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➡ Help settle an old debate on objective ground.
➡ What is the data telling us for sure?
➡ How to extract precisely relevant information?
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The desynchronization of cardiac cells : 
changing point of view on fibrillation.

• Status of understanding, unknowns.
• Intermittency in the data?
• Models and impact on signal processing.
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The normal heart on Wikipedia



The fibrillating atria on Wikipedia



A Public Health problem

Epidemiology

• Fibrillation in Ventricles is sudden death. 
➡ No prediction, no treatment. 

• Fibrillation in Atria is stroke.
➡ No cure

Treatment of AF



A bad blow strikes you to death…

Miracles



5% Miracles

Another blow resuscitates you!

• Fatal prognosis 98%
• Defibrillators save 7%
➡ Can we do better?

Chaos

Resetting

Bpm

Shock Intensity



Different complexity

• Fibrillation in Ventricles is smooth
• Fibrillation in Atria is much less.

FV ECG



Different complexity

FA catheter recording

• Fibrillation in Ventricles is smooth
• Fibrillation in Atria is much less.

1 cm



AF for EPs

Many intricate down/up regulations



AF for MDs

 Circuits atriaux de 
micro-réentrées  Foyers veineux 

pulmonaires 

 Ligament de 
Marshall  Rotor 

 Innervation 
cardiaque 

A	  bit	  messy!

➡ Competing views, 
contradictory



Anatomical versus Functional
• The very old and unresolved problem is :

➡  How does A/V Fib spontaneously start and 
maintain, especially without any anatomical 
signs of disorder?

Wavelength criterionFunctional reentry

Allessie 1986Allessie 1973/76



Two main contradictory views

• « Rotors » versus « fragmentation » 

Reaction-Diffusion model Defect mediated

Fenton et. al 2002



Two main contradictory views

Ventricles phase mapping

Jalife et al. 1998

• « Rotors » versus « fragmentation » 



LPV

RPV

1 cm

Two main contradictory views

Left Atrium

Kalifa et al. 2007

Phase mapping

• « Rotors » versus « fragmentation » 



SpiralsSpeckle random phase defects

⇢(x, t)ei'(x,t)

~J = ⇢2~r'

~r⇥ ~J 6= 0 ~r · ~J 6= 0

Something went wrong: 
Dubious mapping ! 

~r · ~J = 0 ~r⇥ ~J = 0



Two main contradictory views

Low voltage too             but no phase singularity

Konings et al. 1997

➡ The battle still rages!

⇢ ⇡ 0

• Complex morphologies and paths

~r · ~J 6= 0



Chaos in the data?

• Chaos has been observed for periodic 
stimulation and spontaneously before onset

✓i = ✓i�1 + ⌦+G(✓i�1)

Periodic forcing of limit cycle :

Glass et al. 1983

Spontaneous onset and return:

Time series

Garfinkel et al. 1999



Chaos in the data?

Quasi Periodicity before onset :
Return maps

Garfinkel et al. 1999

• Chaos has been observed for periodic 
stimulation and spontaneously before onset

Spiral tip



Intermittency in healthy patients!

• In sinus rhythm, heart rate variability shows multifractal 
scaling. Heart failure exhibits monofractal scaling.

Holter tachogram WTMM analysis MF spectrum
�I ⇠ �th with proba p(h) ⇠ �tD(h)

Ivanov et al. 1999



Intermittency in healthy patients!

• The sinus node is sensitive to the ANS antagonist stimuli
• The SN comprises automatic cells collectively beating

ANS feedbacks
Short time scale is     1mn⇠

Before/After denervation



➡ Random walk with positive or negative oscillations
However Hilbert technique is weak,    -wavelet is computationally heavy

How to settle on objective ground? 
The data

• What if we compute the phase of time series?

C



How to settle on objective ground? 
The data

• What if we compute the phase of time series?

➡ Random walk with large deviations
However Hilbert technique is weak,    -wavelet is computationally heavyC



Intermittency in the data?

• What about amplitude fluctuations?

-50

10-1

10-3

0 100 mV

Skewed PDFsTime series
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Intermittency in the data?

• What about amplitude fluctuations?

Collapse on scaling functionTime series
P (A) = A�⌧g (A/Ac)

But contribution of very low amplitude must be cured…



A/Ac

10-1

10-1

10-2

1

Intermittency in the data?

• Non-universal exponents
• Are there any spatial patterns?

Collapse on scaling function

P (A) = A�⌧g (A/Ac)
Table of Fisher exponents 

But contribution of very low amplitude must be cured…



Intermittency in the data?

• Non-universal exponents
• Are there any spatial patterns?

e.g. Patient #5

P (A) = A�⌧g (A/Ac)
Table of Fisher exponents 



A myocardium of fibers
• A syncytium under normal circumstances.
• Conduction guaranteed by electrical synapses.
• Anisotropic.
• Distribution of Cx40/43 is more dilute after Fib. 

van der Velden et al. 2002 



A useful analogy?
• Can we build a phase diagram?
• Find a critical point?
• What order parameter?

Synapse empirical phase space Traffic jams bottle necks

Bub et al. 2005 Kerner 1998
Blocker

Density



Excitable fronts on heterogeneous media

p(⌘i,j = 1) = p

• As clusters of disconnected cells grow and allowing 
lower excitability              leads to reentriesµcl < µ

Alonso, Baer 2013 

p(⌘i,j = 0) = 1� p

@tUi = µf(Ui)� Ii +D
X

hi,ji

⌘i,j (Uj � Ui)



Excitable fronts on heterogeneous media

• If           , then Fisher exponent 
• Monofractal scaling

Alonso, Baer 2013 

⌧ > 2A ⇠ Scl

p(⌘i,j = 1) = p
p(⌘i,j = 0) = 1� p

@tUi = µf(Ui)� Ii +D
X

hi,ji

⌘i,j (Uj � Ui)



�A ⇠ �th

Excitable fronts on heterogeneous media
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➡ Where else does one finds such features?

Working on error bars…!

p(h) / �tD(h)



Excitable fronts on  
heterogeneous networks

➡ Extended critical phases, e.g. in the visual cortex, 
brain resting state …

➡ Dynamical processes on hierarchical, dilute, 
disordered network.

Avalanche size PDFs
Flash on the retina triggers activity,    EPSP6=

Visual cortex recurrent layers

Girardi-Shappo et al. 2016 



Excitable fronts on  
heterogeneous networks

➡ Extended critical phases, e.g. in the visual cortex, 
brain resting state …

➡ Dynamical processes on hierarchical, dilute, 
disordered network.

GriffithsCritical 

Control parameter fine tuned :
� = �m + ��
Control parameter distributed :

) �c < �mc� = �c

Rare regions          smear the transition :
C(t) ⇠

Z
dL P (L)e�t/t0e

↵(�)L

⇠ t�✓(�)

P (L)

C(t) ⇠ t�✓

Classical scaling laws :



Our model

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant 

Main assumption

⇠ 100ms

�↵~�⇢

This may lead synapse cycles and 
cell cycle to be in phase opposition

There might be a critical value of a 
control parameter for a transition 
from absorbing to active state ?

Resonant time scales



Our model

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant 

Main assumption : synapse cycles 

⇠ 100ms

Bi-patch clump RLC-like measurements
Gap junction static conductance

Desplantez et al 2007 



Our model

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant

Dynamical system Chaotic oscillations

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2

Ra ⇡ Rac

Poincaré sections for 2, 3, 4 coupled cells



QP

Our model

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2

Space

Time

Ra ⇡ Rac



Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2
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Tachycardia in  Fitzhugh−Nagumo Lorenz:   Pseudo egm      Short sequence of 2:1 lock

p=[M .1 .008 .02 1 .0001 .008 .02 .0001 1 1 0]

QP Ra ⇡ Rac

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant

Time



Fib

Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2

Space

Time

Ra > Rac

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant



Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms
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@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢
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Fibrillation in  Fitzhugh−Nagumo Lorenz:   gap current difference distant source

Fib Ra > Rac

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant

Time



Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2

A
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Fib Ra > Rac

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant



Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I
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Fib Ra > Rac

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant



Our model

Dynamical system Zoology of S-T patterns

⇠ 100ms

8
<

:

@tU = f(U)� I + D�U � ~r · g⇢
@tg = �↵~�⇢ � ⌫g
@t⇢ = �g · ~rU � ⌫2⇢

Dimensionless Rayleigh number:

Ra =
↵I

D⌫⌫2

Time

Fib Ra > Rac

Vorticity freed

• Assume local modulations of synapse conductances
• This stems from reaction kinetics with bound charges 

chemical potential at gap junctions (Calcium overload)
• Time scales are resonant



Random phase and back-scattering

• The system is like a         eq. with chiral terms, below the 
Ising-Bloch transition:

CGL

@t = ia +Dr2 � i⌫� + i� ⇤

 ⌘ U + iI

Gilli et al. 1993 

• Parameters are modulated by synapse currents
� ! �(x, t)

• Approximative global U(1) symmetry becomes « dirty » (local)
� ! �i�ei' !  ei' then rotates from           eq. to Fitzhugh-NagumoCGL

Front dynamics are pretty much similar in both: « conservative » and 
« dissipative » aspects of chiral terms are irrelevant.
Any rotation in between is acceptable, at the expense of local resting angle

✓eq = ✓eq + �'

Back-scattering happens when I-B transition is reached: 
1 I-front gives birth to 2 counter-moving B-fronts



Random phase and back-scattering

• The system is like a         eq. with chiral terms, below the 
Ising-Bloch transition

CGL

@t = ia +Dr2 � i⌫� + i� ⇤

 ⌘ U + iI

Gilli et al. 1993 

• Parameters are modulated by synapse currents
� ! �(x, t)

• Approximative
� ! �i�ei' !  ei' then rotates from           eq. to Fitzhugh-NagumoCGL

Front dynamics are pretty much similar in both: « conservative » and 
« dissipative » aspects of chiral terms are irrelevant.
Any rotation in between is acceptable, at the expense of local resting angle

✓eq = ✓eq + �'

Back-scattering happens when I-B transition is reached: 
1 I-front gives birth to 2 counter-moving B-fronts

• The new local « dirty » degree of freedom originates in 
collective behavior. It is functional disorder.



Random phase and back-scattering

• The new local « dirty » degree of freedom triggers 
avalanches:

• It is quenched disorder for each front, but is dynamical on 
longer times scales

✓eq = ✓eq + �'

@t✓ = Dr2✓ � µ sin(✓ + �') + F

Critical Stick-Slip like

Sethna

Synapse current avalanches

Space

Time



Random phase and back-scattering

• The new local « dirty » degree of freedom triggers 
avalanches:

• It is quenched disorder for each front, but is dynamical on 
longer times scales

✓eq = ✓eq + �'

@t✓ = Dr2✓ � µ sin(✓ + �') + F

Critical Stick-Slip like

Sethna et al. 1996

Synapse current avalanches

Space

Time



Moving fronts on random media 
and signals?

• According to this phenomenology the dynamics is of  
domain walls on random bonds:

@tZ(X, t) = Dr2Z(X, t) + ⌘(X, t)Z(X, t)

• The noise is not white due to dilute random connectivity.
• Can we tune the noise term from the data using MF-analysis 

to assess the substrate?
➡ Statistical methods needed.

Thank you



Debuts

• We are « segmenting » active windows only using HMM 
technique and MF-analysis (MSM). Refines scaling 
exponent measurements.

• How can we incorporate this « compressed sensing » in 
ConvNets of annotated data for classification of Fibs?

• Curing the very low potential contributions






