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A hybrid lattice Boltzmann - Navier-Stokes
method on overset grids

Alexandre Suss∗, Ivan Mary†, Thomas Le Garrec‡

DAAA, ONERA, Université Paris Saclay, F-92322 Châtillon - France

Simon Marié§
Laboratoire DynFluid, F-75013 Paris - France

This paper presents an overset grid strategy in the context of a hybrid lattice Boltzmann
- Navier-Stokes method for unsteady aerodynamic and aeroacoustic applications. While the
overset grid approach is usually used to couple multiple overlapping grids with different mesh
topologies together through interpolations, it is proposed to extend this methodology by en-
abling to switch between numerical methods across the grids making up the computational
domain. Thereby, one can reach nearly optimal running conditions in terms ofmeshing strategy
and numerical properties for the simulation of high Reynolds number flows. The key feature
of this work lies in the way the information exchange is performed at the interface between
the lattice Boltzmann method (applied on Cartesian grids) and the finite-volume Navier-Stokes
method (dedicated to curvilinear meshes). All the numerical aspects of the coupling proce-
dure are thoroughly discussed and the developed strategy is assessed on unsteady test cases
representative of aerodynamic and aeroacoustic problems.

I. Introduction
Since its introduction in the 1960s, Computational Fluid Dynamics (CFD) has risen to prominence in the design

process of the aerospace industry. Over the years, one of the major difficulties of CFD has been to efficiently, accurately
and reliably predict turbulent flows. Indeed, most of the practical flows targeted by industrials involve turbulence
whose effects strongly impact drag predictions or the noise radiated by aircraft. This led to the development of the
Reynolds Averaged Navier–Stokes (RANS) formulation which remains the current workhorse of the aerospace industry
owing to its low computational cost and high robustness [1]. However, in the context of a growing demand for greener
aircraft and environment preservation, new industrial needs in aerodynamics and aeroacoustics require the prediction of
three-dimensional unsteady turbulent flows around complex and detailed geometries for which the RANS approach is
defective. As a consequence, the development of new CFD strategies that can efficiently produce high-fidelity flow
solutions such as Large Eddy Simulations (LES) or Quasi-Direct Numerical Simulation (QDNS) is an important field of
research. Three factors are instrumental in this: (1) the mesh generation process, which remains a bottleneck within the
CFD workflow, (2) the need for accurate numerical methods able to capture broadband structures as encountered in
turbulence or aeroacoustics, and (3) the intensive use of High-Performance Computing (HPC) resources and dedicated
algorithms that take advantage of distributed architectures.

Firstly, with regard to the issue of meshing, although the use of unstructured meshes is becoming increasingly
attractive owing to automated pre-processing tools, it has been shown that computation-wise, codes relying on structured
meshes still enjoy unrivalled performances [2]. However, the generation of structured meshes remains very cumbersome
and can take many months even for an expert on a configuration as complex as the HL-CRM [3]. As a means to reduce
the mesh generation effort, overset grid methods [4–7] (also referred to as “Chimera” methods [8]) have been used
for many years in the CFD community, in particular for structured grids. The underlying idea behind the overset grid
approach is to decompose a complex geometry into several elementary components which are meshed via independent
grids without alignment constraints. The computational domain is then defined by the union of the grids, the bonding of
the meshes being ensured through overlapping zones. In this way, it is possible to reach nearly optimal grid quality
(w.r.t. the physics of interest) in different regions of the computational domain. This is of great interest in the context of
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aeroacoustics where a body-fitted mesh is commonly used close to solid surfaces while a Cartesian background grid is
employed in the far-field for the propagation of acoustic waves [9]. However, it is worth noting that the overset grid
method requires communication between overlapping blocks during the calculation, usually performed by interpolation.
Hence, great care must be taken in selecting the interpolation method so as not to deteriorate the accuracy of the
numerical scheme and not to introduce any spurious phenomena. It is worth mentioning that this method has been
successfully applied on a wide range of applications over the years [5, 10, 11] and enabled aeroacoustic computations
over complex geometries [12, 13].

Secondly, and as stated above, high-fidelity flow simulations also require accurate numerical methods. Indeed, in
the context of the simulation of turbulent flows, the numerical schemes shall be able to capture the smallest vortical
structures (often of the order of a few mesh cells) and therefore should induce a very low numerical dissipation. The
numerical requirements are all the more stringent when it comes to aeroacoustics since acoustic fluctuations are orders
of magnitude weaker than aerodynamic fluctuations. Therefore, there is a growing interest in high-order methods
for the computation of unsteady turbulent flows [14, 15]. However, there still are a number of challenges that hinder
their application in an industrial context and the improvement in accuracy often comes at the expense of the overall
computational time. This illustrates the need to develop numerical methods supported by high-performance computing
considerations. On this very point, the lattice Boltzmann method (LBM) [16] has emerged as a fast and reliable
alternative to conventional CFD methods. Indeed, the LBM has already demonstrated its potential for aeroacoustic
computations owing to its low dissipation properties [17, 18]. In addition, the LBM also provides the advantage of
having a very low computational cost by mesh point [18]. Nevertheless, the LBM appears to be less suited than
classical finite-volume Navier-Stokes (NS) methods to the highly-resolved computation of vortical flows as encountered
in boundary layers [18]. Its restriction to Cartesian grids also presents two major drawbacks. On one hand, this
inevitably leads to a very large number of cells in the near-wall region and thus to a prohibitive computational cost
when it comes to wall-resolved simulations. On the other hand, this feature also implies that the body surface is usually
treated as an immersed boundary supplemented with a wall-law whose validity is still open to question for high-fidelity
simulations [19]. Consequently, finite-volume Navier-Stokes methods might outperform the LBM in near-wall flow
regions, benefiting from their great flexibility through the use of body-fitted anisotropic meshes or implicit time-stepping.
Following this idea, a hybrid lattice Boltzmann - Navier-Stokes method has recently been proposed to perform efficient
and accurate direct aerodynamic and aeroacoustic computations around complex geometries [20].

The present work aims to increase the flexibility of the hybrid lattice Boltzmann - Navier-Stokes method introduced
in [20] by extending it to the case of overset grids. The idea is to apply a finite-volume Navier-Stokes method on
structured body-fitted grids around obstacles (where high accuracy is usually required within the boundary layer) and to
use the lattice Boltzmann method elsewhere on Cartesian grids so as to efficiently propagate acoustic waves or wakes.
Two key elements have to be taken into account in the development of such a computational strategy. One is to put in
place a precise and efficient communication protocol between the different grids and the other is to ensure a smooth
transition between the lattice Boltzmann and finite-volume Navier-Stokes methods. Both aspects will be detailed in the
present paper. The paper is organised as follows. In Section II, the numerical methods are introduced. Then, in Section
III the overset grid methodology is presented and a thorough analysis of the interpolation methods is performed. While
section IV details the extension of the hybrid lattice Boltzmann - Navier-Stokes method to overset grids, the proposed
approach is validated in Section V. Finally, the capabilities of this new computational strategy are demonstrated in the
case of the aeroacoustic study of the flow past a circular cylinder in Section VI.

II. Numerical framework
The hybrid lattice Boltzmann - Navier-Stokes overset grid methodology is developed in the framework of

ONERA’s Cassiopée/FAST CFD environment [21–23] implementing HPC dedicated solvers for unsteady fluid dynamics
applications as well as pre- and post-processing functions.

A. FastS: a multiblock structured finite-volume Navier-Stokes solver
The three-dimensional compressible Navier-Stokes (NS) equations are solved using the finite-volume method on

structured grids. Starting from the conservative form of the Navier-Stokes equations:

∂

∂t
U + ∇ · F(U) − ∇ · Fν(U) = 0, (1)
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where U = (ρ, ρui, ρE)t , F(U) and Fν(U) are the flow variable vector, the inviscid and viscous fluxes, respectively; the
cell-centred finite volume method is obtained by splitting the computational domain Ω into N non-overlapping cells
Ωi jk . The integration of equation (1) over every cell of the mesh leads to a semi-discrete form as:

d
dt

Ui jk +
1
|Ωi jk |

Ri jk(U) = 0, (2)

where Ui jk is now the mean flow variable vector evaluated at the center of Ωi jk , |Ωi jk | the volume of Ωi jk and Ri jk the
residual of the discretised convective and viscous terms.

In the present work, the convective fluxes are being approximated with a second-order accurate scheme proposed by
Mary & Sagaut [24]. It relies on a hybrid centred/decentered modification of the AUSM+(P) scheme offering a good
trade-off between robustness, accuracy, and computational cost. The viscous fluxes are discretised by a second-order
accurate centered scheme. The time integration is carried out by means of an explicit 3rd-order accurate low-storage
Runge-Kutta scheme [25] or by means of an implicit 2nd-order accurate backward scheme of Gear with local Newton
sub-iterations [26]. All these methods have been extensively used and validated for both academic and industrial
unsteady flow simulations such as a transitional separation bubble [27], airfoils in near stall configurations [24, 28] and
laminar transonic buffet [29].

One major feature of the FastS flow solver is its computational efficiency since it enables to update over one complete
time step up to 3.5 million cells per second and per core on a single Intel Broadwell processor [18, 30].

B. FastLBM: a multiblock structured lattice Boltzmann solver
Unlike standard CFD solvers, the LBM is based on the Boltzmann equation which describes fluids on a mesoscopic

scale. Therefore, the quantities of interest are no longer macroscopic quantities (such as density and momentum) but
probability distribution functions fi(x, t). These represent the probability of finding fictive particles at position x with a
given discrete velocity ξ i at time t. The mesoscopic and macroscopic scales can be linked by taking the moments of the
distribution functions, thereby recovering the variables usually used to describe fluid flows:

ρ(x, t) =
∑
i

fi(x, t) and ρu(x, t) =
∑
i

ξ i fi(x, t). (3)

In absence of a body-force term, their evolution is given by the so-called “stream and collide” algorithm :

fi(x + ξ i∆t, t + ∆t) = fi(x, t) + ∆tΩi(x, t), (4)

where Ωi(x, t) denotes the collision operator. The left-hand side of Equation (4) corresponds to the streaming step
along the directions of the lattice. In the present study, the D3Q19 lattice is used (see Fig. 1) meaning that the particle
distribution functions are only allowed to travel along 19 directions in the three dimensions of space. Needless to say,
restricting the infinite velocity space to 19 discrete velocities has an impact on the macroscopic equations recovered by
the lattice Boltzmann method. Indeed, this leads to an athermal flow hypothesis (i.e. T = T0) as well as a cubic Mach
error term in the momentum equations thereby limiting the application of standard lattice-Boltzmann methods to weakly
compressible and low Mach number flows [31].

To ensure the stability of the LBM for high Reynolds number flows, a Hybrid Recursive Regularized (HRR) collision
scheme is used [32]. In this context, the collision operator reads as:

Ωi(x, t) = f eqi (x, t) +
(
1 −

1
τ

)
f (1)i (x, t) +

1
2
Ψi(x, t). (5)

In Equation (5), f eqi is the equilibrium distribution function, f (1)i the regularised off-equilibrium one, Ψi a cubic
Mach correction terms [33] and τ is the discrete relaxation time of the collision model. Both the equilibrium and the
regularised off-equilibrium distribution functions are expanded using the Hermite formalism:

f eqi = wi

N∑
n=0

1
c2n
s n!

a(n)0 : H(n)i and f (1)i = wi

Nr∑
n=2

1
c2n
s n!

a(n)1 : H(n)i , (6)

where “:" stands for the full contraction of indices of two nth-order tensors: the Hermite coefficients a(n)0 and a(n)1 , and
the discrete Hermite polynomials H(n)i =H(n)(ξ i). For more details, the interested reader is referred to [32, 34].
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Fig. 1 D3Q19 velocity set. The cube, drawn in solid lines, has an edge length of 2∆x. For the sake of clarity,
the rest velocity ξ1 = 0 is not represented as it lies at the centre of the cube. Note that each discrete velocity is
expressed in its non-dimensional form. cs is called the lattice constant.

The very essence of the HRR collision operator lies in the way the second-order off-equilibrium Hermite coefficient
a(2)1 is computed [32]. In the HRR framework, this tensor is hybridised. It is decomposed into a linear combination of a
projected regularised part and a finite difference part, yielding:

a(2)1 = σ

[ 19∑
i=1

H(2)i
(

fi − f eqi +
ψi
2

)]
+ (1 − σ)

[
−ρτc2

s

(
∇u + (∇u)t

) ]
with 0 ≤ σ ≤ 1. (7)

The spatial derivatives of the velocity field present in Equation (7) are evaluated with second-order centred finite
differences. σ is a user-tuned parameter to control the amount of hyper-viscosity added to the model [32]. In the
remainder of this paper, the value σ = 0.995 is adopted since this specific value of σ allows to obtain stable computations
while limiting the numerical dissipation of shear and acoustic waves to a very small extent.

By construction, the streaming step of the lattice Boltzmann algorithm (4) imposes a coupling between the grid and
time steps. Usually, the time step is computed following the acoustic scaling (i.e. imposed by the speed of sound c0).
Consequently, the time step ∆t and the viscosity ν are then given by:

∆t =
cs∆x

c0
and ν = c2

0

(
τ −

1
2

)
. (8)

Based on these parameters, the LBM recovers the athermal and low-compressible Navier-Stokes dynamics with
second-order accuracy in both space and time [35].

The FastLBM lattice Boltzmann flow solver has been optimised to take advantage of HPC ressources and is shown
to be able to update up to 10 million cells per second and per core on a single Intel Broadwell processor [18].

III. Overset grid methodology
Having introduced the numerical methods used in the present work, this section focuses on the main features of the

overset grid methodology. As mentioned in the introduction, this methodology consists in computing the flow field
on several overlapping grids that communicate with each other through interpolations in the overlap region. In the
following, the algorithm used to generate the composite grid will not be further detailed as it has already been the
subject of dedicated communications [21, 36, 37]. However, the interpolation technique, which aims to ensure the
continuity of the solution across meshes is thorougly discussed. Indeed, the communication between the different grids
is a decisive element for the successful achievement of high-fidelity simulations.

A. General methodology
Without a loss in comprehension or generality, the overset grid methodology is described for two overlapping grids

in one space dimension (see Fig. 2). Two regular grids denoted byM andM ′ having the same grid spacing ∆x and
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offset by a parameter η ∈ [0, 1] (set to η = 0.5 in Fig. 2) are considerd. In most cases, the overset technique relies on a
two-way communication procedure. Consequently, the main flow variables are transferred fromM toM ′ as well as
fromM ′ toM. The communication is performed through halo exchange: each grid is extended with halo regions (or
ghost-cells) to apply the same numerical scheme throughout the computational domain. The number of ghost-cells is
therefore fixed by the stencil of the numerical method. In the present case, even though the LBM requires only one layer
of ghost-cells, all grids are extended by two layers of ghost-cells owing to the five-point stencil of the finite volume
method. The flow solution in the ghost-cells is then interpolated from the overlapping grid Before diving into the details
of the interpolation process, it is important to introduce some terminology related to the overset grid method. The mesh
points (which actually correspond to the centre of the mesh cells in Fig. 2) can be classified as [5]:

• receiver points ( and ). The flow variables at these points are interpolated from their values in the donor grid.
The receiver points correspond (in most of the cases) to the ghost points of each grid.

• interior points ( , and , ). The flow variables at these points are computed by the corresponding
numerical method (LB or FV-NS in the present case). These points are further distinguished by their role in the
communication process:

– donor points ( and ). These points are involved in the communication process: the flow variables at
these points are used to compute their interpolated value at the corresponding reciever point. The number
of donor points depends on the stencil of the considered interpolation method.

– unaffected points ( and ). These points are not involved in the communication process: the same
numerical scheme applies as if no overset grid method was used.

Overlap areaOverlap area

η∆x

∆x
M ′

receiver points donor points unaffected points

Ghost points Interior points

∆x
M

receiver pointsdonor pointsunaffected points

Ghost pointsInterior points

Fig. 2 1-D example of two overlapping grids with a 2nd-order centered interpolation scheme.

The area between the first receiver point ofM ′ and the last receiver point of theM is called the overlap area. In
this area, two flow solutions coexist, each defined on a different grid which leads to an increase in computational time
compared to a single-grid case. Therefore, the size of the area should be as limited as possible. Yet, the distinction
between donor and receiver points imposes a minimal overlap which is determined by the stencil of the interpolation
scheme. Such an approach is referred to as explicit interpolation. In contrast, it is also possible to define an implicit
interpolation where donor points can also be receiver points thereby reducing the overlapping area. However, implicit
interpolation techniques turn out to be particularly expensive and not conducive to implementation on parallel computers
[38]. Therefore, only explicit interpolations are used in the following.

B. Analysis of interpolation schemes
The issue of choosing an appropriate interpolation operator for aerodynamic and aeroacoustic applications is now

addressed. While many interpolation operators can be used such as Lagrange interpolators, Hermite interpolators,
B-splines [39, 40], the choice of one specific interpolation method is often based on a tradeoff between cost and accuracy.
In the present work, only Lagrange interpolation schemes are studied since they are simple to implement and inexpensive
(w.r.t other interpolation methods) [39]. In addition to these two points, the selection of an appropriate interpolation
scheme can also be guided by a number of other requirements.

Firstly, Chessire and Henshaw [38] recommend the use of an interpolation method that is at least of the same order
as the numerical scheme used to compute the flow field on the interior points. Thus, for aerodynamic applications, linear
interpolation (of order 2) may be sufficient. However, a study by Delfs [41] was able to show that linear interpolation
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is not sufficient to correctly propagate acoustic waves from a curvilinear grid to a Cartesian background mesh. This
suggests that high-order interpolations may be required for aeroacoustic simulations.

Secondly, the use of interpolation can also have an effect on the overall stability of the computation. Indeed, in this
context, the study of Desvigne et al. [42] is particularly interesting as it shows that non-centred interpolation schemes
can lead to numerical instabilities. It should be recalled that in a non-centred interpolation, the interpolated point does
not lie in the central interval of the interpolation stencil. Moreover, the higher the order of the non-centred interpolation,
the greater the instability. In the following, 2nd-, 3rd-, and 5th-order interpolation schemes are compared (this results
from the availability of 2nd-, 3rd-, and 5th-order schemes in the former elsA flow solver [10] for which the Cassiopee
pre- and post-processing tool was initially developed). Since the last two interpolation schemes are non-centred, it is
important to characterise their stability for the subsequent computations.

Finally, it is important to note that most interpolation techniques used in overset methods are non-conservative.
Although conservative interpolation schemes have been proposed, their implementation is very cumbersome especially
as the order of interpolation increases. Since all the flows considered here are at low Mach number and shock-free, it
has been decided to use non-conservative interpolations.

1. 1D Error analysis of the Lagrange polynomial interpolation
The interpolation procedure using Lagrange polynomials is first studied in the one-dimensional case. To this end,

Fig. 3 depicts a non-centred interpolation procedure. The interpolation stencil (denoted by S) is composed by N mesh
points {x0, ..., xN−1} such as xi = x0 + i∆x where ∆x is the uniform grid spacing. This set of N points defines N − 1
intervals where interpolations can be performed at any arbitrary point x = x0 + (d − 1 + η)∆x where d is the number of
the corresponding interpolation cell and η is the offset. Let f be a known discrete function defined on S, its interpolated
value at a receiver point x is given by the following polynomial:

f̃ (x) =
N−1∑
j=0

Sj(x) fj, (9)

where fj is the value of f at point x j and Sj(x) is the j-th interpolation coefficient. In the context of Lagrange
interpolation, the coefficients Sj(x) are constructed as polynomials of degree N − 1 with a value of 1 at xj and 0 at all
other stencil nodes. Therefore one has:

Sj(x) =
N−1∏
q=0
q,j

x − xq
xj − xq

. (10)

Following the convention introduced by Desvigne [13, 42], Lagrange interpolations are referred to as LINpd, where N
is the number of points of the interpolation stencil, and d corresponds to the cell where interpolation is performed. It
can also be shown that the order of accuracy of the LINpd interpolation method is N . As a result, Fig. 3 illustrates the
LI5p2 fifth-order non-centred Lagrange interpolation implemented within ONERA’s Cassiopee/Fast CFD environment.
The aim is now to quantify the performance of this family of interpolation methods by considering their induced global
error, amplification and phase shift.

∆x

S

η∆x

x0 x1 x2 x3 x4x

dth interpolation cell

Fig. 3 1-D example of a 5th-order interpolation stencil on the second cell, i.e N = 5 and d = 2.

The global interpolation error is first studied. Therefore, the function f to be interpolated is assumed to be a
harmonic function of wavenumber k and phase φ: fk = ei(kx+φ) where i2 = −1. The global interpolation error ε(k∆x)
is defined as:

ε(k∆x) = max
η∈[0,1[

���� fk(x) − f̃k(x)
fk(x)

���� = max
η∈[0,1[

������1 − N−1∑
j=0

Sjei(d−1+η+j)k∆x

������ . (11)

6



Fig. 4a shows the global interpolation error in the wavenumber space for the 2nd-, 3rd-, and 5th-order non-centred
Lagrange interpolation schemes. As expected, increasing the size of the interpolation stencil (and thus the interpolation
order) reduces the interpolation error. However, the interpolation error for high wavenumbers increases significantly
with the order of interpolation and can exceed 100% error for checkerboard oscillations. The source of these high error
levels will subsequently be characterised in more detail. Fig. 4b and Fig. 4c also provide a closer view to the influence
of the offset parameter η on the total global interpolation error in the wavenumber space. Logically, when η tends
towards 0 or 1, the global interpolation error tends to 0 since the point to be interpolated coincides with a mesh point
where the value of f is known exactly. In the case of the LI2p1 interpolation scheme, the result of Sherer and Scott [39],
which states that the interpolation error is maximal when the point is in the middle of the interpolation cell (η = 0.5) is
recovered. On the other hand in the case of non-centred schemes, the value of ηmax for which the error ε reaches its
maximum depends on the interpolation cell d. Indeed, if d 6 bN/2c, then ηmax . 0.5 (as shown in Fig. 4c) and if
d > dN/2e, then ηmax & 0.5.
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Fig. 4 Global interpolation error ε in the wavenumber space for the 2nd-, 3rd-, and 5th-order non-centred
Lagrange interpolation schemes. (b) and (c) show the dependence of ε on the location of the point to be
interpolated in the interpolation cell (η parameter).

In order to get more insight into the interpolation error ε in terms of dissipation and dispersion, the amplification
and phase shift of non-centred Lagrange interpolation schemes are now quantified. The interpolation amplification α
and phase shift φ are defined as :

α(k∆x) = max
η∈[0,1[

���� f̃k(x)
fk(x)

���� and φ(k∆x) = max
η∈[0,1[

arg
(

f̃k(x)
fk(x)

)
. (12)

Fig. 5a shows the amplification factor α in the wavenumber space for the 2nd-, 3rd-, and 5th-order Lagrange
non-centred interpolation schemes. Surprisingly, regardless of the wavenumbers, the amplification is equal to 1, which
means that the interpolation schemes do not induce any spurious amplification of the monochromatic waves. This
also clarifies the source of the large error levels observed for the high wave numbers in Fig. 4a . Indeed, since no
amplification is observed, the phase shift of the waves is expected to be the main cause of error in this case. Of
course, if the decentering is increased (for instance with a LI5p1 interpolation), α > 1 for high-wavenumbers which
compromises its practical use as it may lead to severe instabilities. Fig. 5b depicts the phase error in the wavenumber
space. Regardless of the interpolation scheme, the phase error is very small for low wavenumbers but it increases rapidly
for k∆x ≥ π/4. It should be noted that even though the phase error decreases when increasing the interpolation stencil,
non-centred Lagrange interpolations have a greater phase error than the linear centered case LIp2. Hence, this explains
the fact that ε > 1 for high wavenumbers for the LI3p1 and LI5p2 interpolation schemes.

2. 2D Error analysis of the Lagrange polynomial interpolation
The interpolation procedure is now investiaged in a two-dimensional case. Indeed, although the subsequent

computations are carried out on 3D domains, the mesh is set to be uniform in the transverse direction so that only 2D
interpolations are used.
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Fig. 5 Interpolation error in terms of (a) amplification α and (b) phase-shif φ for the 2nd-, 3rd-, and 5th-order
non-centred Lagrange interpolation schemes.

Before diving into the analysis, the implemention of two-dimensionnal interpolations should be specified. The
overset grid method introduced in this work is meant to be able to handle non-coincident curvilinear and Cartesian
grids. Thus, the shape of the interpolation medium is likely to vary from one grid to another and even from one point to
another. In order to overcome this difficulty, the choice was made in ONERA’s Cassiopeia/Fast environment to use
a tensorisation of 1D interpolations. Thus, regardless of the grid topology, the interpolation stencil is mapped in a
reference regular Cartesian space [40], where 1D interpolation can be applied by directions (see Fig. 6).

Since in practice all interpolations are made in the Cartesian reference domain, the theoretical framework for the
analysis of 2D interpolations assumes a Cartesian domain (ξ, ζ) as shown on the right side of Fig. 6. It has recently
been shown that the approximation of the mapping can have an influence on the interpolation error [43]. However, for
all the computations discussed below the exact mapping will be known so that no additioanl error can arise.

The interpolation of the function f at point x is done in two steps. The first step is to horizontally interpolate the
function f for the different ζ ordinates along the vertical line through x. This leads to N intermediate interpolated points
( ). Secondly, the interpolation is carried out vertically along the line made up of the intermediate interpolated points.
Therefore, the interpolated value of f at point x obtained by the tensor product of two 1D interpolations is given by:

f̃ (x) =
N−1∑
i=0

N−1∑
j=0

Si(x)Sj(x) fi j, (13)

where fi j is the value of f at point (ξ i, ζ j) and Si(x), Sj(x) are the interpolation coefficients. In the context of Lagrange
interpolation, the coefficients Sj(x) (resp. Si(x)) are constructed as polynomials of degree N − 1 with a value of 1 at xj
(resp. xi) and 0 at all other stencil nodes. Therefore one has:

Si j(x) = Si(x)Sj(x) =
N−1∏
q=0
q,j

x − ξq

ξ j − ξq

N−1∏
q=0
q,j

x − ζq

ζ j − ζq
. (14)

Following the convention introduced by Desvigne [13, 42], 2D Lagrange interpolations are referred to as LINpd ⊗
LINpd, where N is the size of the interpolation stencil, and d is the number of the cell where interpolation is performed.
As is the 1D case, the performance of this family of interpolation methods is now quantified by considering their global
interpolation error, amplification and phase shift. To this end, the function f to be interpolated is assumed to be a
harmonic function of wavenumbers kξ, kζ and phase φ: fk = ei(kξ ξkζ ζ+φ) where i2 = −1.

Fig. 7a shows the iso-contours of the global interpolation error in the wavenumber space for the 2nd-, 3rd-, and
5th-order non-centred Lagrange interpolation schemes. As already observed in the one-dimensional case, increasing
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ζ

ξ

x

x

Mapping
(r, θ) → (ξ, ζ)

Inverse mapping
(r, θ) ← (ξ, ζ)

Fig. 6 2-D interpolation at a receiver point x by tensor product of 1-Dfifth-order interpolations. The curvilinear
grid is mapped onto a Cartesian regular grid with unit spacing. First, 5 preliminary 1-D interpolations are
performed at each constant value of ζ . A final 1-D interpolation is then performed along the green arrow.

the size of the interpolation stencil (and thus the interpolation order) reduces the interpolation error, especially for
low wavenumbers. However, it can now be seen that all the interpolation schemes exhibit a region where the error is
greater than 100%. Moreover, the higher the order of interpolation, the larger this area is. It can also be noted that
the centred interpolator LI2p1 ⊗ LI2p1 seems to have better isotropy than its non-centred counterparts. The global
interpolation error is now broken down into amplification and phase error. Fig. 7b shows that the 2D interpolations
based on the LI2p1 and LI3p1 methods preserve the non-amplification of the waves. Conversely, for the most extended
stencil (LI5p2), a wide area where α > 1 is observed although not present in a mono-dimensional case. Thus, all waves
discretised by less than 4 points per wavelength are unstable for this type of interpolation. It is therefore advisable to use
this interpolation in well-resolved areas or else to use an amplification control [42] or to switch to a centred interpolator.
Regarding the phase shift, Fig. 7c highlights the same conclusions as in 1D. However, it can be noted that the phase
error is enhanced for waves propagating at 45◦. Finally, it can be concluded from this short analysis that while for the
LI2p1 and LI3p1 interpolation methods the interpolation error manifests itself in the form of a phase shift, in the case of
the L5p2 scheme both a phase shift and a wave amplification are responsible for the interpolation error.

C. Validation of the overset grids methodology: advection of a vortex
The overset grid methodology is first validated for full Navier-Stokes and lattice Boltzmann computations. The main

purpose of this section is to highlight the differences in behaviour between these two methods in the presence of overset
grids. This will allow a better understanding of the results in the context of the hybrid lattice Boltzmann - Navier-Stokes
method. To this end, the case of a barotropic vortex [44] convected in a freestream is investigated. This test case is
performed in the inviscid limit so as to directly investigate the numerical dissipation and the stability of the overset
methodology. The initial flow field is given by:

ρ(x, y)|t=0 = ρ0 exp
[
−
ε2

2c2
s

exp
(
−
(x − xc)2 + (y − yc)

2

R2
c

)]
,

ux(x, y)|t=0 = Mc0 − ε

(
y − yc

Rc

)
exp

[
−
(x − xc)2 + (y − yc)

2

2R2
c

]
,

uy(x, y)
��
t=0 = ε

(
x − xc

Rc

)
exp

[
−
(x − xc)2 + (y − yc)

2

2R2
c

]
,

(15)

where ρ0 = 1.1765 kg.m−3 is the free-stream density, c0 is the speed of sound, ε = 0.07c0 is the vortex strength and
Rc = 0.1 m is the characteristic radius of the vortex. The vortex is initially located at (xc, yc) = (2.5, 2.5), and is
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Fig. 7 Interpolation error ε in the two-dimensional wavenumber space obtained through the tensorisation of
the 1D 2nd-, 3rd-, and 5th-order non-centred Lagrange interpolation schemes. (a) Global interpolation error ε ,
(b) amplification α and (c) phase-shift φ.

convected along the x direction at a Mach number of 0.1.
The computational domain consists of a pseudo-2D periodic box of size [5L, 5L, 10∆x] with L being the reference

length equal to 1 m. Two grid configurations are compared (see Fig. 8), with various grid resolutions. The first grid is a
single block setup, consisting of a single Cartesian grid with a uniform cell size ∆x = L/nx where nx is the number
of grid points per unit length. The second grid configuration relies on the overset grid method: a Cartesian block is
superimposed to a background Cartesian grid. The overset block is centred on the middle domain, and shifted by half a
grid step (i.e. η = 0.5 according to the notations introduced in Fig. 3). The cell size is identical in both grids.
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Fig. 8 Computational domains used for the validation of the overset grid methodology. The red grid is offset
by one half grid spacing in the x and y directions w.r.t. the background grid. One point out of ten is plotted.

1. Validation in the case of a full Navier-Stokes computation
The numerical behaviour of the overset grid methodology is investigated in the framework of the finite-volume

Navier-Stokes solver described in Section II.A. In this case, the interpolations between the different grids is performed
at each time-step on the macroscopic flow variables, i.e. the 5 components of the state vector W = (ρ, ui,T)t . Two
fundamental aspects of the method are studied: on the one hand, its aptitude to maintain vortical structures over long
periods of time and, on the other hand, its capacity not to emit parasitic noise when the vortex passes through the
overlapping zone between the two grids.

Fig. 9a displays the non-dimensional density profiles after 5 flow-through times (FTT). Note that the “Reference”
solution refers to the solution obtained on the single-block uniform grid (Fig. 8a). In addition, the extent of the overset
grid is shown by the grey-dashed vertical lines. First of all, it should be noted that, regardless of the interpolation order,
no discontinuity in the solution is observed in the vicinity of the interface between the two grids. Focusing on the vortex
depression, differences between the interpolation methods are nevertheless noticeable. Indeed, the LIp2 interpolation
method (i.e. a linear interpolation) induces a slight numerical dissipation of the solution. However, by increasing
the order of the interpolation (order 3 or higher), the phenomenon of numerical diffusion disappears and the solution
obtained using the overset grid method is perfectly superimposed to the one obtained on the single-block uniform grid.
With regard to the stability of the method, the simulation was continued up to 20 FTT and no spurious oscillation or
amplification could be observed. This is mainly due to the fact that the vortex is finely resolved in this case.

In order to get more insight into the effect of the overset grid methodology on the accuracy of the computation, the
simulated density field ρ is compared to its theoretical counterpart ρth (i.e. simple convection of the vortex). This is
done by computing the L2 error metric over the whole computational domain:

L2(ρ) =

√
1

nxnynz

∑
x,y,z |ρ(x, y, z) − ρth(x, y, z)|∑

x,y,z ρth(x, y, z)
(16)

Fig. 9b shows the evolution of the L2 error metric as a function of the grid resolution nx = L/∆x for the two grid
configurations (“Match” refers to the single-block configuration) and various interpolation orders. By comparing the
error curve of the reference computations and the one performed with the LI2p1 interpolation scheme, the remark of
Chessire and Henshaw [38] makes sense: in the case of the LIp2 interpolation scheme (of lower formal order than the
numerical method), it is the interpolation error that drives the convergence. By switching to a third-order interpolation
(LI3p1) method or a fifth-order interpolation (LI5p2) method this problem is solved and the order of convergence of the
scheme is recovered. Moreover, for a given grid resolution, the error metrics are almost identical for the single-block
grid and the third- and fifth-order overset method, which indicates that the overset grid method does not introduce
significant additional numerical errors.

Finally, in order to examine the emission of spurious acoustic waves, Fig. 9c presents instantaneous snapshots of the
fluctuating pressure ∆p = p− pre f when the vortex passes through the overlapping interface between the grids (indicated
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Fig. 9 Advection of a vortex on overset grids in the case of a full finite-volume Navier-Stokes computation. (a)
Non-dimensional density profiles after five flow-through times, (b) Convergence rate of the overset method, and
(c) Spurious acoustic waves generated by the space-interpolation method.

by the grey-dashed lines). In order not to introduce any other source of noise, characteristic boundary conditions [45]
have been imposed on the edges of the computational domain. The use of second-order Lagrange interpolations leads to
the generation of spurious noise. Note that for Fig. 9c, iso-contours of the fluctuating pressure ∆p are within the range
±1 Pa which represents less than 1% of the vortex depression. It can be seen, in accordance with the theoretical analysis
proposed in Section III.B, that increasing the order of interpolation leads to levels of spurious noise of less than ± 1 Pa.
This also validates the ability of non-centred interpolation schemes to perform aeroacoustic simulations (provided they
are applied in sufficiently resolved areas).

2. Validation in the case of a full LBM computation
The same analysis as above is now carried out in the case where the overset grid methodology is applied to the

lattice Boltzmann solver introduced in Section II.B. It is important to note that validating the overset grid approach
with fixed meshes is rather original since in the LBM literature the overset grid method is always applied in the case
of rotating grids [6, 46–48]. A major difference compared to the Navier-Stokes case arises in the quantities being
transferred between the two grids. Indeed, the LBM is based on the evolution of distribution functions. Thus, the most
direct approach consists in interpolating, at each iteration, the 19 distribution functions (in 3D) from one grid to another.
However, this strategy is only possible if the grids are fixed. In the case of relatively moving grids, it is the moments
of the distribution functions that must necessarily be interpolated, since only these have physical meaning and tensor
properties [6]. More recently, some authors have proposed to combine these two approaches via a so-called “direct
coupling” method [47]. In the present case, which focuses on fixed grids, the two interpolation methods (on distribution
functions and on their moments) have been compared and led to the same results. Thus, in this Section, only the case of
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Fig. 10 Advection of a vortex on overset grids in the case of a full lattice Boltzmann computation. (a) Non-
dimensional density profiles after five flow-through times, (b) Convergence rate of the overset method, and (c)
Spurious acoustic waves generated by the space-interpolation method.

the direct interpolation of distribution functions will be discussed.

Fig. 10a displays the non-dimensional density profiles after 5 flow-through times (FTT). Just as for the Navier-Stokes
case, no discontinuity in the density profile is observed in the vicinity of the interface between the two grids. However,
notable discrepancies can be seen in the numerical dissipation induced by the overset grid method. Indeed, with
the linear interpolation method (LIp2) the vortex core is strongly dissipated and to a much greater extent than in
the case of the finite-volume Navier-Stokes method. This phenomenon has already been observed in the case of
interpolation-supplemented lattice Boltzmann schemes [49]. Theoretical developments in [49] have shown that a linear
interpolation leads to the emergence of a spurious viscous term in the momentum equations solved by the LBM that
accounts for this high level of numerical dissipation. Yet, by increasing the order of the interpolation (order 3 or higher),
the phenomenon of numerical diffusion disappears and the solution obtained using the overset grid method is perfectly
superimposed to the one obtained on the single-block uniform grid. Similarly to the NS case, the simulation was
continued up to 20 FTT and no spurious oscillation or amplification could be observed. This further proves the stability
of the overset grid method with the HRR collision operator [48].

Fig. 10b shows the evolution of the L2 density error metric as a function of the grid resolution for the lattice
Boltzmann overset method. Surprisingly, one can notice that, even if the order of interpolation of the LI2p1 method
coincides with the formal order of the LBM (second-order in space and time), the observed convergence is only of
1st -order. This behaviour can again be explained by the theoretical study of He [49]. Indeed, the spurious viscosity
term arising in the macroscopic LBM equations is such that ν ∝ ∆x under acoustic scaling (see Eq. (8)). Logically, by
increasing the order of interpolation (and thus removing the spurious viscosity term), the second-order of convergence of
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the LBM is recovered. Moreover, for the LI3p1 and LI5p2 interpolation schemes, the error metrics are almost identical
for the single-block grid and the overset method, which indicates that the overset grid method does not introduce
significant additional numerical errors.

Finally, the emission of spurious acoustic waves is investigated. Fig. 10c shows instantaneous snapshots of the
fluctuating pressure ∆p = p − pre f when the vortex passes through the overlapping interface between the grids at the
same time-step as for the NS case. For the present acoustic computations, absorbing layers [50] have been implemented
at the outer boundaries of the computational domain. Again, the second-order Lagrange interpolations lead to the
generation of spurious noise. The behaviour of spurious acoustic waves with respect to the increasing interpolation
order is slightly different than in the NS case. Indeed, while at the fifth order no spurious waves are visible in the range
of ± 1 Pa, very slight parasitic phenomena remain when using a third-order interpolation. This can be explained by the
low dissipation of the LBM, which therefore tends to be more sensitive to the precision of the interpolator. All in all,
this further validates the ability to perform aeroacoustic simulations in a HRR lattice Boltzmann framework with the
overset grid methodology.

IV. Extension to the hybrid lattice Boltzmann - Navier-Stokes method
Having introduced and validated the overset grid methodology in the context of segregated lattice Boltzmann

and Navier-Stokes solvers, this section details the extension of the overset approach to the hybrid lattice Boltzmann -
Navier-Stokes method. Indeed, the aim of the present work is to enable the seamless switch between numerical methods
across the grids making up the computational domain. In the following, the key components of the hybrid lattice
Boltzmann - Navier-Stokes method introduced in [20] are recalled and adapted to an overset framework.

A. General methodology
To illustrate the basic idea of the hybrid lattice Boltzmann - Navier-Stokes method, a simplified non-matching 1-D

case represented on Fig. 11 is studied. The computational domain is decomposed into two sub-domains such that the
finite volume method is applied on ΩNS and the lattice Boltzmann method is applied on ΩLBM. The coupling procedure
relies on a two-way communication procedure. Consequently, the flow solution is transferred from ΩNS to ΩLBM ( )
as well as from ΩLBM to ΩNS ( ). As proposed in [20], the communication is performed through halo exchange: each
grid is extended with halo regions (or ghost-cells) where the flow solution is imposed by the facing numerical method.
To be consistent with the finite volume scheme presented in Section II.A (which is based on a five-point stencil) two
layers of ghost cells are added to each sub-zone making up the computational domain.

Overlap area

η∆x

∆x
ΩLBM

receiver points donor points unaffected points

Ghost points Interior points

∆x

ΩNS

receiver pointsdonor pointsunaffected points

Ghost pointsInterior points

m(n) =
∑

i ξ i fifi = f eqi (W) + f (1)i (W,∇W)

Fig. 11 1-D representation of a LB-NS coupling interface. The computational domain is decomposed into a
finite-volume Navier-Stokes sub-domain and a lattice Boltzmann sub-domain.

The hybrid lattice Boltzmann - Navier-Stokes method can be broken down into 3 main components:
• LBM to NS-FV transfer ( ). The information transfer from the LBM domain to the NS domain consists in
imposing the flow state vector W = (ρ, ui, T)t at the NS ghost points ( ). To this end, the value of the flow
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state vector W is computed at the lattice Boltzmann donor points ( ) and then interpolated onto the recieving
grid. Using Equation (3), the density and velocity components of W are directly obtained by taking the discrete
moments of the distribution functions. As discussed in [20], a rescaling step has to be performed before the
exchange since the lattice Boltzmann and Navier-Stokes solvers are implemented in different systems of units.
In addition, special handling must be made on the temperature. Indeed, the D3Q19 lattice employed by the LB
solver only solves an athermal version of the Navier-Stokes equations and thus imposes a constant temperature
T = T0. As the enforcement of a uniform temperature does not allow for stable and accurate calculations, a
nearly-isentropic temperature reconstruction has been proposed as [20]:

T( , t) = T0 + T ′ =
ρ̃′( , t)(c2

0 − RT0)

(ρ0 + ρ̃′( , t))R
, (17)

where ρ0 is the reference density, ρ̃′( , t) is the density fluctuation obtained through the interpolation of the LB
density field, c0 is the speed of sound and R is the gas contant.

• NS-FV to LBM transfer ( ). The information transfer from the NS domain to the LBM domain is at the heart
of the coupling procedure. Starting from the flow state vector W defined at the donor cells ( ) of the FV solver,
the 19 distribution functions of the D3Q19 LBM have to be imposed at the lattice Boltzmann ghost points ( ). In
order to alleviate this one-to-many problem, it is proposed to split the distribution functions into an equilibrium
and an off-equilibrium part. While the equilibrium part can be directly computed thanks to its analytical formula
[34], the off-equilibrium part is determined through a Chapman-Enskog expansion (see [20] for the detailed
derivation). As a result, the off-equilibrium is shown to depend on flow state vector W and on its gradients.
Therefore, the the 19 distribution functions in the ghost points of the LB solver are computed as:

fi( , t) = f eqi (W̃( , t)) + f (1)i (W̃( , t), ∇̃W( , t)). (18)

where W̃( , t) (resp. ∇̃W( , t)) is the flow state vector (resp. flow state gradient) obtained through the interpolation
of its NS counterpart. It has been shown in [20] that the present mapping is intrinsically linked to advanced lattice
Boltzmann regularised collision operators [32] which means the implementation of Eq. (18) does not require any
additional calculations or storage.

• Coupling of time-stepping schemes. In the context of unsteady aerodynamic and aeroacoustic computations,
the information exchanges as described above are carried out at each time step. In [20], the coupling between
the LBM and explicit and implicit time advance schemes has been developed and thoroughly studied (the only
restriction being that the time steps of the two methods match at the coupling interface). In particular, the explicit
coupling has been proposed in the case of Runge-Kutta methods for which time interpolations are needed to ensure
a smooth communication between the two solvers. In contrast, in the case of implicite time-advance schemes,
the coupling is achieved via the iterative Newton process. Contrary to the matching case, the numerical tests of
Section V highlight the fact that the temporal coupling plays an important role on the robustness of the hybrid
method in the case of overset meshes.

B. Computation of gradients on a structured grid of arbitrary topology
As a conclusion to the previous Section, at the coupling interface between the lattice Boltzmann and the Navier-Stokes

methods, only the flow state vector W and its gradients are interpolated and exchanged. In the original paper [20], the
computation of the gradients required to the application of Eq. (18) was performed in the vicinity of the coupling
interface by means of a Cartesian finite difference method. Indeed, hitherto the interface between the two numerical
methods was always positioned between two Cartesian mesh blocks. As the aim of the present work is to gain flexibility
from the viewpoint of meshing (by superimposing curvilinear and Cartesian grids for instance), it is necessary to extend
the gradient calculation procedure initially proposed.

While the finite difference formalism could be retained by using a coordinate transformation method allowing the
passage between a curvilinear physical mesh and a unitary Cartesian computational mesh [51], it is proposed to switch
back to the finite-volume formalism already present in the Navier-Stokes solver. This ensures greater robustness and a
lower computational cost. Thus, the gradients of the conservative variables are calculated using Green’s formula on the
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control volumes of the finite-volume mesh. The gradient in the xi direction of a quantity φ is then obtained from:

∂φ

∂xi

����
Ωc

≈
1
|Ωc |

∫
Ωc

∂φ

∂xi
dΩ =

1
|Ωc |

∫
∂Ωc

φ · ni dΓ =
1
|Ωc |

4 in 2D
6 in 3D∑
l=1

φ|Γl · ni |Γl , (19)

where Ωc is a cell of the finite-volume mesh and n is the unitary outward-facing normal of face Γl . It is important to
note that, in this framework, the gradient is assumed to have a uniform value in the cell Ωc .

The actual procedure is detailed in Fig. 12. The calculation of the gradient, defined at the centre of each cell of the
mesh, requires the knowledge of the value of the variable φ at the middle of each face of the control volume. These
interface values are then calculated by taking the average of the values of φ defined in the neighbouring cells.

∇φ

(a)

φ|2φ|1

φ|3

φ|4

(b)

φ|2φ|1

φ|3

φ|4

(c)

Fig. 12 Computation of gradients on a structured grid of arbitrary topology. To compute the value of ∇φ
defined the center of a mesh cell (a), an intermediate value of φ at the center of each face (b) is calculated by
taking the average of the two nearest neighbours (c).

C. Spectral analysis of combined space and time interpolations
During the validation process of the overset grid methodology in the context of segregated lattice Boltzmann and

Navier-Stokes computations, it was observed that spurious noise was generated when vortical structures passed through
the overlapping area between the grids. This phenomenon can be explained with the help of signal theory tools. Indeed,
Desquesnes et al. [52] as well as Cunha et al. [53] have shown that the interpolation process, which consists in
reconstructing a continuous signal from a sampled signal and then resampling it on a second mesh, generates spectral
aliasing, which causes the emission of spurious acoustic waves. In the particular case of the hybrid lattice Boltzmann -
Navier-Stokes method on overset grids, two interpolations are performed simultaneously: one in space and the other in
time. Therefore, the purpose of this section is to reproduce and extend the analysis of Desquesnes et al. [52] and Cunha
et al. [53] in order to study the impact of this double interpolation on the spurious noise emission.

1. Theoretical framework
While in [52, 53] the spectral study of the interpolation is carried out in 1D, it is here extended to a two-dimensional

case since the effect of the joint interpolation in space and time is intended to be characterised. To this end, an infinite
mesh of R × R with a uniform space step ∆x and a uniform time step ∆t is considered so that for every point ζ = (xi, tj)
one has xi = i∆x and tj = j∆t. Hereafter, the coordinates xi and tj are assumed to be independent. Let f be a
square-integrable function that is to be interpolated. The interpolation procedure in the case of the lattice Boltzmann -
Navier-Stokes coupling can then be broken down into 5 steps as shown in Fig. 13:

• Step 0. The continuous function f is first discretised on the donor grid. From signal theory, the resulting discrete
function (denoted hereafter by fd) is defined as:

fd(x, t) = f (x, t)

ΠΠ

∆x

ΠΠ

∆t

=

∞∑
n=−∞

∞∑
m=−∞

f (nx,mt)δ(x − n∆x)δ(t − m∆t).
(20)
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Fig. 13 Interpolation procedure for a given function f in the context of the hybrid lattice Boltzmann - Navier-
Stokes method on overset grids.

In Eq. (20), the shorthand notation ΠΠ

∆ is used to designate the Dirac comb of period ∆ which is given by

ΠΠ

∆(ξ) =
∑

n∈Z δ(ξ − n∆) where δ is the Dirac distribution. Since the focus is on the generation of spurious
frequencies, the effect of each stage of the interpolation process on the spectrum of f has to be tracked. For this
purpose, the Fourier transform of fd is computed through:

F [ fd](α, ω) =
1
∆x∆t

∞∑
m1=−∞

∞∑
m2=−∞

F [ f ]
(
α −

2πm1
∆x

, ω −
2πm2
∆t

)
, (21)

where α is the angular wavenumber and ω is the angular frequency. F [ f ] refers to the Fourier transform of the
continuous function f defined by:

F [ f ](α, ω) =
∫ ∞

−∞

∫ ∞

−∞

f (x, t)e−i(αx+ωt)dxdt . (22)

Herafter, the support of F [ f ] is assumed to be included in ] − π/∆x, π/∆x[ × ]− π/∆t, π/∆t[. The discretisation
process, defined by Eq. (20) induces a (2π/∆x, 2π/∆t)-periodisation of the signal. Consequently, the support of
F [ fd] is now infinite.

• Step 1. The discretised function fd is then interpolated in time. As shown in [54], interpolating a function g is
equivalent to convolving this function by the associated transfer function. Thus, the resulting time-interpolated
function It [ fd] reads as:

It [ fd](x, t) = fd(x, t)? hLINpd
∆t

(t). (23)
In the context of Lagrange polynomial interpolation, the transfer function is directly determined by the interpolation
coefficients of Eq. (10):

hLINpd
∆

(ξ) =

N−d∑
j=1−d

1[0,1[
(
ξ

∆
+ j

)
SLINpd
j+d−1

(
ξ

∆
+ j

)
. (24)

1[0,1[(x) is the indicator function defined as 1[0,1[(x) = 1 if x ∈ [0, 1[ and 0 otherwise.
Again, in order to keep track of the spectral content, the Fourier transform of the time-interpolated function It [ fd]
is calculated and leads to:

F

[
It [ fd]

]
(α, ω) = F [ fd] (α, ω) × F

[
hLINpd
∆t

]
(ω) . (25)

The analytical derivation of the Fourier transform of the transfer function associated with Lagrange interpolators
is detailed in the appendix of [55].

• Step 2. After having interpolated in time the discrete function fd, this new function is now sampled on a new
infinite mesh of R × R where only the time discretisation is modified. This results in the introduction of a new
time step ∆t ′ and an offset with respect to the first mesh denoted by ηt . Hence, for every point ζ = (xi, tj) one now
has xi = i∆x and tj = j∆t ′ + ηt . The sampling of It [ fd] reads:

It [ fd]d(x, t) = It [ fd](x, t)

ΠΠ

∆x

ΠΠ

∆t′

=

∞∑
n=−∞

∞∑
m=−∞

It [ fd](nx,mt)δ(x − n∆x)δ(t − m∆t ′),
(26)
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and the Fourier transform of It [ fd]d has the following analytical expression:

F

[
It [ fd]d

]
(α, ω) =

1
∆t ′

∞∑
m3=−∞

e−i
2πm3
∆t′

ηtF

[
It [ fd]

] (
α, ω −

2πm3
∆t ′

)
. (27)

Analogously to step 0, the new time discritisation defined by Eq. (26) induces a 2π/∆t ′-periodisation of the
interpolated signal. Since the support of It [ fd]d now reduces to ] − π/∆t ′, π/∆t ′[, some modes generated at step
0 and partly dissipated at step 1 are here shifted (i.e. aliased) to various frequencies. It is essential to note that this
phenomenon is homogeneous in the x direction.

• Step 3. The discretised function It [ fd]d is further interpolated in space. As previously, this results in the
convolution of this function by the interpolation transfer function. Thus, the resulting space- and time-interpolated
function Ix

[
It [ fd]d

]
reads as:

Ix

[
It [ fd]d

]
(x, t) = It [ fd]d(x, t)? hLINpd

∆x
(x). (28)

In the Fourier space, Eq. (28) is equivalent to:

F

[
Ix

[
It [ fd]d

] ]
(α, ω) = F

[
It [ fd]d

]
(α, ω) × F

[
hLINpd
∆x

]
(α) . (29)

• Step 4. Finally, the space- and time-interpolated fuction is now sampled on a new infinite mesh of R × R where,
this time, only the space discretisation is affected. This results in the introduction of a new space step ∆x ′ and
an offset with respect to the first mesh denoted by ηx . As a result, for every point ζ = (xi, tj) one now has
xi = i∆x ′ + ηx and tj = j∆t ′ + ηt . The sampling of Ix

[
It [ fd]d

]
reads:

Ix

[
It [ fd]d

]
d
(x, t) = Ix

[
It [ fd]

]
(x, t)

ΠΠ

∆x′

ΠΠ

∆t′

=

∞∑
n=−∞

∞∑
m=−∞

Ix

[
It [ fd]

]
(nx,mt)δ(x − n∆x ′)δ(t − m∆t ′).

(30)

All changes in the spectrum of the original function f resulting from the different interpolations in space and in
time are contained in the following expression:

F

[
Ix

[
It [ fd]d

]
d

]
(α, ω) =

1
∆x ′

∞∑
m4=−∞

e−i
2πm4
∆x′

ηxF

[
Ix

[
It [ fd]d

] ] (
α −

2πm4
∆x ′

, ω

)
. (31)

Just as for step 0 and 3, the space discritisation defined by Eq. (30) induces a 2π/∆x ′-periodisation of the
interpolated signal. Since the support of Ix

[
It [ fd]d

]
d
now reduces to ] − π/∆x ′, π/∆x ′[ × ] − π/∆t ′, π/∆t ′[,

some modes generated at step 0 and those produced at step 2 are here shifted to various frequencies. As a result,
an interaction between the spurious frequencies generated through the time and space interpolations is expected to
occur in the framework of the hybrid lattice Boltzmann - Navier-Stokes method on overset grids.

2. Numerical examples
In order to illustrate the aliasing phenomenon resulting from the two-fold interpolation in space and time, two

numerical examples are considered. Following [52, 53], the following set of test functions is studied:

fk(x, t) = cos
(

kπ
16
[x − c0(1 +Ma)t]

)
exp

(
−

(
x − c0(1 +Ma)t

16

)2
)
, (32)

where k ∈ [0, 14] is the wavenumber, c0 is the isentropic speed of sound and Ma = 0.1 is the Mach number of the
uniform flow. Each fk is the product of a cosine and a Gaussian. Since the effect of the joint space and time interpolation
is intended to be characterised, a time dependence has been added to the definition of fk so as to mimic the propagation
of an acoustic wave in a uniform flow. In the following two specific values of k are investigated namely k = 4 and k = 10.
While the first one allows to assess the effect of the interpolations on functions exhibiting a low-frequency content (i.e.
well-resolved waves), the second one is particularly interesting for understanding their impact on underresolved waves.
Fig. 14 shows the space and time evolution of fk in the case of k = 4.
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Fig. 14 Space and time evolution of fk in the case of k = 4.

Fig. 15 shows the normalised Fourier transform of f4 and f10. As seen, regardless of the value of k, the Fourier
transform F [ fk] is composed of two Gaussians centred on ±(kπ/16,−kπ/25) and thus, is of compact support in
] − π, π[. For the sake of simplicity, the functions fk are discretised on a uniform infinite donor grid defined by ∆x = 1
and ∆t = 1. All interpolations are achieved using second-order centred Lagrange polynomials (LIp2). Although these
interpolation schemes are not exactly the ones used in the effective computations, they do still allow to highlight the
aliasing phenomenon. The discretisation of the interpolated functions is then performed on three different receiver
grids. The first one is defined by ∆t ′ = 3/4 and ∆x ′ = 1 (the baseline function is merely interpolated in time and not in
space), the second one is defined by ∆t ′ = 1 and ∆x ′ = 5/4 (the baseline function is merely interpolated in space and
not in time) and the third one is defined by ∆t ′ = 3/4 and ∆x ′ = 5/4. In all cases, the offset of the receiver grid is set to
ηt = ηx = 0 since a non-zero offset only creates a phase shift.
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Fig. 15 2D Normalised Fourier transform of fk for (a) k = 4 and (b) k = 10.

Fig. 16 compares the normalised Fourier transform of the discrete function fk,d after the successive interpolations
for k = 4 (Fig. 16a) and k = 10 (Fig. 16b) on the three receiver grids. To facilitate the analysis of the Figure, black (resp.
grey) dashed lines enclose the bandwidth of the donor (resp. receiver) mesh. The first thing to note is that regardless
of the wavenumber k of the test-function, the interpolation procedure does lead to the generation of spurious modes
as shown in [52, 53]. If the interpolation is only performed in time, the angular wavenumber of the initial function
remains unchanged: only modes with a higher angular frequency are generated. Similarly, if the interpolation is only
performed in space, the angular frequency of the initial function remains unchanged: only modes with a higher angular
wavenumber are generated. As such, for a low frequency base content, the amplitude of these spurious modes is very
small and does not impact the solution. However, for high wave numbers (e.g. k = 10) the amplitude of these spurious
modes can be high and lead to the generation of waves whose amplitude is very close to the one of the original signal.
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The most interesting configuration is the one where interpolations are made in both space and time. Indeed, it can be
observed that the pattern of the generated parasitic modes quickly becomes complex and therefore difficult to filter
out. In addition, there are also new modes that emerge purely as a result of the combination of the two successive
interpolations. As a result, this can be harmful in the context of aeroacoustic simulations.
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Fig. 16 2D Normalised Fourier transform of Ix
[
It [ fk,d]d

]
d
for (a) k = 4 and (b) k = 10 and the three receiver

grids (in columns).

The theoretical analysis performed in this section has shown that the joint space and time interpolation creates
spurious modes whose magnitude may, in some cases, be as large as that of the original signal. This phenomenon will
further be highlighted in the subsequent Section and the interest of the time coupling of the LBM with an implicit time
scheme will be shown.

V. Validation of the hybrid lattice Boltzmann - Navier-Stokes overset grid method on
academic test cases

The hybrid lattice Boltzmann - Navier-Stokes overset grid methodology is now validated on two aerodynamic and
aeroacoustic test cases. First, Section V.A considers a two-dimensional acoustic pulse. Then, the case of a convected
vortex (already introduced in Section III.C) is investigated. Throughout this Section, a pseudo-2D periodic computational
domain of size [5L, 5L, 10∆x] with L being the reference length equal to 1 m is considered. Three different meshing
strategies are compared and represented in Fig. 17. Firstly, a mesh consisting of matching Cartesian grids (see Fig.
17a) is studied and serves as a reference for the subsequent validation process. Then two overset configurations are
investigated. The first (see Fig. 17b) is identical in all respects to the one already presented in Section III.C. The second
one considers the overlay of a curvilinear grid on a Cartesian background mesh (see Fig. 17c). The curvilinear grid is
obtained by applying the following transformation:

xcurvi = xcart + 0.025 sin
(
3πycart

L

)
and ycurvi = ycart + 0.025 sin

(
3πxcart

L

)
. (33)

The lattice Boltzmann method is applied on the Cartesian background mesh while the finite-volume Navier-Stokes
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method is applied on the overset grid (in red in Fig. 17). The kinematic viscosity ν is set to νair = 15.6 × 10−6 m2/s,
the reference temperature is T0 = 300 K and the speed of sound c0 has a value of 347.3 m.s−1. For the HRR collision
operator, the hybridization parameter is σ = 0.995.
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(c) Curvilinear overset grid domain.

Fig. 17 Computational domains used for the validation of the hybrid lattice Boltzmann - Navier-Stokes overset
grid methodology. One point out of ten is plotted.

A. Acoustic pulse
This test case aims at assessing the aeroacoustic capabilities of the hybrid lattice Boltzmann - Navier-Stokes method

with overset grids and to see whether such a method can be used for aeroacoustic simulations. In this context, the
acoustic pulse is is the most standard wave propagation problem [56]. The corresponding initial flow field is given by:

ρ(x, y)|t=0 = ρ0

(
1 + A exp

(
−
[(x − xc)2 + (y − yc)

2]

2R2
c

))
,

u(x, y)|t=0 = 0,
(34)

where ρ0 = 1.1765 kg.m−3 is the reference density, A = 10−3 is the amplitude of the perturbation and Rc = 0.1 m its
characteristic radius. The pulse is initially located at the center of the domain, i.e at (xc, yc) = (2.5, 2.5).

The uniform grid size is set to ∆x = L/nx where nx is the number of grid points per unit length and the time-step
is chosen so as to enforce a CFL number of 1/

√
3 ≈ 0.57 for both the NS-FV and the lattice Boltzmann solvers

thus ensuring a synchronous time evolution. In the following, the explicit time advance scheme will be used for the
finite-volume Navier-Stokes method and only grids (a) and (b) of Fig. 17 are investigated (the results being the same in
the case of the curvilinear overset grid).

Fig. 18 shows the fluctuating density profiles ∆ρ at y = 2.5m for various mesh resolutions and interpolation orders.
The “Reference” solution corresponds to result obtained on grid (a) of Fig. 17. It can be observed from Fig. 18 that in
the case of a poorly resolved wave (nx = 25), the use of overlapping meshes leads to a significant generation of spurious
noise which is not present in the case of conformal meshes. However, with fifth-order Lagrange interpolations, these
waves are largely attenuated and the solution tends towards the reference one. The same effects are also visible in the
case nx = 50, even though the parasitic phenomena are much reduced. In the finely solved case (nx = 100), the effect of
interpolations is almost invisible whatever the considered order. It should be noted, nevertheless, that the second-order
Lagrangian interpolation (i.e. linear interpolation) should be avoided in the case of aeroacoustic simulations since
pseudo-stationary waves remain trapped in the overlap (as shown in the zoom boxes in Fig. 18).

In order to quantify in more detail the effect of interpolations and grid resolution on the quality of the solution in
the presence of overlapping meshes, Fig. 19 plots the fluctuating density fields in the entire computational domain.
While in the reference case (with matching NS and LBM grids), all the considered resolutions lead to very similar
isotropic solutions, this is no longer the case when using overlapping meshes. It can be seen that the different orders of
interpolation act differently on the reflected waves. Indeed, while the 2nd and 3rd order interpolators tend to emit waves
at both the straight edges and the corners, the fifth-order interpolator tends to emit waves only at the corners.
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Fig. 18 Fluctuating density profiles ∆ρ at y = 2.5m extracted at y = 2.5m for various mesh resolution and
overset interpolation orders. The grey vertical dashed lines indicate the position of the overset grid.
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Fig. 19 Fluctuating density field ∆ρ for various mesh resolution and overset interpolation orders. The black
dashed lines indicate the position of the overset grid.

This test case provides some good practices to be followed in the context of aeroacoustic simulations with the hybrid
lattice Boltzmann - Navier-Stokes overset grid method. If the overlap area is in a particularly well-resolved area, then
an interpolation of order three or five is sufficient to ensure the quality of the solution (order two being subject to
residual acoustic waves in view of the previous discussion). Yet, if the resolution is looser, the fifth-order Lagrangian
interpolation method is the only one that limits the spurious acoustic waves to an acceptable level.

B. Advection of a vortex
The case of a vortex convected across an overset grid interface is addressed here. It is a standard but very challenging

test case as the frequency content if the vortex is much more broad-band than the one of the acoustic pulse. Thus, a
wide range of wavelengths are excited which can interact and generate spurious phenomena. Following the case setup
of Section III.C, the initial flow field is given by Eq. (15) where ρ0 = 1.1765 kg.m−3 is the free-stream density, c0 is
the speed of sound, ε = 0.07c0 is the vortex strength and Rc = 0.1 m is the characteristic radius of the vortex. This
time, the vortex is initially located at (xc, yc) = (1.5, 2.5), and is convected along the x direction at a Mach number of
0.1 so as to investigate the effect of the overset method on the two-way exchange between the lattice Boltzmann and
Navier-Stokes methods.
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In the following and unless otherwise stated, the Cartesian background grid has a uniform cell size ∆x = L/nx

where nx = 100 is the number of grid points per unit length. In the case of mesh (a) and (b) (see Fig. 17a), the
cell size is identical in all the grids. However, for mesh (c) (see Fig. 17a), one has ∆xcurvi ∈ [0.9∆x, 1.1∆x] and
∆ycurvi ∈ [0.9∆y, 1.1∆y]. The explicit time advance scheme is considered for the finite volume solver.

A qualitative validation is carried out first. To this end, Fig. 20 displays the relative density field ρ? defined by
ρ? = (ρ − ρmin,0)/(ρ0 − ρmin,0) as the vortex crosses the first overset interface (LBM to NS exchange). In order to ease
the analysis, a “Reference” solution corresponding to the result obtained on the grid (a) of Fig. 17 has been added
to the plot. In addition, in the case of the overset meshes, the shape of the overlaying grid is plotted with every 10th
mesh point. In general, it can be observed that, regardless of the interpolation order or the overlaying grid topology, the
vortex crosses the coupling interface while preserving its coherence. Once again, it can be noted that second-order
interpolations should be avoided. Indeed, this leads to spurious oscillations or to a distortion of the vortex. Raising the
interpolation order naturally eliminates these parasitic phenomena. However, this figure does not allow us to conclude
on the interest of the fifth-order interpolation compared to the third-order since the two solutions seem identical.
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Fig. 20 Non-dimensional density field ρ? = ρ? = (ρ− ρmin,0)/(ρ0 − ρmin,0) as the vortex crosses the first overset
interface for different grid topologies and interpolation orders. To ease the analysis of the Figure, the shape of
the overlaying grid is superimposed on the density fields (one point out of ten is displayed).

In order to get more insight into the effect of the interpolation order and the overst grid topology, Fig. 21 shows
the time evolution of the density profiles at y = 2.5m as the vortex crosses the coupling and overset interfaces. The
first thing to note is that, regardless of the interpolation order, the curves corresponding to a Cartesian or a curvilinear
overlaying grid are superimposed at all times. This validates the fact that the present strategy can be used on all types of
grids. In the case of a centered linear interpolation (LI2p1), a slight numerical dissipation is observed but in a lesser
extent than for a full LBM computation. It can therefore be concluded that the hybrid lattice Boltzmann - Navier-Stokes
method exploits the advantages of both methods, since the superimposition of a NS grid onto the Cartesian LBM
background grid limits the overall dissipation of the vortical structure. By increasing the order of the interpolation
scheme, one recovers the behavior of the reference computation. Indeed, the results obtained with both the LI3p1 and
LI5p2 interpolation scheme are in good agreement with the reference solution. Again, there is no difference in the
quality of the solution between these two interpolation methods. This confirms the fact that aerodynamic simulations are
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Fig. 21 Non-dimensional relative density profiles at y = 2.5m as the vortex crosses the coupling and overset
interfaces. The gray vertical dasehd lines indicate the position of the interfaces. (a) LI2p1Lagrange interpolation
scheme, (b) LI3p1 Lagrange interpolation scheme, and (c) LI5p2 Lagrange interpolation scheme.

less demanding than aeroacoustic computations: here, a third-order interpolation scheme seems sufficient to preserve
the aerodynamic quantities.

The effect of the overset grid methodology on the convergence order of the hybrid lattice Boltzmann - Navier-Stokes
method is now discussed. Fig. 22 shows the evolution of the L2 density error norm as a function of the mesh resolution
nx = L/∆x. In contrast to the pure LBM and pure NS computations, the second-order interpolation does not degrade
the overall order of the method (which is of order two as shown in [20]). It can therefore be seen that despite the fact that
most of the points are updated via the LBM, the use of an overset NS grid avoids the introduction of a spurious viscosity
and thus preserves the order of the method. It should be noted, however, that the second-order interpolation induces a
much higher level of error than a hybrid lattice Boltzmann - Navier-Stokes computation without overlapping grids. Only
the third- and fifth-order interpolations allow the error levels to be approximately the same as the reference case. Fig. 22
also allows to rule on the interest of the 5th-order interpolation method. Indeed, even if on the previous figures no
notable difference could be observed, the 5th-order interpolation is more precise than its 3rd-order counterpart. This
can therefore be of particular interest for aeroacoustic computations.

To conclude the analysis of the convected vortex test case, it is proposed to focus on the generation of parasitic
acoustics during the passage of the vortex structure at the interface between the overlapping grids. For this purpose, the
periodic boundary conditions imposed until now at the outer boundaries of the computational domain are replaced
by absorbing layers [50]. For the sake of clarity, only the case of mesh (b) is presented. The fifth-order interpolation
scheme is used for the communication between the overset grids and a third-order time interpolation is employed
between the lattice Boltzmann and Navier-Stokes solver (see [20] for further details). Fig. 23 shows the spurious noise
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Fig. 22 Convergence rate of the hybrid lattice Boltzmann - Navier-Stokes overset method.

emission (defined as the fluctuating pressure ∆p = p − pref in Pa) when the vortex crosses the coupling and overset
interface. As shown in Figure 23a, the successive application of space and time interpolation generates high-frequency
spurious waves (Figure 23b zooms in on the region where these waves appear). A similar behaviour is observed if the
spatial or temporal order of interpolation is changed respectively. The only way to avoid these waves is to remove the
time interpolation, i.e. to switch to an implicit time advance scheme for the NS solver (as shown in Figure 23c). This
result provides a further demonstration of the detrimental effects of double interpolation in aeroacoustic simulations.
Moreover, as shown in Section IV.C.1, this phenomenon can be predicted by the theory a priori.

It should be noted that spurious acoustic waves are still emitted even when time interpolations are removed. These
waves are inherent to the lattice Boltzmann - Navier-Stokes hybrid method and are more particularly linked to an
inconsistency error between the two methods. Indeed, the LBM solves only a weakly compressible athermal version of
the Navier-Stokes equations, which causes an abrupt limitation of the solution when switching to the finite volume solver
which is based on the full set of compressible Navier-Stokes equations. However, as shown in [20] if the partitioning
between the LBM and NS zones is done conscientiously, aeroacoustic computations are possible with this method. This
is the subject of the next section.
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Fig. 23 Spurious noise emission for the convected vortex test case (a) with the LI5p2 interpolation space
interpolation scheme and LI3p1 time interpolation scheme, (b) zoom on the overset grid and (c) without time
interpolations (i.e. the finite-volume Navier-Stokes solver uses an implicit time scheme).
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VI. Application : circular cylinder in an uniform viscous flow
As a first step towards flow simulations around complex geometries with the hybrid lattice Boltzmann - Navier-Stokes

overset grid method, the sound generated by a circular cylinder in a uniform flow is investigated. Despite the simple
geometry of the obstacle, the large disparity between the aerodynamic and acoustic characteristic length scales makes
the direct numerical simulation of this test case a challenging task in terms of meshing and computational cost. In this
context, the method proposed in this paper is of particular interest.

The same flow configuration as in Inoue and Hatakeyama [57] is considered. A cylinder of diameter D = 1 m is fixed
in a uniform flow. The upstream Mach number M∞ is set to M∞ = U∞/c0 = 0.2 and a Reynolds number Re = U∞D/ν∞
of 150 is chosen in order to remain below the onset of three-dimensional fluctuations. The computational domain has a
size of [300D, 300D, 10∆x] and the cylinder is centered at its origin. Fig. 24 illustrates the flow configuration as well
as the computational domain. A hybrid mesh consisting of curvilinear grid superimposed to a uniform background
Cartesian grid is used. Adiabatic no-slip boundary conditions are employed on the cylinder surface and periodic
boundary conditions are applied in the z direction. Non-reflecting far-field boundary conditions are also imposed at
the outer boundary conditions of the computational domain. The Navier-Stokes solver (in red in Fig. 24) is applied
on the body-fitted curvilinear grid in the vicinity of the cylinder while the lattice Boltzmann method is devoted to the
computation of the far-field acoustics (in grey in Fig. 24). The NS domain extends throughout the wake zone since the
thermodynamic closure of Eq. (17) is not applicable there.
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Fig. 24 Flow configuration and computational domain for the study of the flow over a circular cylinder. The
grey areas are those where the LBM is applied while the red areas correspond to those where the Navier-stokes
method is applied. One point out of ten is plotted.

The first points off the solid surface are placed so as to remain in the boundary layer. Consequently, on the
curvilinear grid the normal grid size is taken to be ∆n = δ/10 where δ is the boundary layer thickness and the tangent
one is set to ∆s = D/90. The uniform mesh size of the backround cartesian grid is such as ∆x∆y ≈ ∆n∆s leading to
∆x = ∆y = D/10. Owing to the large disparity in grid sizes in the near- and far-fields, an implicit time-stepping is
employed by the Navier-Stokes solver to ensure a physical CFL number of 1/

√
3 at both sides of the coupling interface.

In the light of previous findings, the LI5p2 spatial interpolation scheme is used for the overset communcation procedure.

First, the aerodynamic results are analysed to assess the ability of the hybrid lattice Boltzmann - Navier-Stokes
overset method to accurately capture the forces acting on the cylinder. The parameters of interest are the lift and drag
coefficients denoted by Cl and Cd respectively. Fig. 25 shows the time histories of the lift and drag coefficients. As
readily seen from Fig. 25, the flow around the cylinder is characterised by strong oscillating aerodynamic efforts. Once
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the regime is fully established, the averaged drag coefficient is Cd = 1.378 showing a difference of only 0.2% with the
reference simulation [57]. Similarly, the amplitude of the lift coefficient C ′

l
= 0.52 is the same as in [57]. The Strouhal

number S = D f /U∞ corresponding to the non-dimensionalised frequency f of the vortex shedding is found to be equal
to 0.181 showing a difference of 1% with the reference [57]. Therefore, it can be concluded that near-wall aerodynamics
is well represented by the present approach.
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Fig. 25 Time evolution of the lift Cl and drag Cd coefficients.

The flow-induced noise is now analysed. The vortex shedding is responsible for a tonal noise at the frequency f of
the vortex shedding. The corresponding pressure field is described through the fluctuating pressure field defined as
∆p̃(x, y, t) = ∆p(x, y, t) − ∆pmean(x, y) where ∆p = p − pref. Fig. 26 shows the corresponding instantaneous fluctuating
pressure field ∆p̃ in the whole computational domain for the hybrid lattice Boltzmann - Navier-Stokes computation. In
addition, a zoom is performed at the coupling interface between the near-wall curvilinear zone (NS) and the background
mesh (LBM). It can be seen that the pressure field remains continuous through the interface as no oscillations nor
discontinuities in the contour lines are exhibited. The radiation pattern as well as the level of the acoustic fluctuations
are in good agreement with the reference computation [57].
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Fig. 26 Visualisation of the instantaneous fluctuating pressure field ∆p̃.

In order to further validate the quality of the acoustic field computed with the hybrid lattice Boltzmann -
Navier-Stokes method on overset grids, the polar plot of the root mean square fluctuating pressure defined as
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∆prms(x, y) =
√
[∆p2](x, y) − [∆p(x, y)]2 is studied. Fig. 27 shows the polar diagram of ∆prms at a distance of r = 75D

of the cylinder. The radial length represents the magnitude on a linear scale where the outermost circle corresponds to a
value of ∆prms/ρ0c2

0 = 1 × 10−4. The results of Fig. 27 confirm the dipolar nature of the radiated acoustic field. The
directivity of the sound waves agrees with its theoretical value of θp = ±78.5◦ due to the Doppler effect as shown by the
black dashed lines. Moreover, the directivity is superimposed to the one obtained by the reference DNS [57]. For all
these reasons, the hybrid lattice Boltzmann - Navier-Stokes method on overset grids is a promising candidate for direct
noise computations around complex geometries.
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Fig. 27 Polar plots of the root mean square of the non-dimensional fluctuating pressure at a distance of r = 75D
of the cylinder. The symbols denote the results of the reference computation of Inoue et al. [57].

VII. Conclusion
In this present paper, a hybrid lattice Boltzmann - Navier-Stokes overset grid methodology has been proposed for the

computation of unsteady fluid flow problems. As a first step, the use of non-centred Lagrange interpolations schemes
to ensure the communication between overset grids has been studied and assessed in the context of segregated lattice
Boltzmann and Navier-Stokes computations. Then, the coupling between the lattice Boltzmann and Navier-Stokes
methods initially introduced has been described and extended to the case of overlapping grids. In this context, the
aliasing phenomenon associated to the joint space and time interpolations has been derived theoretically and observed
on numerical tests. Therefore it seems advisable to carry out only interpolations either in space or in time, but not both.
The hybrid method is found to be able to reproduce accurately the flow physics as shown by the acoustic pulse and the
convected vortex test cases. As a result, the present work helps to increase the flexibility of the hybrid lattice Boltzmann
- Navier-Stokes method introduced in [20] by simplifying the mesh generation process through the use of overset grids.
The finite-volume Navier-Stokes method can be applied on structured body-fitted grids around obstacles while the
lattice Boltzmann method is employed on Cartesian grids so as to efficiently propagate acoustic waves or wakes. The
computation of the flow and the acoustics around a circular cylinder provides a proof of this concept and paves the way
toward more complex configurations. Future work will address the topic of compressible lattice Boltzmann to relax the
constraint on the choice of the positioning of the coupling interface.
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