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Différentiation des modalités du Bien : au-delà de l'optimalité de Pareto

L'éthique computationnelle étudie les restrictions et les préférences éthiques à intégrer aux algorithmes de prise de décision. Une approche pour faire face à une critique commune envers l'approche utilitariste de l'éthique computationnelle consiste à introduire des modalités différenciées du Bien, où les modalités sont définies comme les valeurs philosophiques qui correspondent aux différentes composantes du Bien. La différenciation permet alors qu'aucune modalité ne puisse en compenser une autre en définissant des classes distinctes de modalités. L'optimalité de Pareto modélise un cas extrême de différenciation, où chaque modalité constitue sa propre classe. Cet article propose une nouvelle approche, ordinale, pour traiter les modalités différenciées : la différenciation est modélisée par un ordre partiel strict sur les modalités, qui exprime quelles modalités prévalent sur les autres. L'article propose une axiomatisation de la supériorité pour prendre en compte ces comparaisons de modalités dans la détermination des actions éthiques : il discute de la manière d'induire une relation de préférence éthique entre les actions possibles, basée sur l'ordre partiel entre les modalités. En outre, il étudie les propriétés de cette relation induite, établissant qu'elle est asymétrique et transitive, prouvant ainsi qu'elle constitue une relation d'ordre.

Introduction

Les outils de prise de décision automatique sont de plus en plus répandus et utilisés. Face à cette popularité, on observe une demande croissante pour de nouveaux outils respectant les lois et les principes éthiques, c'est-à-dire vérifiant les contraintes de conformité éthique. Le domaine en pleine expansion de l'éthique computationnelle [START_REF] Anderson | Machine Ethics[END_REF][START_REF] Tolmeijer | Implementations in Machine Ethics : A Survey[END_REF] cherche à répondre à ces demandes. De nombreux principes éthiques proposés par des philosophes peuvent aider les informaticiens à aborder la question de la conformité éthique des algorithmes. L'utilitarisme, promu par Bentham et Mill à la fin du 18ème siècle, est l'une des théories morales les plus célèbres, mais aussi l'un des principes éthiques les plus implémentés [START_REF] Bourgne | ACE modular framework for computational ethics : dealing with multiple actions, concurrency and omission[END_REF][START_REF] Lindner | The HERA approach to morally competent robots[END_REF]. D'un point de vue computationnel, le principe utilitariste est séduisant car il est facilement représentable : il quantifie le Bien par des valeurs numériques, nommées utilités, qui peuvent ensuite être additionnées. Cependant, ce principe fait l'objet de débats philosophiques, notamment parce qu'il considère les différentes modalités du Bien comme étant toutes indifférenciées. Le terme modalité fait référence, ici et dans cet article, aux différentes valeurs philosophiques qui permettent de définir le Bien.

Prenons l'exemple d'une médecin dans un hôpital pour illustrer le fait que l'utilitarisme suppose que les modalités sont indifférenciées. Elle a le choix entre soigner un patient, ce que l'on note dans la suite treat_patient et qui aura pour effet de sauver une vie, et distribuer des chocolats à un grand nombre de patients, noté distribute_chocolat et qui aura simplement pour effet de leur faire plaisir. Cet exemple confronte deux modalités : la vie humaine et le plaisir de manger du chocolat, notées respectivement human_life et choco_pleasure. Si l'on considère un nombre suffisamment important de patients, la somme des utilités attribuées au plaisir de manger du chocolat dépassera l'utilité attribuée au fait de sauver une vie, quelle que soit la valeur de cette dernière. L'utilitarisme conclut donc que la médecin doit distribuer du chocolat plutôt que de soigner le patient. Un tel cas montre que toute modalité peut être compensée par une autre : l'utilitarisme ne permet pas de modéliser la nature conflictuelle des modalités.

Les principales critiques de cette hypothèse d'indifférence font appel à une différenciation des modalités [START_REF] Griffin | Are There Incommensurable Values ?[END_REF]. On peut par exemple considérer que le statut de médecin oblige à se préoccuper de la vie des patients plutôt que du plaisir de manger du chocolat, on peut aussi considérer que la vie humaine est plus importante que le plaisir de manger du chocolat. Cette dernière option introduit une notion de supériorité entre les modalités en accordant à certaines d'entre elles un statut particulier [START_REF] Chang | Incommensurability (and Incomparability)[END_REF] : les modalités supérieures doivent être considérées en premier lorsqu'une décision doit être prise.

Suivant ces remarques, cet article propose une nouvelle approche, ordinale, pour traiter de la différentiation des modalités dans un système de conformité éthique : à notre connaissance, il propose une première tentative de relier cette préoccupation philosophique aux préférences ordinales. Plus précisément, il considère que la notion de supériorité est exprimée par un ordre partiel strict sur les modalités et il propose une axiomatisation de la supériorité, formalisant la prise en compte ces comparaisons de modalités afin d'en déduire des préférences ordinales entre les actions.

Le principe proposé peut être vu comme un principe de décision multicritère, où chaque modalité constitue un critère, allant au-delà du principe d'optimalité de Pareto : ce dernier, d'abord appliqué à des problèmes de prise de décision et ensuite à des problèmes éthiques [START_REF] Lindner | The HERA approach to morally competent robots[END_REF], peut être considéré comme un cas extrême de différenciation des modalités. En effet, les modalités ne sont comparées qu'à elles-mêmes, et non les unes aux autres. Dans l'exemple médical précédent, aucune action n'est considérée comme dominant éthiquement l'autre : pour le principe de Pareto, les modalités sont incomparables entre elles. L'approche de supériorité que nous proposons et généralise le principe de Pareto en ajoutant la comparaison de supériorité des modalités.

L'article est structuré comme suit. La section 2 propose une formalisation du problème de conformité éthique afin de représenter les principes utilitariste et de Pareto, ainsi que la notion de comparaisons de modalité. La section 3 présente l'axiomatisation proposée de la supériorité qui prend en compte ces comparaisons pour déterminer une relation de préférence éthique entre les actions possibles. La section 4 étudie les propriétés de la relation induite proposée, établissant qu'elle constitue une relation d'ordre, prouvant qu'elle est asymétrique et transitive. La section 5 discute les hypothèses faites sur les relations de comparaison de modalité, au-delà du cas asymétrique et transitif. La section 6 conclut l'article et discute de certaines directions pour des travaux futurs.

Formalisation de la conformité éthique

Cette section décrit le formalisme considéré pour représenter un problème de conformité éthique, en présentant d'abord le cadre ordinal considéré et les notations utilisées tout au long de l'article. Elle introduit ensuite la représentation de la différenciation des modalités par un ordre partiel strict et montre enfin comment les principes utilitariste et de Pareto classiques sont exprimés dans ce cadre.

Formalisation ordinale de la conformité éthique

Un problème éthique consiste à sélectionner, parmi un ensemble A d'actions possibles (par exemple les options de soigner un patient ou distribuer du chocolat), l'ensemble A 𝑝 des actions permissibles, définies comme celles qu'il est éthiquement acceptable de réaliser selon un principe éthique donné. Dans l'article, les lettres 𝑎, 𝑎 ′ , 𝑜 et 𝑜 ′ seront utilisées pour représenter les éléments de A.

Parmi les principes éthiques proposés par les philosophes et ceux qui ont été implémentés en éthique computationnelle, on retrouve l'utilitarisme de l'acte [START_REF] Vallentyne | Consequentialism. Dans Philosophy publications[END_REF]. C'est une version courante de l'utilitarisme que l'on peut décomposer en trois étapes. Premièrement, les conséquences des actions sont éthiquement quantifiées par une valeur d'utilité. Dans la deuxième étape, ces valeurs d'utilité sont agrégées pour chaque action afin d'obtenir un nombre représentant l'utilité globale produite par l'action. Dans la dernière étape, les actions permissibles sont définies comme étant celles qui maximisent l'utilité.

Ces étapes peuvent être formalisées comme suit. Chaque action est représentée par un vecteur composé des valeurs d'utilité. Chaque valeur du vecteur correspond à une modalité, c'est-à-dire à l'une des valeurs philosophiques qui permettent de définir le Bien (par exemple la vie humaine ou le plaisir du chocolat). On note M l'ensemble fini des modalités et on considère que A ⊂ R | M | : plus la valeur du vecteur est élevée, plus l'action est intéressante du point de vue éthique selon cette modalité. Si l'action possède une valeur non nulle pour une modalité, on dit que l'action porte la modalité. Cette caractérisation des actions se situe dans le cadre usuel de la prise de décision multicritère [START_REF] Gonzales | Multicriteria Decision Making[END_REF], où les valeurs du vecteur peuvent être interprétées comme les performances de l'action pour chacun des critères que sont les modalités.

Décrivons l'exemple présenté dans l'introduction avec ce formalisme. Cette quantification du Bien des conséquences est discutable : elle masque les relations causales en attribuant une seule valeur par modalité pour toutes les conséquences. On peut le voir directement avec l'action de distribuer du chocolat dans l'exemple 1. L'action telle qu'elle a été décrite cause un petit plaisir pour chacun des patients séparément. Elle possède donc un grand nombre de conséquences qui sont toutes valuées positivement pour la modalité choco_pleasure. Le formalisme proposé considère donc qu'une étape antérieure d'agrégation a déjà eu lieu, comme une somme pour l'utilitarisme de l'acte, afin de déterminer l'unique valeur de l'action distribute_chocolat pour la modalité choco_pleasure. En choisissant une autre fonction d'agrégation, il est possible de proposer d'autres solutions au problème du médecin. Ces solutions sont masquées par ce formalisme. Cependant, cette discussion dépasse le cadre souhaité dans cet article : la caractérisation choisie suffit à montrer l'intérêt d'une prise en compte différenciée des modalités.

Comme nous l'avons rappelé plus haut, l'utilitarisme de l'acte ordonne les actions en fonction de leurs utilités et définit comme permises celles qui ont les utilités les plus élevées. Pour formaliser cette vision ordinale, nous introduisons une relation de comparaison ≿ 𝑒 sur A × A pour dénoter ces préférences éthiques. Ainsi 𝑜 ≿ 𝑒 𝑜 ′ signifie que l'action 𝑜 est éthiquement préférée ou équivalente à l'action 𝑜 ′ . La question est de savoir comment définir cette relation sur les actions, dont A 𝑝 est dérivé.

Différenciation ordinale des modalités

Comme discuté dans l'introduction, nous proposons de formaliser la différenciation des modalités comme un ordre partiel strict sur les modalités, que nous désignons par ≻ 𝑚 , c'est-à-dire une relation asymétrique et transitive : 𝑥 ≻ 𝑚 𝑦 signifie que la modalité 𝑥 prévaut sur la modalité 𝑦. La modalité 𝑥 est dite dominante et la modalité 𝑦 dominée. L'ordre partiel strict peut être vu comme un ensemble de paires : ≻ 𝑚 ⊂ M 2 . Chaque paire de modalités (𝑥, 𝑦) est appelée une comparaison.

La difficulté de la définition de la supériorité consiste alors à prendre en compte ces comparaisons de modalités dans la détermination des actions admissibles : en ajoutant à la caractérisation des actions l'ordre partiel strict ≻ 𝑚 sur les modalités, il s'agit d'obtenir des informations sur la relation de comparaison ≿ 𝑒 , qui permettra ensuite d'obtenir l'ensemble A 𝑝 .

Notre formalisation de la supériorité entre modalités a pour objectif de modéliser le fait qu'aucun plaisir issu de la consommation de chocolat, aussi grand qu'il soit, ne peut jamais égaler ou dépasser le fait de sauver une vie. Autrement dit de modéliser la préférence pour les actions qui portent une modalité dominante plutôt que n'importe laquelle des actions ne portant que des modalités dominées. De ce fait, la formalisation ne fournit que des relations de préférence stricte entre les actions, et pas de relations d'équivalence. Nous nous intéressons donc particulièrement à la partie asymétrique de ≿ 𝑒 qui est notée ≻ 𝑒 , où 𝑜 ≻ 𝑒 𝑜 ′ signifie que 𝑜 est strictement préférée à 𝑜 ′ .

Formalisation des principes éthiques classiques

Dans cet article, la relation de préférence est définie à l'aide de propriétés de la forme suivante :

∀𝑜, 𝑜 ′ ∈ A, [conditions sur 𝑜, 𝑜 ′ et les modalités] ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (1)

Utilitarisme de l'acte

Le principe de l'utilitarisme de l'acte rappelé dans la section précédente peut être exprimé comme suit :

∀𝑜, 𝑜 ′ ∈ A, ∑︁ 𝑥 ∈ M 𝑜 𝑥 > ∑︁ 𝑥 ∈ M 𝑜 ′ 𝑥 ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (2)
On obtient pour l'exemple 1 :

𝑥 ∈ M 𝑎 𝑥 = 10 et 𝑥 ∈ M 𝑎 ′ 𝑥 = 11.
Selon l'équation 2, l'utilitarisme de l'acte conclut 𝑎 ′ ≻ 𝑒 𝑎.

Optimalité de Pareto

Le principe de Pareto classique utilisé dans le cadre de la décision multicritère peut être écrit dans sa version stricte comme suit :

∀𝑜, 𝑜 ′ ∈ A, ∃𝑥 ∈ M, (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ (∀𝑦 ∈ M\{𝑥}, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ) ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (3)
Pour l'exemple 1, on observe 𝑎 human_life > 𝑎 ′ human_life et 𝑎 ′ choco_pleasure > 𝑎 choco_pleasure . Les deux modalités ne favorisant pas la même action, l'optimalité de Pareto ne fournit aucune préférence.

Discussion

Les deux principes précédents assurent la transitivité et l'asymétrie de ≻ 𝑒 . En terme de traitement des modalités, le principe utilitariste considère que les modalités sont équivalentes, puisque dans l'équation 2 la somme est une fonction d'agrégation commutative : on peut inverser les modalités sans modifier le résultat. Au contraire, le principe de Pareto considère que les modalités sont incomparables : dans l'équation 3, seules les quantifications d'une même modalité sont comparées entre les actions considérées.

La contribution de cet article, telle que décrite dans les sections suivantes, se concentre sur la définition d'une nouvelle condition plus expressive que ces deux cas extrêmes pour le traitement des comparaisons entre modalités. Elle combine les quantifications par modalités et l'ordre ≻ 𝑚 entre les modalités afin d'introduire la supériorité entre les modalités.

Proposition d'axiomatisation de la supériorité entre les modalités

Cette section décrit la définition proposée d'une relation de préférence éthique entre les actions possibles, basée sur l'ordre partiel entre les modalités, résultant en une axiomatisation de la supériorité, comme une généralisation du principe de Pareto. Elle formalise d'abord la définition du comportement de supériorité souhaité, puis décrit en trois étapes l'axiomatisation proposée, en fonction du nombre de modalités dominantes et dominées.

Définition de la supériorité

Afin de définir le comportement de supériorité souhaité, nous considérons d'abord le cas où l'ordre partiel strict sur la modalité contient une seule comparaison, notée 𝑥 ≻ 𝑚 𝑧. La supériorité de la modalité 𝑥 sur la modalité 𝑧 est alors définie dans le formalisme par l'équivalence suivante :

𝑥 ≻ 𝑚 𝑧 ⇔ ∀𝑜, 𝑜 ′ ∈ A, [(𝑜 𝑥 > 𝑜 ′ 𝑥 ∧ ∀𝑦 ∈ M\{𝑥, 𝑧}, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 )] ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (4)
Le point important de cette définition est que les quantifications de la modalité dominante 𝑥 sont suffisantes pour déterminer la préférence entre deux actions, indépendamment des quantifications de la modalité dominée. Il n'y a donc pas de compensation possible entre une modalité dominante et une modalité dominée. Quant aux autres modalités 𝑦 qui ne sont pas impliquées dans la comparaison, comme pour l'optimalité de Pareto, il est nécessaire qu'elles favorisent la même action que la modalité dominante.

One Over One : un dominant, un dominé

Dans le cas où l'ensemble de comparaison définit une seule modalité dominante et une seule modalité dominée, la définition de la relation ≻ 𝑒 induite découle directement de la définition de la supériorité de l'équation 4 :

∀𝑜, 𝑜 ′ ∈ A, ∃𝑥, 𝑧 ∈ M, 𝑥 ≻ 𝑚 𝑧 ∧ (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ (∀𝑦 ∈ M\{𝑥, 𝑧}, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ) ⇒ 𝑜 ≻ 𝑒 𝑜 ′ ( 
5) Reprenons l'exemple 1 en y ajoutant la comparaison human_life ≻ 𝑚 choco_pleasure. On sait que 𝑎 human_life > 𝑎 ′ human_life . Ne disposant que de deux modalités dans cet exemple, la condition sur les 𝑦 est vérifiée également. Ainsi, l'équation déduit la préférence treat_patient ≻ 𝑒 distribute_chocolat.

One Over Many : un dominant, plusieurs dominés

Dans un problème complexe, on peut être amené à considérer un ensemble de comparaisons. Cette section considère le cas où une seule modalité dominante prévaut sur un ensemble de modalités dominées. Dans ce cas, nous considérons la généralisation suivante de l'équation 5 : quel que soit le nombre de modalités dominées, elles ne peuvent pas contrer la préférence induite par la modalité dominante. Cette généralisation est une supposition forte qui donne à la propriété de supériorité proposée un caractère absolu : rien ne peut la contredire.

∀𝑜, 𝑜 ′ ∈ A,

[∃𝑥 ∈ M, ∃𝑍 ⊂ M\{𝑥}, (∀𝑧 ∈ 𝑍, 𝑥 ≻ 𝑚 𝑧)

∧ (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ (∀𝑦 ∈ M\{𝑥} ∪ 𝑍, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ) ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (6)
Cette propriété est équivalente à la reformulation suivante :

∀𝑜, 𝑜 ′ ∈ A, ∃𝑥 ∈ M, (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ ∀𝑦 ∈ M\{𝑥}, (𝑥 ≻ 𝑚 𝑦 ∨ 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ) ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (7)
Cette dernière formule souligne le fait qu'elle peut être considérée comme une généralisation de l'optimalité de Pareto. En effet, si aucune comparaison n'est considérée, alors 𝑥 ≻ 𝑚 𝑦 est faux pour toutes les modalités et la formule est identique à l'équation 3.

Many Over Many : cas général

Dans le cas général, pour toute paire d'actions 𝑜 et 𝑜 ′ , il faut distinguer trois sous-ensembles de modalités de M :

-L'ensemble 𝑋 des modalités favorisant une même action, qui doit être non vide afin d'obtenir une préférence stricte en favorisant une action 𝑜 par rapport à une action 𝑜 ′ : 

𝑋 = {𝑥 ∈ M | 𝑜 𝑥 > 𝑜 ′ 𝑥 } -L'
∀𝑜, 𝑜 ′ ∈ A, ∃𝑋 ⊂ M, 𝑋 ≠ ∅, (∀𝑥 ∈ 𝑋, 𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ [∀𝑦 ∈ M\𝑋, (∃𝑥 ∈ 𝑋, 𝑥 ≻ 𝑚 𝑦) ∨ 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ] ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (8)
Cette propriété est équivalente à la reformulation suivante :

∀𝑜, 𝑜 ′ ∈ A, ∃𝑥 ∈ M, (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ [∀𝑦 ∈ M, (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 𝑥 ′ > 𝑜 ′ 𝑥 ′ ) ∨ 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ] ⇒ 𝑜 ≻ 𝑒 𝑜 ′ (9)
Comme pour le cas précédent, il s'agit d'une généralisation de l'optimalité de Pareto. Si aucune comparaison n'est considérée, alors 𝑥 ′ ≻ 𝑚 𝑦 est faux pour toutes les modalités et l'équation 9 est identique à l'équation de l'optimalité de Pareto.

Définition de la préférence minimale induite ≻ 𝑚

𝑒

Parmi l'ensemble de toutes les préférences ≻ 𝑒 qui satisfont l'équation 9, la relation de préférence minimale est définie comme celle qui ne contient que les paires induites par l'équation. Ainsi pour définir cette relation, il suffit de remplacer l'implication de l'équation 9 par une équivalence. Définition 1. La préférence éthique minimale, notée ≻ 𝑚 𝑒 , est la relation de préférence induite uniquement par l'équation 9 :

∀𝑜, 𝑜 ′ ∈ A, ∃𝑥 ∈ M, (𝑜 𝑥 > 𝑜 ′ 𝑥 ) ∧ [∀𝑦 ∈ M, (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 𝑥 ′ > 𝑜 ′ 𝑥 ′ ) ∨ 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ] ⇔ 𝑜 ≻ 𝑚 𝑒 𝑜 ′
En utilisant cette définition, un ordre ≻ 𝑒 satisfait l'axiomatisation de la supériorité que nous proposons dans l'équation 9 si et seulement si il est un sur-ensemble de cette relation minimale : ≻ 𝑚 𝑒 ⊆ ≻ 𝑒 . La section suivante étudie les propriétés de cette relation de préférence minimale, en établissant qu'elle est asymétrique et transitive, ce qui implique que c'est un ordre partiel strict. 

(𝑋) = {𝑥 ∈ 𝑋 | ∀𝑥 ′ ∈ 𝑋, ¬(𝑥 ′ ≻ 𝑚 𝑥)}, on a : ∀𝑥 ∈ 𝑋, (𝑥 ∈ max ≻ 𝑚 (𝑋)) ⊕ (∃𝑥 ′ ∈ max ≻ 𝑚 (𝑋), 𝑥 ′ ≻ 𝑚 𝑥) Démonstration. Ce lemme est prouvé par récurrence sur |𝑋 |. -Si |𝑋 | = 1, alors 𝑋 = {𝑥} = max ≻ 𝑚 (𝑋). -Si |𝑋 | = 𝑛 + 1, avec 𝑛 ∈ N * . On a 𝑋 = 𝑋 ′ ∪ {𝑥},
-∃𝑥 0 ∈ M, (𝑜 𝑥 0 > 𝑜 ′ 𝑥 0 ) (𝐴) -∀𝑦 ∈ M, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 ∨ (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 𝑥 ′ > 𝑜 ′ 𝑥 ′ ) (𝐵) -∃𝑥 1 ∈ M, (𝑜 ′ 𝑥 1 > 𝑜 𝑥 1 ) (𝐶) -∀𝑦 ∈ M, 𝑜 ′ 𝑦 ≥ 𝑜 𝑦 ∨ (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 ′ 𝑥 ′ > 𝑜 𝑥 ′ ) (𝐷)
Appelons 𝑆 l'ensemble des modalités qui ont une préférence pour 𝑜 plutôt que 𝑜 ′ et 𝐼 l'ensemble des modalités qui ont une préférence pour 𝑜 ′ plutôt que 𝑜.

𝑆 = {𝑥 ∈ M | 𝑜 𝑥 > 𝑜 ′ 𝑥 } et 𝐼 = {𝑥 ∈ M | 𝑜 ′ 𝑥 > 𝑜 𝑥 }. D'après ( 𝐴) et (𝐵)
, on sait que ces ensembles sont non vides. 𝑆 étant non vide et en utilisant le Lemme 1, on peut prendre un

𝑧 ∈ max ≻ 𝑚 (𝑆). Ainsi, 𝑧 ∈ 𝑆 donc 𝑜 𝑧 > 𝑜 ′ 𝑧 et donc, avec (𝐷), ∃𝑥 2 ∈ M, 𝑥 2 ≻ 𝑚 𝑧 ∧ 𝑜 ′ 𝑥 2 > 𝑜 𝑥 2 . 𝑜 ′ 𝑥 2 > 𝑜 𝑥 2 ⇒ 𝑥 2 ∈ 𝐼 et en utilisant le Lemme 1 sur 𝐼 : -si 𝑥 2 ∈ max ≻ 𝑚 (𝐼), on note 𝑥 3 = 𝑥 2 .
-sinon ∃𝑥 3 ∈ max ≻ 𝑚 (𝐼), 𝑥 3 ≻ 𝑚 𝑥 2 . Dans les deux cas on obtient 𝑥 3 ≻ 𝑚 𝑧 par transitivité de ≻ 𝑚 .

𝑥 3 ∈ 𝐼 donc 𝑜 ′ 𝑥 3 > 𝑜 𝑥 3 et avec (𝐵), ∃𝑥 4 ∈ M, 𝑥 4 ≻ 𝑚 𝑥 3 ∧𝑜 𝑥 4 > 𝑜 ′ 𝑥 4 . On déduit 𝑜 𝑥 4 > 𝑜 ′ 𝑥 4 donc 𝑥 4 ∈ 𝑆. Par transi- tivité 𝑥 4 ≻ 𝑚 𝑧, de plus par définition de max ≻ 𝑚 (𝑆), 𝑥 4 ∈ 𝑆 et 𝑥 4 ≻ 𝑚 𝑧 donc 𝑧 ∉ max ≻ 𝑚 𝑆, ce qui est contradictoire. On conclut donc que ¬(𝑜 ≻ 𝑚 𝑒 𝑜 ′ ∧ 𝑜 ′ ≻ 𝑚 𝑒 𝑜). □ 4.2 Transitivité de la relation ≻ 𝑚 𝑒 proposée Proposition 2. ≻ 𝑚 𝑒 est transitive : elle vérifie ∀𝑜, 𝑜 ′ ∈ A, (𝑜 ≻ 𝑚 𝑒 𝑜 ′ ∧ 𝑜 ′ ≻ 𝑚 𝑒 𝑜 ′′ ) ⇒ (𝑜 ≻ 𝑚 𝑒 𝑜 ′′ ). Démonstration. Considérons 𝑜, 𝑜 ′ , 𝑜 ′′ tel que 𝑜 ≻ 𝑚 𝑒 𝑜 ′ et 𝑜 ′ ≻ 𝑚 𝑒 𝑜 ′′ . En utilisant la définition 1, on obtient : -∃𝑥 0 ∈ M, (𝑜 𝑥 0 > 𝑜 ′ 𝑥 0 ) (𝐸 1 ) -∀𝑦 ∈ M, 𝑜 𝑦 < 𝑜 ′ 𝑦 ⇒ (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 𝑥 ′ > 𝑜 ′ 𝑥 ′ ) (𝐸 2 ) -∃𝑥 1 ∈ M, (𝑜 ′ 𝑥 1 > 𝑜 ′′ 𝑥 1 ) (𝐹 1 ) -∀𝑦 ∈ M, 𝑜 ′ 𝑦 < 𝑜 ′′ 𝑦 ⇒ (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 ′ 𝑥 ′ > 𝑜 ′′ 𝑥 ′ ) (𝐹 2 ) On doit prouver 𝑜 ≻ 𝑚 𝑒 𝑜 ′′ , soit d'après la définition 1, 𝑃 1 : ∃𝑥 ∈ M, 𝑜 𝑥 > 𝑜 ′′ 𝑥 , et pour tout 𝑦 ∈ M, 𝑃 2 (𝑦) : 𝑜 𝑦 < 𝑜 ′′ 𝑦 ⇒ ∃𝑧 ∈ M. 𝑧 ≻ 𝑚 𝑒 𝑦 ∧ 𝑜 𝑧 > 𝑜 ′′ 𝑧 .
Preuve de 𝑃 1 . Par 𝐸 1 , on a 𝑥 0 tel que 

𝑜 𝑥 0 > 𝑜 ′ 𝑥 0 . Si 𝑜 ′ 𝑥 0 ≥ 𝑜 ′′ 𝑥 0 alors 𝑜 𝑥 0 > 𝑜 ′′ 𝑥 0 et 𝑃 1 est satisfait. Si- non, 𝑜 ′ 𝑥 0 < 𝑜 ′′ 𝑥 0 .

Discussions sur les hypothèses faites sur ≻ 𝑚

Nous avons supposé que la relation ≻ 𝑚 est asymétrique et transitive, cela englobe de nombreuses situations, néanmoins nous discutons dans cette section deux cas alternatifs.

Cas d'une relation ≻ 𝑚 totale

L'ajout d'autres hypothèses peut donner des informations supplémentaires sur ≻ 𝑒 . Par exemple, si nous supposons que la relation ≻ 𝑚 est également totale, alors l'axiomatisation devient un ordre lexicographique sur les modalités [START_REF] Fishburn | Axioms for Lexicographic Preferences[END_REF]. Il suffit alors pour départager les actions d'observer s'il existe une préférence pour la modalité au sommet de l'ordre, et ainsi de suite jusqu'à la fin de l'ordre ≻ 𝑚 . Ainsi, pour toute paire d'actions non égales 𝑜 et 𝑜 ′ , une préférence sera déduite de l'équation 9. Cette propriété est utile si l'on souhaite une action unique à réaliser. Cependant, le fait d'avoir une seule action permise peut être vu comme une propriété restrictive pour un système de conformité éthique.

Cas d'une relation ≻ 𝑚 non transitive

On peut aussi souhaiter que la relation ≻ 𝑚 ne soit pas transitive. Cependant, cette section montre que c'est une condition nécessaire à notre axiomatisation si l'on souhaite définir des préférences rationnelles entre différentes actions. En effet, si on autorise une relation ≻ 𝑚 qui n'est pas transitive, il est alors possible de définir des boucles de supériorité entre modalités. Supposons par exemple que l'on dispose de quatre modalités 𝑤, 𝑥, 𝑦, 𝑧 telles que 𝑤 ≻ 𝑚 𝑥, 𝑥 ≻ 𝑚 𝑦, 𝑦 ≻ 𝑚 𝑧 et 𝑧 ≻ 𝑚 𝑤. Dans ce cas, l'axiomatisation proposée dans l'équation 9 ne garantit plus l'asymétrie et la transitivité de 𝑒 n'est donc pas asymétrique. On peut alors observer des cycles dans les préférences obtenues entre les différentes actions. Ces cycles dans les préférences posent différents problèmes [START_REF] Hansson | Preferences[END_REF], comme l'argument de la pompe monétaire, qui empêchent de les considérer comme rationnelles. Si l'on souhaite éviter les cycles tout en conservant une relation ≻ 𝑚 qui n'est pas transitive, il est nécessaire de modifier l'axiomatisation proposée. Néanmoins, de telles modifications sortent du cadre voulu pour cet article étant donné qu'elles nécessitent d'introduire des conditions ne provenant pas directement du concept de supériorité entre modalités.

Conclusion et perspectives

Cet article propose une axiomatisation du concept philosophique de supériorité entre les modalités du Bien. Pour ce faire, un formalisme de décision multicritère ordinal adapté à la prise de décision éthique a été défini, basé sur une approche utilitariste. En tant que généralisation du principe d'optimalité de Pareto, l'axiomatisation proposée permet de déduire les préférences à partir de la différenciation des modalités.

Le travail présenté dans cet article ouvre de multiples perspectives. Il constitue une première étape pour relier les préoccupations philosophiques aux préférences ordinales. Les travaux en cours visent à étudier les cadres formels existants qui offrent des propriétés similaires à celles que nous proposons, comme par exemple les hiérarchies de contraintes [START_REF] Borning | Constraint hierarchies[END_REF], les CP-nets et TCP-nets [START_REF] Brafman | On graphical modeling of preference and importance[END_REF] ou encore des variantes des méthodes de surclassement avec seuil [START_REF] Rogers | The Electre Methodology[END_REF].

Une limite du travail actuel réside dans les simplifications faites sur les relations causales dans le formalisme utilisé, comme discuté dans la section 2. Afin de prendre en compte les questions éthiques qui interviennent sur ces relations causales, nous envisageons d'étendre le formalisme pour pouvoir prendre en compte chaque conséquence des actions séparément.

Comme discuté dans la section 5, l'ensemble minimal de préférences éthiques qui respectent un ordre de supériorité ≻ 𝑚 entre les modalités n'est pas nécessairement total. En effet, le principe de supériorité qui est axiomatisé n'a pas pour objectif de résoudre toutes les décisions éthiques. Cela soulève donc des questions sur la combinaison de plusieurs principes afin d'obtenir un unique ensemble d'actions permissibles. Ainsi, des travaux en cours ont pour objectif de formaliser une version plus générale du concept de principe éthique et des conditions que le mélange de plusieurs principes doit respecter.

Exemple 1 .

 1 Notons 𝑎 l'action treat_patient et 𝑎 ′ l'action distribute_chocolat. Considérons que sauver le patient a une valeur de 10 pour la modalité human_life, ainsi 𝑎 human_life = 10. Ne procurant pas de plaisir aux patients, on a 𝑎 choco_pleasure = 0. De même 𝑎 ′ human_life = 0. Considérons que la distribution de chocolat procure 1 d'utilité et qu'il y a onze patients, soit 𝑎 ′ choco_pleasure = 11. En utilisant la notation 𝑎 = (𝑎 human_life , 𝑎 choco_pleasure ), cet exemple définit 𝑎 = (10, 0) et 𝑎 ′ = (0, 11).

  ensemble des modalités dominées, qui représente les modalités dominées par au moins une modalité de l'ensemble 𝑋 : {𝑦 ∈ M\𝑋 | ∃𝑥 ∈ 𝑋, 𝑥 ≻ 𝑚 𝑦} -L'ensemble des modalités non dominantes et non dominées, qui doivent être en accord avec les modalités de l'ensemble 𝑋 : {𝑦 ∈ M\𝑋 | 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 } Par rapport au cas précédent, cette généralisation renforce le caractère absolu de la supériorité en précisant que la présence d'une seule modalité dominante suffit à considérer une modalité comme étant dominée. Une modalité dominée ne participe activement que si aucune préférence n'est exprimée pour toutes ses modalités dominantes. Dans ce cas, nous proposons la définition suivante :

  Pour tout ensemble non vide 𝑋 ⊆ M, en notant l'ensemble des modalités maximales max ≻ 𝑚

	4 Propriétés de la relation ≻ 𝑚 𝑒 proposée
	Cette section établit que la relation ≻ 𝑚 𝑒 proposée satisfait
	la propriété requise de définir une relation d'ordre sur les
	actions :
	Théorème 1. ≻ 𝑚 𝑒 est un ordre partiel strict.
	Les sections 4.1 et 4.2 prouvent respectivement qu'il est
	asymétrique et transitif. Les deux preuves utilisent le lemme
	suivant où ⊕ désigne le XOR binaire :
	Lemme 1.

  𝑋 ′ . Par hypothèse de récurrence sur 𝑋 ′ on obtient soit 𝑥 ′ ∈ max ≻ 𝑚 (𝑋 ′ ), et on pose𝑥 ′′ = 𝑥 ′ , soit ∃𝑥 ′′ ∈ max ≻ 𝑚 (𝑋 ′ ), 𝑥 ′′ ≻ 𝑚 𝑥 ′ . Par transitivité et asymétrie, on a 𝑥 ′′ ≻ 𝑚 𝑥 et ¬(𝑥 ≻ 𝑚 𝑥 ′′ ). Donc on obtient 𝑥 ′′ ∈ max ≻ 𝑚 (𝑋) et 𝑥 ′′ ≻ 𝑚 𝑥. 𝑜 ′ ∈ A, 𝑜 ≻ 𝑚 𝑒 𝑜 ′ ⇒ ¬(𝑜 ′ ≻ 𝑚 𝑒 𝑜). Démonstration.On suppose que 𝑜 ≻ 𝑚 𝑒 𝑜 ′ et par absurde que 𝑜 ′ ≻ 𝑚 𝑒 𝑜. D'après la définition 1, on obtient :

	□
	4.1 Asymétrie de la relation ≻ 𝑚 𝑒 proposée
	Proposition 1. ≻ 𝑚 𝑒 est asymétrique :
	elle vérifie ∀𝑜,

avec |𝑋 ′ | = 𝑛. Dans ce cas, on distingue deux possibilités : -𝑥 ∈ max ≻ 𝑚 (𝑋).

-𝑥 ∉ max ≻ 𝑚 (𝑋), par définition de max ≻ 𝑚 (𝑋), on a ∃𝑥 ′ ∈ 𝑋, 𝑥 ′ ≻ 𝑚 𝑥. D'après l'asymétrie de ≻ 𝑚 , on peut conclure que 𝑥 ≠ 𝑥 ′ d'où 𝑥 ′ ∈

  Selon le lemme 1 et 𝐹 2 , 𝑆 0 = {𝑥 ∈ M|𝑥 ≻ 𝑚 𝑥 0 ∧ 𝑜 ′ 𝑥 > 𝑜 ′′ 𝑥 } est non vide, ainsi on peut choisir 𝑥 2 dans 𝑚𝑎𝑥 ≻ 𝑚 𝑆 0 . Si 𝑜 𝑥 2 ≥ 𝑜 ′ 𝑥 2 alors 𝑜 𝑥 2 > 𝑜 ′′ 𝑥 2 et 𝑃 1 est satisfait. Sinon, 𝑜 𝑥 2 < 𝑜 ′ 𝑥 2 . Par 𝐸 2 , on obtient une modalité𝑥 3 telle que 𝑥 3 ≻ 𝑚 𝑥 2 et 𝑜 𝑥 3 > 𝑜 ′ 𝑥 3 Comme 𝑥 2 est maximale pour ≻ 𝑚 dans 𝑆 0 , on a 𝑥 3 ∉ 𝑆 0 et donc 𝑜 ′ 𝑥 3 ≤ 𝑜 ′′ 𝑥 3 . Si 𝑜 ′ 𝑥 3 < 𝑜 ′′ 𝑥 3 , utiliser 𝐹 2 donnerait une modalité de 𝑆 0 supérieure à 𝑥 2 , ce qui contredirait sa maximalité. Donc 𝑜 ′ 𝑥 3 = 𝑜 ′′ 𝑥 3 . Avec 𝑜 𝑥 3 > 𝑜 ′ 𝑥 3 , cela implique 𝑃 1 . Preuve de ∀𝑦, 𝑃 2 (𝑦). Considérons une modalité 𝑦 0 ∈ M. Si 𝑜 𝑦 0 ≥ 𝑜 ′′ 𝑦 0 , 𝑃 2 (𝑦 0 ) est trivialement vérifié. Sinon, on a 𝑜 𝑦 0 < 𝑜 ′′ 𝑦 0 (𝐻 1 ). On a donc deux cas : (A) Supposons 𝑜 𝑦 0 < 𝑜 ′ 𝑦 0 (𝐻 2 ). Selon le lemme 1, 𝐸 2 et 𝐻 2 , 𝑆 2 = {𝑥 ∈ M |𝑥 ≻ 𝑚 𝑦 0 ∧ 𝑜 𝑥 > 𝑜 ′ 𝑥 }est non vide, ainsi on peut choisir 𝑥 ′ dans 𝑚𝑎𝑥 ≻ 𝑚 𝑆 2 . (A.1) Supposons 𝑜 ′ 𝑥 ′ < 𝑜 ′′ 𝑥 ′ (𝐻 3 ). Par 𝐹 2 et 𝐻 3 , on obtient une modalité 𝑧 telle que 𝑧 ≻ 𝑚 𝑥 ′ ∧ 𝑜 ′ 𝑧 > 𝑜 ′′ 𝑧 . On a 𝑧 ≻ 𝑚 𝑥 ′ et 𝑥 ′ ≻ 𝑚 𝑦 0 , donc, par transitivité de ≻ 𝑚 , 𝑧 ≻ 𝑚 𝑦 0 . Etant donné que 𝑥 ′ est maximal pour ≻ 𝑚 , on doit avoir 𝑧 ∉ 𝑆 2 ce qui donne 𝑜 𝑧 ≥ 𝑜 ′ 𝑧 . Avoir 𝑜 𝑧 > 𝑜 ′ 𝑧 n'est pas possible car cela autoriserait à dériver depuis 𝐸 2 une modalité qui appartiendrait à 𝑆 1 tout en étant supérieure à 𝑥 ′ , contredisant encore la maximalité de 𝑥 ′ . On peut conclure 𝑜 𝑧 = 𝑜 ′ 𝑧 , et donc 𝑜 𝑧 > 𝑜 ′′ 𝑧 , ce qui prouve 𝑃 2 (𝑦 0 ). (A.2) Sinon, 𝑜 ′ 𝑥 ′ ≥ 𝑜 ′′ 𝑥 ′ . Etant donné un 𝑥 ′ ∈ 𝑆 1 , on obtient 𝑜 𝑥 ′ > 𝑜 ′′ 𝑥 ′ . On a ainsi (prenant 𝑥 ′ pour 𝑧), 𝑃 2 (𝑦 0 ). (B) Dans l'autre cas, 𝑜 𝑦 0 ≥ 𝑜 ′ 𝑦 0 (𝐻 4 ). On considère ensuite les modalités qui sont supérieures à 𝑦 0 . (B.1) Supposons que ∃𝑦 ′ ∈ M, 𝑦 ′ ≻ 𝑚 𝑦 0 ∧ 𝑜 𝑦 ′ < 𝑜 ′ 𝑦 ′ . Alors, en appliquant le raisonnement du cas A.1 à 𝑦 ′ , on obtient un 𝑧 ∈ M tel que 𝑧 ≻ 𝑚 𝑦 ′ et 𝑜 𝑧 > 𝑜 ′′ 𝑧 . Par transitivité de ≻ 𝑚 , 𝑧 ≻ 𝑚 𝑦 0 , ce qui prouve 𝑃 2 (𝑦 0 ). (B.2) Sinon, on doit avoir : ∀𝑦 ′ ∈ M, 𝑦 ′ ≻ 𝑚 𝑦 0 ⇒ 𝑜 𝑦 ′ ≥ 𝑜 ′ 𝑦 ′ (𝐻 5 ). Avec 𝐻 1 et 𝐻 4 , on a 𝑜 ′ 𝑦 0 < 𝑜 ′′ 𝑦 0 . Appliquer 𝐹 2 donne une modalité 𝑧 telle que 𝑧 ≻ 𝑦 0 et 𝑜 ′ 𝑧 > 𝑜 ′′ 𝑧 . Etant donné 𝐻 5 on a 𝑜 𝑧 ≥ 𝑜 ′ 𝑧 et donc 𝑜 𝑧 > 𝑜 ′′ 𝑧 , ce qui prouve 𝑃 2 (𝑦 0 ). Nous avons ainsi prouvé 𝑃 2 (𝑦 0 ) dans tous les cas et pour tout 𝑦 0 . □

	Ceci conclut la preuve du théorème 1. ≻ 𝑚 𝑒 est un ordre
	partiel strict.

  la relation minimale induite ≻ 𝑚 𝑒 . Pour l'illustrer, considérons deux actions 𝑜 et 𝑜 ′ telles que 𝑜 𝑤 > 𝑜 ′ 𝑤 , 𝑜 𝑥 < 𝑜 ′ 𝑥 , 𝑜 𝑦 > 𝑜 ′ 𝑦 et 𝑜 𝑧 < 𝑜 ′ 𝑧 . Appliquons maintenant l'équation 9 : -Pour obtenir 𝑜 ≻ 𝑚 𝑒 𝑜 ′ : on observe 𝑜 𝑤 > 𝑜 ′ 𝑤 donc ∃𝑥 ∈ M, (𝑜 𝑥 > 𝑜 ′ 𝑥 ) est vérifiée. De plus on vérifie ∀𝑦 ∈ M, 𝑜 𝑦 ≥ 𝑜 ′ 𝑦 pour les modalités 𝑤 et 𝑦. Quant aux modalités 𝑥 et 𝑧, il existe 𝑤 et 𝑦 telles que 𝑤 ≻ 𝑚 𝑥 ∧ 𝑜 𝑤 > 𝑜 ′ 𝑤 et 𝑦 ≻ 𝑚 𝑧 ∧ 𝑜 𝑦 > 𝑜 ′ 𝑦 . Ainsi 𝑥 et 𝑧 vérifient ∀𝑦 ∈ M, (∃𝑥 ′ ∈ M, 𝑥 ′ ≻ 𝑚 𝑦 ∧ 𝑜 𝑥 ′ > 𝑜 ′ 𝑥 ′ ). Toutes les conditions sont vérifiées, on en déduit 𝑜 ≻ 𝑒 𝑜 ′ . -Pour obtenir 𝑜 ′ ≻ 𝑚 𝑒 𝑜, on applique exactement le même raisonnement mais en partant de la modalité 𝑥 au lieu de la modalité 𝑤. La relation induite ≻ 𝑚