: Isosurfaces of the density field perturbation in the non-linear saturated regime at t = 40 from
a DNS of a dense swirling jet with Re = 100, Sc = 1, s = 2, q = 0.5, m = −4 and k = 1.
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Appendix B. Pressure operator iterative solvers convergence history

In this appendix, we show the convergence history of the CG, BiCG, BiCGStab, RMR,
GMRES and FP algorithms for the resolution of the modified pressure equation (16) A
wide range of density ratios s is investigated.
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Figure B.14: Convergence history for the five preconditioned iterative solvers to solve Vρ(u) = b with
s = 2 and different values of a, with Fourier differentiation (left side) and Chebyshev differentiation
(right side) and N = 256 collocation points.
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Figure B.15: Convergence history for the five preconditioned iterative solvers to solve Vρ(u) = b with
a = 10−2 and different values of s, with Fourier differentiation (left side) and Chebyshev differentiation
(right side) and N = 256 collocation points.
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