Domain decomposition for 3D nonlinear magnetostatic problems: Newton-Krylov-Schur vs. Schur-Newton-Krylov methods - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Magnetics Année : 2024

Domain decomposition for 3D nonlinear magnetostatic problems: Newton-Krylov-Schur vs. Schur-Newton-Krylov methods

Résumé

Domain decomposition is a strategy designed to be used on parallel machines. This strategy leads to hybrid methods between direct and iterative solvers and allows users to benefit from the advantages of both. Lately, the growing size of simulations in electromagnetics brought to light the interest of using domain decomposition. Nonlinearity is also one of the problems specificities where the need for an efficient solver is high. This paper provides a comparison between two techniques of domain decomposition for solving 3D nonlinear magnetostatic problems. A contactor test case with two nonlinear materials was used to estimate the performances of both methods.
Fichier principal
Vignette du fichier
FullPapercompuMag23.pdf (890.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04183878 , version 1 (21-08-2023)

Identifiants

Citer

Mohamed Ghenai, Ronan Perrussel, Olivier Chadebec, Frédéric Vi, Jean-Michel Guichon, et al.. Domain decomposition for 3D nonlinear magnetostatic problems: Newton-Krylov-Schur vs. Schur-Newton-Krylov methods. IEEE Transactions on Magnetics, 2024, 60 (3), ⟨10.1109/TMAG.2023.3299989⟩. ⟨hal-04183878⟩
102 Consultations
138 Téléchargements

Altmetric

Partager

More