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Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct
and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics
brought to light the interest of using domain decomposition. Nonlinearity is also one of the problems specificities where the need
for an efficient solver is high. This paper provides a comparison between two techniques of domain decomposition for solving 3D
nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both
methods.

Index Terms—Domain decomposition, FETI method, Nonlinear magnetostatic, Parallel computing.

I. INTRODUCTION

DOMAIN decomposition is a strategic approach that aims
to decompose complex problems into smaller subdo-

mains. This decomposition enables an independent processing
of subdomains, leveraging parallelization for efficient compu-
tations. Each subdomain is equipped with its own local system,
employing tailored solving methods that cater to specific
properties like size and matrix characteristics.

Although domain decomposition is a popular approach in
various fields such as fluid dynamics and structural mechanics,
it is not commonly used in electromagnetic simulations. In
electromagnetic simulations, the fields are interconnected and
can propagate throughout the entire computational domain.
This makes it challenging to decompose the domain into
smaller subdomains without introducing errors at the bound-
aries. A highly refined mesh is usualy needed in electromag-
netic simulation which add an other specification to be taken
into account when using the domain decomposition.

In the context of nonlinear problems, it is often observed
that the nonlinearity is localized rather than spread across
the entire system [1]. For example, in magnetostatic simula-
tions, a significant portion of the finite element discretization
volume represents air, while regions with nonlinear materials
are confined to smaller areas. Exploiting this characteristic,
the domain decomposition method efficiently distributes the
workload associated with nonlinearity among subdomains.
Consequently, there is no need to calculate the tangent operator
at each Newton-Raphson step in linear subdomains. Instead,
local nonlinear solutions can be performed on smaller, more
manageable problems, replacing the need to solve a much
larger global problem. Moreover, this approach allows for
the execution of the complete simulation in parallel, further
enhancing efficiency.

Another valuable application of domain decomposition is
accelerating the global nonlinear solving process. By dividing
the workload after the linearization step, domain decomposition

effectively reduces computational burden, leading to faster
solutions. Over time, domain decomposition has proven to
be an extremely powerful and high-performance method for
solving large-scale problems in parallel [2].

The significance of this paper lies in its contribution of
a detailed comparison between two non-overlapping domain
decomposition techniques originally developed for nonlinear
mechanics simulations [1]. The paper presents a comprehensive
overview of the implementation of these methods and illus-
trates their practical application in a specific scenario involving
a 3D contactor with nonlinear ferromagnetic materials.

II. PROBLEM DESCRIPTION

A 3D magnetostatic problem using a scalar potential for-
mulation will be considered in the reminder of this paper [3].
Using the finite element method, for a domain Ω with a magnet
as source, ferromagnetic materials and the device surrounded
by air, the equations will be

div[µ(H)(− grad(ϕ) + T )] = 0, (1)

where ϕ is the magnetic scalar potential and T the source term.
For nonlinear materials µ is a function of the magnetic field
H = − grad(ϕ) + T , the system to be solved is written as

K(u)u = b, (2)

where
• K(u) is the finite element matrix of the magnetic scalar

potential formulation,
• u contains the values of the magnetic scalar potential at

each node of the mesh,
• b is the source vector.

The Newton-Raphson iterative method is usually considered
to solve (2). This method consists of computing the tangent
matrix DK as well as the residual ru at every iteration n and
solving successive linear systems of the form

DK(un)δun = −ru(un). (3)



The residual is given by ru(u
n) = K(un)un − b(un).

III. DOMAIN DECOMPOSITION

Domain decomposition is used to solve partial differential
equations. It is concidered as a hybrid method between robust
yet computationally expensive direct solvers and naturally
parallel but less robust iterative solvers. This approach involves
dividing a given domain, denoted as Ω, into multiple smaller
subdomains, represented as Ωi, and orchestrating the solution
process across these subdomains. Within the domain decompo-
sition framework, two primary types of methods emerge: those
with overlap, commonly referred to as Schwartz methods, and
those without overlap, recognized as Schur methods.

For the purpose of this study, our focus centers specifically
on non-overlapping domain decomposition methods. While
overlapping methods use nodes beyond the interface between
subdomains (called ghost nodes), non-overlapping methods
methods are characterized by the absence of shared surfaces (in
the context of two-dimensional systems) or shared volumes (in
the context of three-dimensional systems) connecting neighbor-
ing subdomains [4]. The selection of non-overlapping methods
was motivated by the parallel computing capabilities that it
offers. The absence of shared sections is more intuitive for
having independent subdomains that can be treated separately.
Overlapping methods need synchronization on the ghost nodes
which means more communication to ensure the solution
continuity.

A. FETI : Finite Element Tearing and Inteconnecting

This method was introduced by Farhat and Roux in 1991
[5]. The domain is decomposed into subdomains and each
subdomain is processed independently on a processor. The
subdomain problems are usually solved by a direct solver,
while an iterative method enables to solve a global problem
condensed on the interface between subdomains. With the use
of an appropriate preconditionner (the Dirichlet or the lumped
preconditioner), it has been shown that the FETI method is
optimal for a scalar diffusion problem [2]. For this article only
the case with a conforming mesh is considered.

The method used for our magnetostatic problem guarantees
the continuity of both normal and tangent components of the
magnetic field.

If the domain Ω is decomposed into Nsd subdomains, on a
subdomain s, a Poisson type problem has to be solved

(4)Ksus = bs +Bt
sλ,

where Ks, us, and bs are respectively matrix, solution and
right-hand-side relative to subdomain s, Bs is the signed
Boolean matrix that extract from the vector us its signed
restriction to the subdomain interface shared with its neighbors
(opposite signs between two neighboring subdomains) and
λ is the Lagrange multiplier vector required to enforce the
continuity conditions (5) for all couples of neighbors as,

(5)
Nsd∑
s=1

Bsus = 0.

Floating subdomains need also to be defined. They are sub-
domains which do not intersect the Dirichlet boundary: the
pseudo inverse matrix K+ is then used instead of the inverse
K−1. The bases of the kernel of each matrix Ks are con-
catenated in the rigid body mode matrix R [5]. For a scalar
potential problem, the kernel of Ks is at most of dimension
1. Ri is the restriction of R on the interface. Combining the
two previous equations with an orthogonality condition [5]
gives the problem condensed on the global interface between
subdomains that can be written as

(6)
(

F i Ri

(Ri)t 0

)(
λ
α

)
=

−
Nsd∑
s=1

BsK
+
s bs

Rtb

 ,

where α is a vector of size of the number of floating subdo-
mains and F i the global matrix of the problem condensed on
the interface

(7)F i =

Nsd∑
s=1

BsK
+
s Bt

s.

The interface problem is solved using the preconditioned
conjugate projected gradient (PCPG) algorithm [1].

Algorithm 1 PCPG

Require: λ0 = Ri(RitRi)−1Rtf, rk = (
∑s=N

s=1 BsK
+
sfs)−

F iλ0

while rtPr ≤ tol do
wk−1 ← [I −Ri(RitRi)−1Rit]rk−1 ▷ Projecting
zk−1 ← Pwk−1 ▷ Preconditioning
yk−1 ← [I −Ri(RitRi)−1Rit]zk−1 ▷ Projecting
γk ← yk−1wk−1/yk−2wk−2 ▷ γ1 ← 0
sk ← yk−1 + γksk−1 ▷ s1 ← 0
βk ← yk−1twk−1/sk

t

F isk

λk ← λk−1 + βksk

rk ← rk−1 − βkF isk

k ← k + 1
end while

At each iteration, one local solve by subdomain is executed.
The local matrix is factorized and stored once and used to
compute the new vector. In a multiprocessors implementation,
these local solutions are fully independent and can be executed
in parallel. Only one global communication to compute the
global reduction sum is needed.

After computing λ, α can be evaluated by

α = ((Ri)tRi)−1(Ri)t(−F iλ+

Nsd∑
i=1

aj∑
j=1

(BK+
i fi −BK+

j fj)).

(8)
Two well-known preconditioners can be considered for the

FETI method: the Dirichlet preconditioner and the lumped
preconditioner. The Dirichlet preconditioner is given by

D−1
I =

s=Nj∑
s=1

Bs

[
0 0

0 Ks
bb −KsT

ib Ks−1

ii Ks
ib

]
BsT (9)

with Bs the jump operator from global interface to local
interface.



Fig. 1. Linear magnet test case decomposed into 4 subdomains.

The lumped preconditioner simplifies the construction of
the preconditioner by aggregating off-diagonal terms of the
stiffness matrix onto the diagonal through a lumping process.
This results in a simplified and localized preconditioner that
can be efficiently inverted. However, it may be less effective
compared to more sophisticated preconditioning techniques in
scenarios with highly varying subdomain sizes or heteroge-
neous materials.

The results on the linear test cases illustrated in Fig. 1
(linear magnet with residual induction Br = 0.85 T on
axe x, decomposed into 4 subdomains) showed that if the
scenario where, 1/ one subdomain is solved by one processor,
2/ the size of the subdomain corresponds to the MUMPS
[7] and PETSc [8] recommendations and 3/ the workload is
well balanced, then the scalability results showed a linear
performance upgrade.

The results in terms of speedup for 105k nodes are presented
in Table I and Fig. 2.

TABLE I
RESULTS COMPARISON FOR THE MAGNET TEST CASE

Item Standard DDM
Time in sec 7.61 2.24
Speedup / 3.4

4 6 8 10 12

4

6

8

Number of processors

Sp
ee

du
p

Fig. 2. Scalability plot for the linear case.

B. Newton-Krylov-Schur

The Newton-Krylov-Schur (NKS) method can be imple-
mented in a straightforward manner. During each Newton-
Raphson iteration, the FETI method is employed to solve the
tangent linear system (3). Similar to FETI, the Schur com-
plement within the NKS framework characterizes the interface

problem. Importantly, the NKS methods do not require the
assembly of the global problem, and the computation of the
residual is partitioned across the subdomains [9] [1].

By adopting this approach, the NKS methods effectively
utilize the FETI method to solve the tangent linear system
at each Newton-Raphson iteration. This circumvents the need
for assembling the global problem, resulting in improved com-
putational efficiency. Furthermore, by partitioning the residual
computation across the subdomains, parallel processing can be
leveraged to enhance performance and reduce computational
time. The NKS method algorithm is summarized in [2]

Algorithm 2 NKS with FETI algorithm
Require: p = 1;u1 = 0 ▷ Solve Global NL problems

while δu ≤ tolNR do
Solve DK(up)δpu = −rpu(up) with PCPG
up+1 ← up + δpu
p← p+ 1

end while

C. Schur-Newton-Krylov

The Schur-Newton-Krylov (SNK) methods were developed
to address a crucial observation: the existing NKS methods
do not fully leverage the potential of domain decomposition
when solving nonlinear problems. While NKS methods pri-
marily utilize domain decomposition for solving tangent linear
systems, SNK methods take a step further. In SNK methods,
the global nonlinear problem undergoes decomposition into
smaller, localized nonlinear problems, accompanied by the
imposition of continuity conditions on the interface unknowns
across subdomains [1]. This decomposition process gives the
following linearized condensed system :

(10)
(
DF i Ri

(Ri)t 0

)(
δλ
δα

)
=

(
−rλ
0

)
.

Problem (10), as (7), is solved using the PCPG as in Algorithm
1. The SNK method is summarized in Algorithm [3].

IV. APPLICATION

Both NKS and SNK algorithms have been implemented
in Altair FluxTM software [10]. They have been tested and
compared to the standard Newton-Raphson method commonly
used for this type of simulations. The linear solver used in
Newton Raphson by default is a direct solver (MUMPS). The
test case is illustrated in Fig. 3 and represents a 3D magnetic
contactor. It was decomposed into 4 subdomains: 1 air (linear),
2 upper pallet (nonlinear), 3 magnet (linear) and 4 E shape
(nonlinear). The size of the test case is 2432 nodes.

TABLE II
RESULTS COMPARISON FOR THE CONTACTOR TEST CASE

Item NR NKS SNK
Max local NL iterations / / 5
Global NL iterations 6 6 7
Speedup 1 1.3 0.4



Algorithm 3 SNK with FETI algorithm
Require: n = 0, λ0 = Ri(RitRi)−1Rtb
P = I −Ri(RitRi)−1Rit

Ks(u
n
s ) = bs(u

n
s )−Bt

sλ
n
s

while δu ≤ tolNR do
Solve DKs(u

np

s )δpu = bps(u
np

s )−Bt
sλ

n
s −Ks(u

np

s )
unp+1

s ← unp

s + δpu
p← p+ 1

end while
rnλ ←

∑Nsd

s=1 Bsu
n
s ▷ Compute residual

while ∥δλn∥/∥λn∥≤ tolg do
Solve FETI interface problem with PCPG
λn+1 ← λn + Pδλn

αn+1 ← αn + ((Ri)tRi)−1(Ri)t(−DF i(λn)δλn − rnλ)
un+1
s ← un

s −DK−1
s Bt

sPδλn − (Ri)tδαn
s

n← n+ 1
Ks(u

n
s ) = bs(u

n
s )−Bt

sλ
n
s

p = 1;un1

s =uˆn˙s
while δu ≤ tolNR do

Solve DKs(u
np

s )δpu = bps(u
np

s )−Bt
sλ

n
s −Ks(u

np

s )
unp+1

s ← unp

s + δpu
p← p+ 1

end while
rnλ ←

∑Nsd

s=1 Bsu
n
s ▷ Compute residual

end while

Fig. 3. Contactor test case with nonlinear materials.

Table [II] sums up the results. An adaptive convergence
criteria has been used to obtain less PCPG iterations with a
Dirichlet preconditioner [2]. The problem was solved using 4
cores. For domain decomposition this means that we solve one
subdomain per processor which is the optimal situation when
workload balancing is good. The max local nonlinear iterations
number is the upper limit of local nonlinear solving of the two
nonlinear subdomains. The speedup is the fraction between
global solving time of the reference standard Newton Raphson
method and new domain decomposition methods. This include
assembly and solving times. The tolerance on the relative error
is of 10−5.

V. ANALYSIS

The test case reveals that the SNK method exhibits a high
number of local nonlinear iterations, resulting in a significant

convergence delay within the global loop. Consequently, the
performance of this method is adversely affected, leading to
noticeable slowdown. In contrast, the NKS method demon-
strates favorable performance when compared to the standard
Newton Raphson method.

Furthermore, employing the domain decomposition method
as a linear solver yields promising results, with a 30% speedup
observed. This outcome aligns with previous findings regarding
the linear case, further validating the effectiveness of the
domain decomposition approach. It should be noted that the
workload between subdomains in this specific nonlinear test
case was not well balanced, as subdomain “air” concentrates
a large portion of the global mesh. Partitioning large physic
regions will certainly improve balancing to obtain comparable
performances as in linear case.

VI. CONCLUSION

Domain decomposition offers a compelling alternative to
standard solvers, effectively accelerating simulations and im-
proving overall performances. In the context of nonlinear sim-
ulations, a comparison was conducted between two methods.
The results exhibited favorable performances and a significant
speedup. Notably, the NKS method demonstrated a relative
ease of implementation, further augmenting its benefits. Con-
versely, the SNK method necessitated a large number of itera-
tions to achieve convergence, negatively impacting the overall
performance. However, it is worth considering that switching
from the FETI-1 method to FETI-Dual Primal may potentially
enhance the convergence behavior of the SNK method on this
first test case [11].
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