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Introduction

Nowadays, machine learning systems tend to incorporate an increasing number of hyperparameters with the purpose of improving the overall performance of learning tasks and achieving a higher flexibility. Then, optimizing such high-dimensional hyperparameters becomes a crucial step for devising efficient and fully parameter-free machine learning systems. In recent years, bilevel approaches to hyperparameter optimization have become very popular as an effective way to estimate high-dimensional hyperparameters [START_REF] Arbel | Amortized implicit differentiation for stochastic bilevel optimization[END_REF][START_REF] Bae | Delta-stn: Efficient bilevel optimization for neural networks using structured response jacobians[END_REF][START_REF] Bennett | Model selection via bilevel optimization[END_REF][START_REF] Franceschi | Bilevel programming for hyperparameter optimization and meta-learning[END_REF][START_REF] Grazzi | On the iteration complexity of hypergradient computation[END_REF][START_REF] Maclaurin | Gradient-based hyperparameter optimization through reversible learning[END_REF][START_REF] Pedregosa | Hyperparameter optimization with approximate gradient[END_REF]. On the other hand, in many circumstances binary hyperparameters are included in the model to allow the pruning of the irrelevant variables or the discovery of sparsity structures. Interesting examples are given by the pruning of large-scale deep learning models [START_REF] Zhang | Advancing model pruning via bi-level optimization[END_REF], the identification of the group-sparsity structures in regression problems [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF][START_REF] Wang | Multi-task additive models for robust estimation and automatic structure discovery[END_REF], and learning the discrete structure of a graph neural networks [START_REF] Franceschi | Learning discrete structures for graph neural networks[END_REF]. For these cases the usual optimization approach is that of relaxing the respective parameter over the unit interval [0, 1], solve the continuous optimization problem, and then rounding the solution so to get a binary output. This is essentially a heuristic, which overcomes the challenge of dealing with integer variables, but does not offer any theoretical guarantee.

The aim of the present work is that of providing a more principled way of approaching mixed-binary hyperparameter optimization.

Related works. In the context of machine learning, bilevel optimization problems with binary variables arise in a number of situations. In [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF] the estimation of group-sparsity structure in multi-task regression is addressed by a mixed-binary bilevel optimization model, which is handled by a continuous relaxation and approximation of the problem. The output of the optimization procedure is a vector of continuous variables, which are then rounded to the closest binary values, so to provide the final grouping of the features. In Section 5, we tackle this same problem and show the advantage of our approach. In the work [START_REF] Zhang | Advancing model pruning via bi-level optimization[END_REF], a new model pruning, based on bilevel optimization, is proposed, where the upper level variable is a binary mask. The related iterative algorithm performs a gradient descent Beyond the machine learning literature, there is a number of works related to mixed-integer bilevel programming (see, e.g., Section 5.3 of the recent survey [START_REF] Kleinert | A survey on mixed-integer programming techniques in bilevel optimization[END_REF]). An important drawback one needs to take into account when applying those methods to hyperparameter optimization problems is however their limited scalability. Common approaches like, e.g., the outer-approximation based method in [START_REF] Kleinert | Outer approximation for global optimization of mixed-integer quadratic bilevel problems[END_REF], or the algorithm proposed in [START_REF] Mitsos | Global solution of nonlinear mixed-integer bilevel programs[END_REF], which requires the global solution of a significant number of mixed integer nonlinear programs, have indeed a prohibitive cost when the dimensionality grows. Furthermore, it should be noted that they aim to achieve global optimality-an overly ambitious goal in the context of machine learning applications.

Contributions and Outline.

In this paper, we analyze more carefully the mixed-binary setting and propose a relax and penalize method, which produces a mixed-binary output and relies on improved mathematical grounds. More precisely, we consider in Section 3 a general mixed continuous-binary bilevel problem and show that it is equivalent, in terms of global minima and minimizers, to a fully continuous and penalized optimization problem. Next, in Section 4, we propose an algorithmic framework, which consists of iteratively solving a sequence of continuous and penalized problems which, under suitable assumptions, is guaranteed to provide mixed-binary local solutions. The performance of the proposed approach are quantitatively assessed on the estimation of the group structure in the group lasso problem. Numerical experiments are reported in Section 5 and show how the relax and penalize method outperforms state-of-the-art approaches based on relaxation and rounding. Finally, conclusions and perspectives are drawn in Section 6. 

Notation. For every integer

(x) = {x ∈ R n : x -x ≤ ρ}. The standard (n -1)-simplex is denoted by ∆ n-1 = {x ∈ R n + : n i=1 x i = 1}
. Also, is the Hadamard product, meaning the component-wise multiplication of vectors in R d . If Ψ : R n → R is a continuous function and Ω ⊆ R n , we denote by argmin Ω Ψ the set of minimizers of Ψ over Ω and with a slight abuse of notation also the minimizer itself when it is unique.

Problem statement

We consider mixed-binary bilevel problems of the form

min λ,θ F (λ, θ, w(λ, θ)) (1a) s.t. λ ∈ Λ ⊆ R m , θ ∈ Θ bin ⊆ {0, 1} p , (1b) w(λ, θ) = argmin w∈W (λ,θ) f (λ, θ, w), (1c) 
where

F, f : R m × R p × R d → R and W (λ, θ) ⊆ R d .
We note that the lower-level problem is supposed to admit a unique solution and that the hyperparameters λ and θ are continuous and binary variables, respectively. In the context of machine learning problems, the functions F and f often are the loss over a validation set and training set, respectively. We will provide a major application of this situation in Section 5.

In the remainder of this paper we assume that the binary set Θ bin is embedded in a larger continuous set Θ and that the lower-level problem admits a unique solution also when θ ∈ Θ. Then, we can consider the following more compact formulation min

(λ,θ)∈Λ×Θ bin G(λ, θ) (2) 
of the above problem, where we set G(λ, θ) := F (λ, θ, w(λ, θ)) and require that the following assumption holds. Assumption 1.

(i) Λ ⊆ R m is nonempty and compact.

(ii) Θ bin := Θ ∩ {0, 1} p = ∅, where Θ ⊆ [0, 1] p is convex and compact and Θ \ Θ bin = ∅.

(iii) G : Λ × Θ → R is continuous.

(iv) For all λ ∈ Λ, the map G(λ, •) is Lipschitz continuous with constant L > 0 on Θ.

Assumption 1 can be met with appropriate hypothesis on the functions F and f . For instance, a sufficient condition for (iii) is that the functions F and f are jointly continuous, the function f (λ, θ, •) is strongly convex with a modulus of convexity which is uniform for every (λ, θ), and the set-valued mapping (λ, θ) → W (λ, θ) is closed and such that, for every ( λ, θ) ∈ Λ × Θ, dist(w( λ, θ), W (w, θ)) → 0 as (λ, y) → ( λ, θ) [4, Proposition 4.4]. Additional conditions can ensure the validity of (iv) too (see, [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF]Section 4.4].)

3 Restating the problem via a smooth penalty function

In order to deal with the binary variables in problem (2), we relax the integrality constraints on θ via a classic penalty term. This leads to the continuous optimization problem

min (λ,θ)∈Λ×Θ G(λ, θ) + 1 ε ϕ(θ) (3) 
in which we use the penalty function

ϕ(θ) = p i=1 θ i (1 -θ i ). (4) 
Note that the function in ( 4) is a smooth, concave, and quadratic function with the following properties:

∀ θ ∈ [0, 1] p : ϕ(θ) ≥ 0 and ∀ θ ∈ {0, 1} p : ϕ(θ) = 0.
This penalty has been introduced in [START_REF] Raghavachari | On connections between zero-one integer programming and concave programming under linear constraints[END_REF] to define equivalent continuous reformulations of mixed-integer linear programming problems. In Section A we give the main properties of this penalty function that we use to prove the main results of this and the next section.

We start with a result establishing the equivalence of Problems ( 2) and ( 3) above in terms of global minimizers. It is in line with a stream of works analyzing the use of concave penalty functions in the framework of nonlinear optimization problems with binary/integer variables (see, e.g., [START_REF] Giannessi | Connections between nonlinear and integer programming problems[END_REF][START_REF] Kalantari | Penalty formulation for zero-one nonlinear programming[END_REF][START_REF] Lucidi | Exact penalty functions for nonlinear integer programming problems[END_REF] and references therein). For the reader's convenience we provide the proof of this result in the appendix. Theorem 1. Suppose that Assumption 1 is satisfied. Then, there exists an ε > 0 such that for all ε ∈ ]0, ε], problems (2) and (3) have the same global minimizers, i.e., argmin

(λ,θ)∈Λ×Θ bin G(λ, θ) = argmin (λ,θ)∈Λ×Θ G(λ, θ) + 1 ε ϕ(θ).
The conclusion of Theorem 1 is remarkable since it guarantees that despite the fact that (3) is a purely continuous optimization problem, for ε sufficiently small, all of its global minimizers are mixed-binary feasible and are exactly the global minimizers of the original problem (2). Remark 1.

(i) Set G ε : Λ × Θ → R such that G ε (λ, θ) = G(λ, θ) + ε -1 ϕ(θ)
and let δ Λ×Θ bin : Λ × Θ → R be the indicator function of the set Λ × Θ bin , i.e., the function that is zero on Λ × Θ bin and +∞ otherwise. Then, it is easy to see that G ε Γ-converges5 to G + δ Λ×Θ bin as ε → 0. Moreover, the family of functions (G ε ) ε>0 is clearly equicoercive since they are all defined on the compact set Λ × Θ. Therefore, it holds

argmin Λ×Θ G ε → argmin Λ×Θ G + δ Λ×Θ bin = argmin Λ×Θ bin G as ε → 0
in the sense of set convergence. This is a standard result from variational analysis [START_REF] Asen | Well-posed optimization problems[END_REF] and it is always true provided that G and ϕ are continuous functions as well as that ϕ ≥ 0 and ϕ(θ) = 0 ⇔ θ ∈ Θ bin holds.

(ii) In view of (i), which gives an asymptotic result, the statement of Theorem 1 is stronger in the sense that, for the special function (4) and for ε small enough, argmin Λ×Θ G ε = argmin Λ×Θ bin G holds.

The previous theorem provides a justification to address problem (3) instead of (2). However, because the objective function in (3) is nonconvex, only local minimizers are computationally approachable. Thus, the idea is that of looking for local minimizers of (3) which are also mixed-binary -since the global minimizers of (2) lie among them.

The next result is entirely new and addresses the issue of identifying mixed-binary local minimizers of the objective in (3), providing a sufficient condition for that purpose.

Theorem 2. Suppose that Assumption 1 holds. Let c ∈ ]0, 1/2[ and 0 < ε < (1 -2c)/L. Moreover, let ( λ, θ) be a local minimizer of

G(λ, θ) + 1 ε ϕ(θ) on Λ × Θ. If dist ∞ ( θ, Θ bin ) := inf θ∈Θ bin θ -θ ∞ < c, then θ ∈ Θ bin . Proof. Since dist ∞ ( θ, Θ bin ) < c, there exists θ ∈ Θ bin such that θ -θ ∞ < c. Let θ t := (1 -t) θ + tθ = θ + t(θ -θ) with t ∈ [0, 1]. In particular, θ t -θ ∞ = t θ -θ ∞ < tc ≤ c and θ t ∈ Θ, since Θ is convex. By Lemma 3, ϕ( θ) -ϕ(θ t ) ≥ (1 -2c) θ t -θ (5) 
holds. Moreover, there exists ρ > 0 such that for all (λ , θ

) ∈ B ρ ( λ, θ) ∩ (Λ × Θ), it holds G( λ, θ) + 1 ε ϕ( θ) ≤ G(λ , θ ) + 1 ε ϕ(θ ). Now, take t ∈ ]0, 1[ such that t < ρ/(c √ p). Then, θ t ∈ Θ and θ t -θ ≤ √ p θ t -θ ∞ < √ p tc < ρ. Therefore, ( λ, θ t ) ∈ B ρ ( λ, θ) ∩ (Λ × Θ)
and we obtain

G( λ, θ t ) -G( λ, θ) + 1 ε ϕ(θ t ) - 1 ε ϕ( θ) ≤ L θ t -θ + 1 ε (ϕ(θ t ) -ϕ( θ)) (5) ≤ L θ t -θ - 1 -2c ε θ t -θ = L - 1 -2c ε <0 θ t -θ . (6) 
Moreover, if θ ∈ {0, 1} p , since θ ∈ {0, 1} p , we have θ -θ > 0 and hence θ t -θ > 0 for t > 0. Thus, ( 6) is strictly negative and it holds

G( λ, θ t ) + 1 ε ϕ(θ t ) < G( λ, θ) + 1 ε ϕ( θ),
which gives a contradiction. Thus, necessarily θ ∈ {0, 1} p .

Remark 2.

(i) Theorem 2 essentially says that, if ε is small enough, within the distance of 1/2 measured with the infinity norm, there are no other local minimizers of (3) than the ones that are mixed-binary feasible.

(ii) Note that it does not make much sense to consider local minimizers of the function G over Λ × Θ bin , since any point in Θ bin is an isolated point and thus one can find a corresponding local minimizer for each one of them.

An iterative penalty method

We now present an iterative method addressing problem (2). The idea is that of solving a sequence of problems of the form (3), indexed with k, with decreasing parameters ε k . Hence, the problem to be solved in each iteration reads

min (λ,θ)∈Λ×Θ G(λ, θ) + 1 ε k ϕ(θ). (P k )
Then, thanks to Theorem 1, it is clear that after a finite number of iterations the original mixed-binary optimization problem and the relaxed and penalized one (P k ) become equivalent in terms of global minimizers. Moreover, as we have already discussed in the previous section, in practice we can only target the computation of local minimizers, but we can restrict the search to the mixed-binary ones. In the following, we make this strategy more precise. Theorem 3. Suppose that Assumption 1 holds. Let (ε k ) k∈N be a vanishing sequence of positive numbers and, for every k ∈ N, let (λ k , θ k ) be a local minimizer of (P k ). Then,

lim inf k→+∞ dist ∞ (θ k , Θ bin ) < 1/2 ⇒ ∃ k ∈ N s.t. θ k ∈ Θ bin .
Moreover, if θ k ∈ Θ bin , then we have that λ k is a local minimizer of

min λ∈Λ G(λ, θ k ).
Algorithm 1: Penalty method

Input: Problem (2), ε 0 > 0, β ∈ ]0, 1[. for k = 0, 1, 2, . . . do
Let (λ k , θ k ) be a solution (either local or global) of problem (P k ).

if θ k / ∈ {0, 1} p then update ε k+1 = βε k else return (λ k , θ k ).
Proof. Suppose that lim inf

k→+∞ dist ∞ (θ k , Θ bin ) < 1/2 and let c > 0 such that lim inf k→+∞ dist ∞ (θ k , Θ bin ) < c < 1/2. Then,
there exists a subsequence (θ n k ) k∈N such that

∀ k ∈ N : dist ∞ (θ n k , Θ bin ) < c and ε n k → 0.
Thus, there exists k ∈ N such that

dist ∞ (θ n k , Θ bin ) < c and ε n k < 1 -2c L
and this, in view of Theorem 2, gives that θ n k ∈ Θ bin . Concerning the second part of the statement, suppose that θ k ∈ Θ bin , where (λ k , θ k ) is a local minimizer of (P k ). Then, θ k ∈ {0, 1} p and there exists ρ k > 0 such that

∀ (λ, θ) ∈ B ρ k (λ k , θ k ) ∩ (Λ × Θ) : G(λ k , θ k ) + 1 ε k ϕ(θ k ) ≤ G(λ, θ) + 1 ε k ϕ(θ).
Therefore, taking θ = θ k in the above inequality and noting that ϕ(θ k ) = 0, we have

∀ λ ∈ B ρ k (λ k ) ∩ Λ : G(λ k , θ k ) + 1 ε k ϕ(θ k ) =0 ≤ G(λ, θ k ) + 1 ε k ϕ(θ k ) =0
, which shows that λ k is a local minimizer of G(•, θ k ) over Λ.

Remark 3.

(i) In the experiment given in Section 5, we checked that the condition considered in Theorem 3 always occurs, meaning that the distance dist ∞ (θ k , Θ bin ), where θ k was obtained by solving problem (P k ) via a gradientbased subroutine, remains well-below the threshold 1/2.

(ii) We note that there might indeed exist points θ ∈ Θ such that dist ∞ (θ, Θ bin ) > 1/2. For instance, if we take the standard (p -1)-simplex

Θ = ∆ p-1 = θ ∈ R p + : p i=1 θ i = 1 , we have that θ ∈ Θ : dist ∞ (θ, Θ bin ) ≥ 1/2 = ∆ p-1 ∩ [0, 1/2] p , (7) 
which for p = 3 is the full equilateral triangle with vertices (e 1 + e 2 )/2, (e 1 + e 3 )/2 and (e 2 + e 3 )/2, where the e i 's are the vectors of the canonical basis of R p . In general, the set in (7) is a polytope of dimension p -1 with 2p facets and (p(p -1)/2) vertices.

The method is formally given in Algorithm 1.

Problem setting and formulation

Given an output vector y ∈ R n and a design matrix X ∈ R n×d , the group lasso problem can be formulated as follows

min w∈R d 1 2 Xw -y 2 + λ L l=1 θ l w 2 ,
where λ > 0 is a regularization parameter and θ l is a binary vector (with entries in {0, 1}) indicating the features (components) of w belonging to the lth group, meaning G l = {i ∈ [d] : θ i,l = 1} 6 . In case of nonoverlapping groups it is assumed that L l=1 θ j,l = 1 for every j ∈ [d]. In the classic literature on the topic the groups are assumed to be known a priori [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF][START_REF] Zhao | The composite absolute penalties family for grouped and hierarchical variable selection[END_REF], but often in practice there is no clue about the structure of the groups and actually the problem is to infer this group structure from the data. However, this amounts to estimating the binary variables θ l 's, which in general poses a challenge.

Continuous relaxation. In view of the discussion above, in the related literature a common approach is to relax the problem allowing the θ l 's to vary in the continuum [0, 1] d . This approach was followed in [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF], in which the bilevel optimization problem

min θ∈Θ 1 T T t=1 C t (w t (λ, θ)), with Θ = θ ∈ [0, 1] d×L : L l=1 θ l = 1 d = (∆ L-1 ) d , and w(λ, θ) = argmin (w1,...,w T )∈R d×T 1 T T t=1 1 2 X t w t -y t 2 + λ L l=1 θ l w t 2 + η 2 w t 2 (8) 
is proposed, where (X t , y t ) 1≤t≤T defines T regression problems in which the regressors share the same group-sparsity structure and C t is a smooth cost function acting as a validation error for the t-th task. Note that in this formulation, λ is supposed to be fixed (possibly determined by a cross-validation procedure). The regularization terms η w t 2 , with η 1, are added to ensure uniqueness of the solution for the lower level problem and to devise a dual algorithmic procedure generating a sequence (w (q) (λ, θ)) q∈N with smooth updates (w.r.t. θ) such that w (q) (λ, θ) → w(λ, θ) uniformly on Θ as q → +∞ (see [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF]Section 3.2]). Ultimately, the groups are estimated by solving the problem

min θ∈Θ 1 T T t=1 C t (w (q) (λ, θ)),
with q large enough, and by appropriately thresholding (a posteriori) the solution θ in order to recover binary variables θ l 's.

Proposed method. Our general approach, as described in Section 4, allows to bypass the last thresholding step and to directly address the more challenging problem

min (λ,θ)∈Λ×Θ bin 1 T T t=1 C t (w (q) (λ, θ)), with      Λ = [λ min , λ max ] with 0 < λ min < λ max , Θ bin = θ ∈ {0, 1} d×L : ∀ j ∈ [d] L l=1 θ j,l = 1 , (9) 
which also involve the estimation of the regularization parameter λ. Now, since w (q) (λ, θ) is smooth w.r.t. θ, the objective in ( 9) satisfies Assumption 1 and hence, in view of Theorem 1 and Theorem 3, we can consider the relaxed and penalized version of problem [START_REF] Giannessi | Connections between nonlinear and integer programming problems[END_REF], that is

min (λ,θ)∈Λ×Θ 1 T T t=1 C t (w (q) (λ, θ)) + 1 ε ϕ(θ) , (10) 
and state that, if ε is small enough, the two problems ( 9) and ( 10) share the same global minimizers. By leveraging this equivalence, we study in the next section the added benefits of the proposed Algorithm 1. Remark 4. According to [8, Theorem 3.1] we have that w (q) (λ, θ) → w(λ, θ) as q → +∞ uniformly on Λ × Θ bin , so that, similarly to [8, Theorem 2.1], one can prove that problem (9) converges as q → +∞ to problem

min (λ,θ)∈Λ×Θ bin 1 T T t=1 C t (w(λ, θ))
in terms of optimal values and sets of global minimizers. This provides a justification for addressing problem (9). 

Numerical experiments

In this section, we provide some preliminary numerical experiments on the estimation of group-sparsity structure detailed in Section 5.1. We compare our approach with the one proposed in [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF], addressing the same bilevel problem that is, we optimize only over the hyperparameter θ, while leaving the scalar hyperparameter λ to be determined by cross-validation. Details are given below.

The experimental setting is similar to that of [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF] but differs by two aspects to spice up the problem. First, we consider random groups of possibly very different sizes. Second, we stand in a setting made of few tasks T which was shown in [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF] to be critical. In particular, we restrict to T = 50 which is 10 times less than the setting of [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF]. We follow the next procedure to generate the training, validation and test datasets.

Synthetic dataset generation. We consider the problem of Section 5.1 where each task amounts to predict an oracle regressor w ∈ R d , made of d = 100 features, from n = 50 observations. Each regressor yields a group structure dictated by L = 10 oracle groups {G l } L l=1 randomly generated with largely different sizes. An example is provided in Figure 1a (top panel) where the L groups form a partitioning of the d features. For instance, the first and second feature belong to G 1 and G 2 , respectively, whereas the next 17 features belong to G 3 . For every task t ∈ {1, . . . , T }, we generate the oracle regressor w t and the data (X t , y t ) as follows. The regressor w t is generated such that its values are non-zero in at most 2 groups chosen at random, the design matrix X t ∈ R n×d is randomly drawn according to a standard normal distribution and then normalized column-wise, and the output y t is such that y t ∼ N (X t w t , 0.1I d ).

Validation and test sets are generated similarly.

Algorithmic setting. We implement the framework of Algorithm 1 by solving a sequence of optimization problems of type (10) w.r.t. θ only and with ε 0 = ∞, ε 1 = 10 3 and ε k+1 = 0.5ε k for every k ∈ {1, . . . , K = 10}. For each problem of type [START_REF] Grazzi | On the iteration complexity of hypergradient computation[END_REF], we use the same differentiable algorithm of [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF] for solving the lower-level problem in [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF] with η = 10 -3 and q = 500 inner iterations. Whereas, for the upper optimization in [START_REF] Grazzi | On the iteration complexity of hypergradient computation[END_REF], since the proposed framework is general enough to handle any algorithm, here we resort to Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. We embrace the finite-sum nature of the objective in [START_REF] Grazzi | On the iteration complexity of hypergradient computation[END_REF] by setting the batch size to 10 and the maximum number of epochs equal to 500. The step-size is set to 10 -2 , the weight decay to 0 and the running average coefficients are kept by default, i.e., (0.9, 0.999). As for the model proposed in [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF], for a fair comparison, we let algorithm Adam run for a maximum number of 500 × (K + 1) epochs.

Results. Both methods are run on 5 different realizations multiple times for 10 different values of λ equally spaces, in logarithmic scale, in the interval [10 -3 , 10]. The averaged validation errors, as functions of λ, are reported in Figure 1b and are used to perform cross-validation of λ. Once the best λ is selected, we illustrate the recovered groups in Figure 1a. In the second and third rows are reported the relaxed and relaxed and rounded solution of [START_REF] Frecon | Bilevel learning of the group lasso structure[END_REF], respectively. In the last row, we report the proposed estimate, coined MIB.

In addition, the two methods are compared according to two performance measures: the test error and the reconstruction error, that is (1/d) ww 2 F . The averaged results are reported in Table 1. These results clearly show that our method outperforms the relaxed and rounding strategy. 
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Conclusion

In this paper, we studied the idea of relaxing the integrality constraints and using a penalty term to handle mixed-binary bilevel optimization problems arising in hyperparameter tuning of machine learning systems. Besides a result concerning the equivalence in terms of global minimizers, sufficient conditions for identifying mixed-binary local minimizers are stated. These theoretical results naturally lead to devise a penalty method that is, under suitable assumptions, guaranteed to provide mixed-binary solutions. The novel approach is shown to outperform classic approaches based on relaxation and rounding using the example of the group lasso problem. recalling that • ∞ ≤ • .

Remark 7. It is clear from the proof of Corollary 1 that in fact it holds

∀ θ ∈ [0, 1] p : θ -θ ∞ ≤ 1 -2σ =⇒ ϕ(θ ) ≥ 2σ θ -θ . Lemma 3. Let θ ∈ {0, 1} p , θ ∈ [0, 1] p , and c ∈ R be such that θ -θ ∞ < c < 1 2 . Let θ t = (1 -t) θ + tθ with t ∈ [0, 1]. Then ϕ( θ) -ϕ(θ t ) ≥ (1 -2c) θ t -θ . Proof. Since |θ i -θi | < c < 1 2 holds for all i = 1, . . . , n, we have 1 2 = θ i - 1 2 ≤ |θ i -θi | + θi - 1 2 < c + θi - 1 2 , which implies θi - 1 2 > 1 2 -c. Moreover, since θ i ∈ {0, 1} and | θi -θ i | < c < 1 2 , we have θ i = 0 =⇒ θ i = 0 ≤ θi < c < 1 2 θ i = 1 =⇒ 1 2 < 1 -c < θi ≤ 1 = θ i
and, hence, since θ t i is between θ i and θi , it holds

θ t i - 1 2 ≥ θi - 1 2 > 1 2 -c so that θ t i + θi 2 - 1 2 = 1 2 (θ t i + θi -1) = 1 2 θ t i - 1 2 + θi - 1 2 = 1 2 θ t i - 1 2 + θi - 1 2 ≥ θi - 1 2 > 1 2 -c.
Therefore, by Lemma 2, ϕ( θ)ϕ(θ t ) ≥ (1 -2c) θ tθ holds.

B Proof of Theorem 1

For the sake of brevity we set S = argmin Thus, (λ * , θ * ) ∈ S(ε).

Figure 1 :

 1 Figure 1: Comparison of the proposed approach (MIB) with the one given in [8] (Bilevel).
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Figure 2 :

 2 Figure 2: Illustration of the loss landscape. Adding the penalty ϕ to G allows to match the global minima with the oracle solutions (θ 1,2 = 0, θ 1,1 = 1) and (θ 1,2 = 1, θ 1,1 = 0).

≥∀

  (λ,θ)∈Λ×Θ bin G(λ, θ) and S(ε) = argmin(λ,θ)∈Λ×Θ G(λ, θ) + 1 ε ϕ(θ).Recall that Θ bin = Θ ∩ {0, 1} p . Let ρ ∈ ]0, 1[ and let ε ∈ ]0, (1ρ)/L[. We define the open setU = θ∈Θ bin B ρ (θ),where ρ is chosen small enough so to ensure that Θ \ U = ∅ 7 . Let θ be a minimizer of ϕ over the compact setΘ \ U . Then, clearly ∀ θ ∈ Θ \ U : ϕ(θ ) ≥ ϕ( θ) > 0.(11)(Note that, since θ / ∈ U , then θ / ∈ {0, 1} p , and hence there exists i ∈[p] such that θi ∈ ]0, 1[, which implies that ϕ( θ) ≥ θi (1 -θi ) > 0.) Thus, since lim let ε ∈ ]0, ε] and show that S(ε) ⊂ Θ bin . Let (λ * , θ * ) ∈ S(ε) and suppose, by contradiction, that (λ * , θ * ) / ∈ Θ bin . We can have the following two cases:(a) Let θ * ∈ U . Then, there exists θ ∈ Θ bin such that θ * ∈ Θ ∩ B ρ (θ). Thus, in view of Assumption 1 and Corollary 1, we haveG(λ * , θ) -G(λ * , θ * ) ≤ L θ *θ < 1 -) < G(λ * , θ * ) + 1 ε ϕ(θ * ), which yields a contradiction since (λ * , θ * ) is a global minimizer of Problem (3). (b) Let θ * / ∈ U . Then (λ * , θ * ) ∈ Λ × (Θ \ U )and hence, recalling (11) and (12), we haveG(λ * , θ * ) G(λ, θ) + 1 ε ϕ(θ) =0for any (λ, θ) ∈ Λ × Θ bin ⊆ Λ × Θ, which gives again a contradiction.Thus, in both cases we get a contradiction and therefore necessarily (λ * , θ * ) ∈ Λ × Θ bin . Now, if we take (λ * , θ * ) ∈ S(ε), since (λ * , θ * ) ∈ Λ × Θ bin , we haveG(λ * , θ * ) (λ, θ) ∈ Λ × Θ bin ⊆ Λ × Θ.Therefore, for all (λ, θ)∈ Λ × Θ bin , G(λ * , θ * ) ≤ G(λ,θ), meaning (λ * , θ * ) ∈ S. Vice versa, let (λ * , θ * ) ∈ S. Choosing ( λ * , θ * ) ∈ S(ε), since ( λ * , θ * ) ∈ Λ × Θ bin , we have G(λ * , θ * ) + 1 ε ϕ(θ * ) =0 = G(λ * , θ * ) ≤ G( λ * , θ * ) ≤ G( λ * , θ * )

  n ≥ 1, [n] denotes the set {1, . . . , n}. We denote by • the Euclidean norm in R n and by •

∞ the infinity norm, meaning x ∞ = max 1≤u≤n |x i |. If x ∈ R n and ρ > 0 we denote by B ρ (x) the closed ball in R n with center x and radius ρ, i.e., B ρ

Table 1 :

 1 Test performance

	Method	Test error	Reconstruction error
	MIB Bilevel 0.5668 ± 0.0626 0.5487 ± 0.0522	0.2955 ± 0.0459 0.3162 ± 0.0535

This type of convergence of functions is also known as epiconvergence.

Application to the estimation of the group-structure in regression problemsWe address the problem of estimating the group structure in group-sparse regression problems. First, we detail in Section 5.1 how this problem fits our mathematical formulation. Then, in Section 5.2 we provide numerical experiments on both synthetic data datasets.

The vectors θ l are thought as columns of a matrix d × L

This means that ∃ θ * ∈ Θ such that for every θ ∈ Θ bin it holds θ -θ * > ρ. This condition is met if we pick θ * ∈ Θ \ {0, 1} p (see Assumption 1(ii)) and (taking into account that Θ bin = Θ ∩ {0, 1} p is a finite set) choose ρ such that 0 < ρ < inf θ∈Θ bin θ -θ * .

Supplementary material

In this part we provide technical results we used in the paper and the proof of Theorem 1.

A Auxiliary results

In this section, we give a number of technical results used throughout the paper related to the penalty function ϕ. We recall that ϕ : [0, 1] p → R is defined as

Moreover, we denote by [p] the set {1, . . . , p} and by • the Euclidean norm in R p . Occasionally, we will also used the following norms

Then, for every t 1 , t 2 ∈ [0, 1] we have

Therefore,

Lemma 2. Let σ ∈ ]0, 1/2] and θ, θ ∈ [0, 1] p be such that the following holds:

Then, ϕ(θ )ϕ(θ) ≥ 2σ θθ .

Proof. Let θ, θ ∈ [0, 1] p be as in the statement and let

and hence, by Lemma 1, we have

where we used • ≤ • 1 for the last inequality.

Remark 5. Lemma 2 says that if the components of the mid point (θ + θ )/2 are bounded away from 1/2 and the componentwise distance from θ to 1/2 is larger than that of θ to 1/2, then ϕ(θ )ϕ(θ) can be bounded from below by θθ ; up to a multiplicative constant.