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ABSTRACT 

We develop a fiber-based experimental setup dedicated to the demonstration of an ideal four-wave mixing 

process. With an experimental technique based on the iteration of initial conditions and propagation over short 

distances of fibers, we are able to alleviate the impact of high-order harmonics and optical losses. We can 

therefore mimics nearly ideal propagation over tens of kilometers and reveal the complete phase-space topology 

exhibiting several Fermi-Pasta-Ulam-Tsingou recurrence cycles, the existence of a stationary wave as well as the 

presence of a system separatrix, which marks the transition between two distinct spatiotemporal evolution 

regimes. The experimental dynamics agrees well the theoretical predictions with close orbits that do not 

intersect. 

We also investigate theoretically and experimentally an impact of control parameters on orbits’ dynamics. We 

use an abrupt change in power to connect two states on the phase-space plane that do not belong to the same 

trajectory. Finally, we apply machine learning techniques: firstly, we train a feed-forward neural network with 

non-iterated sampled measurements that allows to extract the key characteristics of the dynamics; and secondly, 

we use a sparce identification of nonlinear dynamics to retrieve differential equations governing the four-wave 

mixing dynamics affected by noise. 

Keywords: nonlinear fiber optics, experiment, four-wave mixing, modulation instability, Fermi-Pasta-Ulam 

recurrence, machine learning. 

1. INTRODUCTION 

The nonlinear Schrodinger equation (NLSE) governs wave evolution in many nonlinear systems such as fiber 

optics, hydrodynamics, plasma physics, Bose-Einstein condensates, and others [1], where the wave undergoes 

changes in a dispersive medium with an intensity-dependent nonlinear shift. The key process underlying the 

wave dynamics is the four-wave mixing (FWM), which can be described as an energy exchange between 

discrete frequency components under impact of both dispersion and nonlinearity. The FWM effect is the most 

pronounced in the degenerate case when a single pump generates sidebands with upshifted and downshifted 

frequencies. If the interaction is reduced to only three spectral lines (the pump and two sidebands), the NLSE 

evolution can be simplified to a set of three differential equations, that can be associated to a conservative 

Hamiltonian system. This fundamental FWM is experimentally tricky to be rigorously demonstrated due to the 

fast growth of residual spectral lines that are generated through cascaded interactions [2], where the newly 

appeared sidebands act as pumps themselves triggering further energy exchange. However, the ideal FWM at its 

three-waves limit remains an interesting problem for experimental demonstration.  

2. IDEALIZED FOUR-WAVE MIXING DEMONSTRATION 

2.1 Theoretical background 

First, we give a small reminder of the ideal FWM dynamics. Assuming a lossless propagation in a single-mode 

fiber, the slowly-varying electric field envelope (z,t) is governed by the NLSE : 
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where z is the propagation distance, and t is a time in a reference frame. The 2 denotes the second-order 

dispersion coefficient (here, the anomalous dispersion is considered, so 2  < 0), and  is the nonlinear Kerr 

coefficient. If one assumes an interaction solely between the pump and two lines at ±m (with m = 2πfm being 

the modulation frequency), the total electric field reads as: (z,t) = 0(z) + -1(z)exp(imt) + 1(z)exp(-imt). 

Note that here we consider the focusing NLSE case, therefore a mismatch parameter for the spectral lines within 

the modulation instability gain is 2 = sign(2)(2πfm )2/ (|2| / P0) with P0 being the average power. Injecting the 

total field expression to Eq. (1), one receives a set of three coupled differential equations that were extensively 

studied in [3], and are referred to as an ideal FWM system. This system can be equivalently described in terms of 

the one-dimensional conservative Hamiltonian :  
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where  = |0|2/ |i|2 is the relative spectral amplitude and  = -1 + 1 - 20  is the relative phase with i  

being the phase of each spectral line. The energy exchange between the lines along the propagation length is 

governed by the following equations, where  -is the normalized distance  = z (P0) : 
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Using the notations developed above, the change in amplitude and phase between three spectral lines reveals a 

recursive nature of the dynamics : if the process starts with a strong pump, the energy first is redistributed 

between the sidebands, but then flows back to the pump. This phenomenon is referred to as Fermi-Pasta-Ulam 

(FPU) recurrence. A convenient way to study the evolution is to use a phase-space plane with ( cos ,  sin) 

coordinates. The exact dynamic of wave propagation depends on initial relative phases and amplitudes, hence 

one observes different types of orbits (black dashed lines in Fig. 1(b)) that can be assigned to two types of 

solution divided by a separatrix : ones with bounded phase on the right, and others with unbounded phase on the 

left [4]. 

2.2 Experimental setup and dynamics reconstruction 

Up to date the FPU recurrence and FWM dynamics were experimentally demonstrated for the cascaded FWM 

system, where the generation of residual spectral lines was not restrained [3,4]. Even though these results reveal 

FPU recurrence cycles, a demonstration of the ideal FWM over an entire phase-space plane has remained 

unaddressed.  

To demonstrate the ideal FWM the setup depicted in Fig. 1(a) has been developed [5]. We start with a 

continuous wave (CW) laser (at 1550 nm) which is modulated by the phase modulator (PM) to generate a 

spectral comb (at 40 GHz), which is then shaped by the programmable spectral filter to match the initial , . 

The three spectral lines are amplified to reach the average power level P0, then they propagate in a short segment 

of a single-mode fiber (2 = -8 ps2 km-1 ;   = 1.7 W-1 km-1). If the fiber is sufficiently short, 500 m length in our 

case, the residual spectral lines will not develop, therefore the ideal FWM model remains valid. The next stage is 

the measurement of the changes in spectral amplitude and phase induced by propagation in the fiber : the 

spectral amplitudes are measured directly with the optical spectrum analyser (OSA), and the spectral phase is 

retrieved from a relative beating between two sinusoidal waves that result from filtering out the ±fm components. 

The output values are then gathered by a computer that then automatically updates the input values, and the 

process is repeated in a loop. With such a continuous update of initial conditions the dynamics can be 

reconstructed over several tens of kilometres and include several recurrence cycles. 

 

 
Figure 1 (a) Experimental setup : PC – polarisation controller; EDFA – erbium-doped fiber amplifier; OBPF – 

optical band-pass filter; PD – photodiode; high-speed SO – high-speed sampling oscilloscope. (b) Results of the 

measurements depicting evolution of (,) on the phase-plane for input relative amplitudes of 0.95, 0.70 for 

phase of π and 0.95, 0.65 for the phase of 0 radians (blue, purple, green and red lines, respectively).  

 

Figure 1 (b) displays the measured FWM dynamics for several initial conditions (at P0 = 21.7 dBm = 150 mW, 

hence 2 = -2) over 50 km (100 iterations). The evolution follows closely the one predicted by the ideal model, 

and the recurrence is revealed, while two types of trajectories are well separated. The discrepancies are attributed 

to experimental errors accumulated due to iterations and small deviations from the ideal model.  

3. TRAJECTORIES CONTROL 

The normalized mismatch parameter  in Eq. (2) can be interpreted as a control parameter of the system [6]: 

indeed, depending on  the orbits shapes and position of the separatrix would differ. Hence, using variation in  

(for instance, change in fiber parameters or in the input average power), one can control the dynamic, and make 



a transition from one state to another. If there is no limit in reachable values of , one can connect any two 

points on the diagram with a single transition. However, when the experimental limitations are introduced: in our 

case, fixed fiber parameters and power limits, the range becomes limited to 2 = [-2.51 : -0.95]. Using the 

conservation of the Hamiltonian (Eq. (2)) we derive a range of points on the map that are reachable withing the 

given limits imposed on  for both (IN IN) and (OUT OUT) to be connected. Then we find the best 

intersection point that is defined as the shortest distance (first, because we want to have the “fastest” connection, 

and second, because it allows to accumulate less errors). 

Experimentally the trajectories control is realized by implementing an abrupt change in the average power P0 

that is adjusted by the EDFA. In Fig. 2(a) and (b) two points that do not belong to the same trajectory are 

connected by controlling the power. This approach allows to connect points located either on the opposite or on 

the same sides of the separatrix. 

Overall, we demonstrate as the input average power can be used as a control parameter, hence as a degree of 

freedom, allowing tailored control of dynamics in the ideal FWM system [7]. 

 
Figure 2 Experimental trajectories that connect (a) IN = 0.90, IN =  and OUT = 0.90, OUT = 0,  

(b) IN = 0.90, IN = 0 and OUT = 0.80, OUT = 0, by an abrupt power change. The colour depicts value of input 

average power that is used for each part of the trajectory.  

 

4. MACHINE LEARNING APPLICATIONS 

As it was demonstrated in the previous sections, the dynamics follows closely the ideal FWM evolution, 

however it’s still impaired by experimental inaccuracies and fundamental differences related to generation of 

small residual sidebands. Hence, a question of noise impact and uncharacterized experimental effects remains 

open. To characterize the system, we use the machine learning applications: first, we train a neural network on 

the experimental data, and second, we apply the Sparce Identification of Nonlinear Dynamics (SINDy) technique 

to conclude on how the ideal model can be impaired by random noise. 

 

4.1 Neural Network reconstruction 

The machine learning strategies, namely the neural networks (NN), have boosted many aspects of photonics and 

nonlinear fiber optics [8]. Here we train a simple feed-forward NN on the experimental data to construct an 

emulator of the experiment disposable at hand, that would allow to get the data for arbitrary input conditions. 

The selected NN’s structure is composed of three layers with 12 neurons in total (Fig. 2(b)), where the input 

parameters are power and positions on the phase-space diagram. The output of the NN predicts a result of 

propagation over a segment of fiber. The training data consists of 1800 points randomly sampled points on the 

map at discrete powers [21.8 : 0.5 : 24.3] dBm (Fig. 3(a)). In the result of the training the mean-square error of 

2.54 x 10-4 is achieved allowing precise reconstruction of the dynamics with experimental features included. Even 

though the NN was trained on discrete set of points, it can reconstruct the closed orbits characteristic of the ideal 

FWM (Fig. 3 (c)) and interpolate the dynamics for the powers not included in the training set [9]. 

 

4.2 Sparce identification of nonlinear dynamics 

The SINDy is a data-driven approach that aims in finding the smallest number of terms from a library of 

functions that can reproduce the dynamics in terms of differential equations [10]. This technique was applied to 

reconstruct Eq. (3) from 20 trajectories generated by the ideal FWM equations (with random initial conditions at 

fixed ) that were impaired by 2.5-7.5% noise [11]. The results demonstrate that the exact FWM equations can 



be retrieved with good accuracy and robustness even from the noisy data. Therefore, one may anticipate 

implementation if this technique to a system, where the underlying model is not known in advance, or on the 

experimental results strongly impaired by an unknown phenomenon.  

 

 
Figure 3 (a) Training data set : randomly selected points on the experimental map at different values of power 

from 21.8 dBm to 24.3 dBm. (b) Structure of the neural network (NN). (c) Trajectories resulting from the NN 

trained on the experimental data. 

5. CONCLUSIONS 

We demonstrate an ideal FWM dynamics with a novel experimental technique based on iteration of initial 

conditions. The input average power is used as a control parameter to connect two points that do not belong to 

the same trajectory. Finally, the machine learning techniques are used to reconstruct the complete dynamics in 

presence of noise and/or experimental deviations. 

Our study fills in a gap of experimental demonstration of the fundamental process underlying the NLSE. The 

setup can be used for investigation of more complex systems such as non-degenerate FWM, parametric 

instability, normal dispersion propagation, or for more tailored types of control such as, for instance, the 

adiabatic transition between two states. 
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