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Abstract
Signs of ageing become apparent only late in life, after organismal development is finalized. Ageing, most notably,

decreases an individual’s fitness. As such, it is most commonly perceived as a non-adaptive force of evolution and

considered a by-product of natural selection.

Building upon the evolutionarily conserved age-related Smurf phenotype, we propose a simple mathematical

life-history trait model in which an organism is characterized by two core abilities: reproduction and homeostasis.

Through the simulation of this model, we observe 1) the convergence of fertility’s end with the onset of

senescence, 2) the relative success of ageing populations, as compared to non-ageing populations, and 3) the

enhanced evolvability (i.e. the generation of genetic variability) of ageing populations. In addition, we formally

demonstrate the mathematical convergence observed in 1).

We thus theorize that mechanisms that link the timing of fertility and ageing have been selected and fixed over

evolutionary history, which, in turn, explains why ageing populations are more evolvable and therefore more

successful. Broadly speaking, our work suggests that ageing is an adaptive force of evolution.

Introduction
Ageing is the umbrella term used to describe the processes that take place when an organism’s capacity to thrive

diminishes with time. Patterns of ageing vary greatly given the organism, from negligible senescence to

post-reproductive death through progressive age-dependent mortality increase (Jones et al., 2014). While ageing, as

an observable process, is evident, the evolutionary role of ageing is unclear and conceptually challenging. An ageing

individual is less fit, nevertheless, ageing seems to be broadly present through evolutionary time. Our work aims to

explore the question, "is this mere chance– is ageing strictly a by-product of other things under selection– or is it

somehow adaptive”?

Soon after Charles Darwin published his theory of evolution, August Weismann situated ageing within this framework

(Weismann, 1882) by theorizing that, “there exists a specific death-mechanism designed by natural selection to

eliminate the old, and therefore worn-out members of a population” (Gavrilov and Gavrilova, 2002). Since then,

however, it is mostly accepted that “ageing is not adaptive since it reduces reproductive potential” (Kirkwood and

Holliday, 1979) and hence, fitness. Weismann’s own theories eventually evolved to more closely represent this

current position.
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Under selection or not, ageing is influenced by genes but not programmed

At present, ageing is typically viewed as a ‘side-effect’,or byproduct, of other processes under selection (Fabian,

2011), which implies that ageing, or the mechanisms that cause ageing, are neither selected nor adaptive— precisely

as capacities that would prove advantageous for a given population. This view took precedent starting in the 1950s

and it is now assumed that the genetics or molecular processes that drive ageing help to explain how ageing has

evolved (Gavrilov and Gavrilova, 2002). Peter Medawar’s theory of mutation accumulation defends that ageing is

caused by the progressive accumulation of deleterious mutations with effects that show only late in life (Medawar,

1952). Williams’ antagonistic pleiotropy theory goes further than Medawar’s by presupposing the existence of

antagonistic genes and mutations: beneficial at an early age, these genes/mutations prove disadvantageous at a later

age (Williams, 1957).

Evolutionary conserved genes involved in both the regulation of longevity and organismal growth were discovered in

the model organism C. elegans (Kenyon et al., 1993) and later shown to be conserved in flies (Clancy et al., 2001) ,

mice (Bluher et al., 2003) and humans (van Heemst et al., 2005). Thus, genetic modulators for longevity exist and

express themselves through evolutionarily conserved physiological mechanisms. With genes involved in the onset of

longevity, there is a potential substrate for selective pressure to apply. Regardless, it is generally accepted that ageing

is neither a programmed nor beneficial trait for species (Kowald and Kirkwood, 2016).

An evolutionarily conserved two-phase ageing process

The Smurf phenotype is a simple age-associated intestinal permeability phenotype that was first observed in

Drosophila (Rera et al., 2011). Evolutionarily conserved in nematodes, zebrafish (Dambroise et al., 2016) and mice

(Cansell et al., 2023), this phenotype allows for the identification of two distinct subpopulations– non-Smurf

individuals and Smurf ones– at any time in a given population. All individuals undergo the transition (from non-Smurf

to Smurf) prior to death (Rera et al., 2012; Tricoire and Rera, 2015). In flies, the Smurf phase is characterized by

multiple physiological marks of ageing such as the high risk of impending death, loss of energy stores, systemic

inflammation, reduced motility (Rera et al., 2012), and reduced fertility (Rera et al., 2018). More generally, the

transcriptional hallmarks (Frenk and Houseley, 2018) usually associated with ageing are mostly observed in the latter

phase (Zane et al., 2023). To summarize, this phenotype allows for the identification of two successive and necessary

phases of life with all the age-related changes occurring in the last.

Motivated by these biological observations, we recently assessed (Méléard et al., 2019) the possibility of obtaining,

over time, such two phases of life. This was achieved through the design and implementation of an asexual and

haploid age-structured population mathematical model. We constrained the evolutive trajectory of ageing (within

this model) through the Lansing effect– a transgenerational effect impacting longevity. Smurf individuals carry the

propensity to demonstrate this effect. The Lansing effect is a transgenerational phenomenon, first described by

Albert Lansing in the late 1940s, whereby the “progeny of old parents do not live as long as those of young parents”

(Lansing, 1954, 1947). This was first observed in rotifers. More recently, it has been shown that older drosophila

females, and to some extent males tend to produce shorter lived offspring (Priest et al., 2002). Older zebra finch

males give birth to offspring with shorter telomere lengths and reduced lifespans (Noguera et al., 2018). In humans,

“older father’s children have lower evolutionary fitness across four centuries and in four populations” (Arslan et al.,

2017). Despite the absence of consensus regarding any underlying mechanism, the Lansing effect is broadly

conserved and therefore relevant (Monaghan et al., 2020). We observed, through this Lansing-positive model, that

the ageing phase overlaps with the pre-ageing phase in evolutionary time.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2022.03.11.483978doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?E1XTB1
https://www.zotero.org/google-docs/?E1XTB1
https://www.zotero.org/google-docs/?EoK8wo
https://www.zotero.org/google-docs/?EoK8wo
https://www.zotero.org/google-docs/?AT0f61
https://www.zotero.org/google-docs/?gINYd1
https://www.zotero.org/google-docs/?Es3H9E
https://www.zotero.org/google-docs/?AI6lr4
https://www.zotero.org/google-docs/?UjJegO
https://www.zotero.org/google-docs/?7mpITY
https://www.zotero.org/google-docs/?VlqLBT
https://www.zotero.org/google-docs/?qKPutN
https://www.zotero.org/google-docs/?UCKBO5
https://www.zotero.org/google-docs/?UvOZW9
https://www.zotero.org/google-docs/?UCLs1C
https://www.zotero.org/google-docs/?A9tD3f
https://www.zotero.org/google-docs/?yhEDpx
https://www.zotero.org/google-docs/?lle3XU
https://www.zotero.org/google-docs/?aHsunv
https://www.zotero.org/google-docs/?iS0F9w
https://www.zotero.org/google-docs/?baAogz
https://www.zotero.org/google-docs/?L1rYPl
https://www.zotero.org/google-docs/?L1rYPl
https://www.zotero.org/google-docs/?yUjcJj
https://doi.org/10.1101/2022.03.11.483978
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

Here, we decided to generalize this model to any system able to reproduce and maintain homeostasis, without the

necessary constraint of the Lansing effect, and in hopes of understanding how such a two-phase ageing process might

have evolved. We thus show the following:

1) Through time, the end of the healthy phase and the beginning of the senescent phase converge even in

the absence of a transgenerational effect (the Lansing effect).

2) With an equal Malthusian parameter at t0, Lansing populations are more successful than non-Lansing

populations, suggesting that the individual loss of fitness is compensated at the population level.

3) Ageing (or senescence-carrying) populations are more evolvable than non-ageing populations. We

theorize this is because ageing populations are quicker to explore genotypic space.

This is all to suggest that ageing is, as a function, decreasing both reproductive and homeostatic capabilities of an

organism, both an attractor configuration and an adaptive force of evolution, in opposition to what is most commonly

assumed.

Results
Evolution drives the convergence of fertility’s end with the onset of mortality risks

The model (called bd model) and its population dynamics follows those described in (Méléard et al., 2019). Briefly,

the model delineates an asexual and haploid population, structured by a life-history trait that is defined by a pair of

parameters - genes - (xb, xd) where xb defines the duration of fertility and xd, the age at which the mortality risk

becomes non-null. Here, we generalized the model to any intensities of birth and death denoted (ib, id) as well as to

populations without Lansing effect (Figure 1, see also Annex 1). The selective pressure is enforced by a logistic

competition c mimicking a maximum carrying capacity of the environment, thus no explicit adaptive value is given to

any particular trait. Additionally, for each reproduction event, a mutation (h) of probability p can affect both genes xb

and xd independently, following a Gaussian distribution centered on the parental trait. In Figure 1, the different cases

are explored, depending on the respective values of xb and xd. Individuals in the Figure 1b-c configuration (for xb ≤ xd)

will always give progeny with a genotype (xb, xd) ∓ (hb and/or hd). The evolutionary outcome of individuals carrying a

genotype with xd < xb (Figure 1a) is slightly more nuanced and depends on the parental age a and whether the parent

carries the possibility for a Lansing effect or not (Figure 1d-f). If a < xd, or if the parent does not carry a Lansing effect,

the genotype of the progeny will be as previously described. But if a > xd, and if the parent carries the Lansing effect,

the progeny then inherits a dramatically reduced xd (here xd is set to 0), mimicking a strong Lansing effect.

Figure 1: Three typical configurations of the model with

ib > id and their effect on progeny’s genotypes as a

function of parental age. (upper panel) Each haploid

individual is defined by a parameter xb defining its fertility

period of intensity ib and a parameter xd defining the time

during which it will maintain itself, with an intensity id.

These parameters can be positive or null. (a) ’Too young

to die’ : it corresponds to configurations satisfying xd < xb.

(b) ’Now useless’: it corresponds to configurations where

xb = xd. (c) ’Menopause’: it corresponds to configurations

where xd > xb. (lower panel) Each individual may randomly

produce a progeny during its fertility period [0; xb]. (d) In

the case of physiologically young parents (a < xd), the

progeny’s genotype is that of its parent ∓ a Gaussian
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kernel of mutation centered on the parental gene. In the case of the reproduction event occurring after xd, for configuration (a) above, two

cases are observed, (e) if the organism carries a Lansing effect ability, the xd of its progeny will be strongly decreased. (f) In the absence of the

Lansing effect, the default rule applies.

In our previous work (Méléard et al., 2019), we formally and numerically showed the long-time evolution of the

model to converge towards (xb - xd) = 0 in the case of individuals carrying a Lansing effect. Here, we explore the

convergence of (xb - xd) without the strong transgenerational effect of ageing. We implemented a new version of the

model, devoid of the Lansing effect, and simulated its evolution for a viable - i.e. allowing the production of at least

one progeny - trait (xb = 1.2, xd = 1.6). Surprisingly, we still observe a convergence of (xb - xd) in finite time. The

dynamics of the trait (xb, xd) is described by the canonical equation of adaptive dynamics, which depends on the

Malthusian parameter and its gradient (Annexe 1). The Malthusian parameter can be interpreted as the age-specific

strength of selection (Hamilton, 1966). The speed at which xb and xd evolves, decreases with time, just as in the

previous form of the model (Méléard et al., 2019), allowing us to recover the well-observed, age-related decrease in

the strength of selection (Haldane, 1941; Hamilton, 1966; Medawar, 1952).

Simulations of the generalized bd model presented here show that the xb - xddistance (the time separating the end of

fertility from the increasing risk of death) converges, for any initial trait, towards a positive constant. Thus, the long

term evolution of such a system is a configuration similar to Figure 2a (xd < xb). The formal analysis of the generalized

bd model confirms that the long-time limit of the traits (xb - xd) is the positive constant (defined by the formula in

Figure 2b, mathematical analysis presented in Annexe 4), reached after a few dozen simulated generations (Figure

2c). Although we formally demonstrate the long-time limit for any iband id, all our simulations are run using ib = id= 1,

in order to limit the number of conditions to assess and report.

Figure 2: The bd model shows a convergence of xb - xd towards a positive value. Dynamics of the individual-based model shows a

convergence of xb - xd towards a positive constant value in the absence of the Lansing effect. (a) The generalized b-d model shows a

convergence of (xb - xd) for any ib and id towards a positive value given by (b) (cf. Annexe 4.3, figure 2). (c) Simulation of 1000 individuals with

initial trait (xb = 1.2, xd = 1.6) of intensities ib = id = 1, a competition c = 0.0009 and a mutation kernel (p = 0.1, σ = 0.05) show that the two

parameters co-evolvetowards xb - xd ≅ 0.55 that is log(3)/2. (d) Landscape of solutions (xb - xd) as a function of ib and id (colors separate ranges of

50 units on the z-axis).

Surprisingly, the limit value of the trait is not affected by xb or xd values - the fertility and organismal maintenance

durations per se - but only by their respective intensities ib and id. These intensities can be interpreted as the instant

mortality risk id and the probability to give a progeny ib. Interestingly, the long-time limit values for any ib and id shows

a significantly stronger sensitivity to the increasing mortality risk id than to reproduction by almost two orders of

magnitude (Figure 2d). In addition, for extremely low values of ib and id - i.e. below 0.01 - the apparent time

correlation of the fertility and organismal integrity maintenance period is almost nonexistent; this is because (xb - xd)

is large. Biologically, this would appear to an observer as the loss of organismal maintenance occurring long before

the exhaustion of reproductive capacity. Such an organism would be thus characterized as having no significant
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fertility decrease during the ageing process. On the other end, for individuals showing either a high instant mortality

risk or a high probability to give a progeny, the (xb - xd) trait is close to 0, meaning that fertility and organismal

integrity maintenance are visibly - i.e. observable by an experimenter - correlated. It is important to note that this

mathematical study concerns individuals for which the mean number of descendants per individual is large enough,

allowing us to define a viability set of traits (xb, xd ) (see Annexe 2.3). Because of these mathematical properties, a

tradeoff emerges between ib, id, xb and xd. Let’s consider an organism - for both the Lansing and non-Lansing cases -

with a low reproductive intensity ib = 0.01 and id = 1. For this organism to propagate, the product ib * xb has to be

strictly superior to 1, hence here xb ⩾ 100 (see Annexe 2.3). In this example, the long-time limit of the trait (xb - xd) is

equal to log(2), thus xb and xd are of the same order of magnitude. With the same reasoning, the long-time evolution

lower limit of (xb - xd), of an organism that is significantly more fertile (with ib = 1, id = 1), is 1/√3. This model thus

allows an elegant explanation for the apparent negative correlation previously described between longevity and

fertility without the need of implementing energy trade-offs or relative efficiency of energy allocation between

maintenance and reproduction (see Annexe 2.3 - examples).

Positive selection of a transgenerational burden

In our model, regardless of the initial trait (xb, xd) in the viability set, evolution leads to a configuration of the trait

such that the risk of mortality starts to increase before the fertility period is exhausted. Similar to biochemical

reactions involved in a given pathway that are evolutionarily optimized (e.g. through tunneled reactions and gated

electron transfers), we hypothesize here that such a configuration, caused by simple mathematical constraints,

creates the conditions for the apparition, selection, and maintenance of a molecular mechanism coupling xb and xd.

Such a coupling mechanism could thus be the so-called Lansing effect— the only described age-related decline in

progeny’s fitness that seems to affect numerous iteroparous species (Lansing, 1947; Monaghan et al., 2020).

We assessed the likelihood of survival of an organism carrying such a non-genetic and pro-senescence mechanism

when in competition with a population devoid of such a mechanism. To do so, we examined a population divided into

two sub-populations: one made of individuals subject to the Lansing effect and the other made up of individuals not

subject to the effect. We assume, as before, that each individual is under the same competitive pressure. The two

initial sub-populations have the same Darwinian fitness approximated by their Malthusian parameter (cf. Annexe 2,

supplementary figure 2). Their traits are thus (1.5; 1.3)Lansing and (1.5; 0.83)non-Lansing. In order to simplify the analysis,

both the birth and death intensities are as follows: ib=id=1 (the model is nevertheless generalized to any (ib; id), see

Annexe 5.1). We simulated the evolution of such mixed populations for discrete pairs of mutation rate (p) and

competition (c) parameters. Three indexes were calculated for each set of simulation: Table 1 a) the ratio of Lansing

and non-Lansing populations that collapsed (“-” indicates that all survived), Table 1 b) the ratio of total number of

progenies produced during the simulation by each population and Table 1 c) the relative proportion of the Lansing

population at the end of the simulation. Our 1200 simulations, each with 2.105 birth-death events, summarized in

Table 1, show that the Lansing populations survive at least as well as non-Lansing ones (Table 1a) especially for a

moderate competition parameter (c = 9.10-4) and low (in our simulations) mutation rate (p = 0.1). With such

conditions, Lansing populations show almost half the risk of disappearance of non-Lansing ones (Table 1a), producing

nearly three times as many descendants as non-Lansing populations (Table 1b), for up to a 20% faster growing

population (Table 1c). Thus, although the Lansing effect gives way to a significant proportion of progeny with an

extremely low fitness (xd = 0), pro-ageing populations show a decrease in the risk of collapse. Moreover, we observe a

slightly better growth of the population, independent of the magnitude of the Lansing effect (Sup. Figure 1).
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Table 1: Populations with Lansing effect are favorably

selected under logistic competition when the mutation rate

is non-zero. p is the mutation rate and c the intensity of the

logistic competition. For each couple (p, c), 100 independent

simulations were run with 500 individuals per population at

t0 of which traits are (1.5; 1.3)Lansing and (1.5; 0.83)non-Lansing so

that their respective Malthusian parameters are equal. Each

simulation corresponds to 2.105 events of birth or death.

Table (a) shows the ratio of Lansing and non-Lansing

populations (out of 100 simulations in each case) that did collapse by the end of the simulation. For the lowest competition, none of the

populations collapsed within the timeframe of simulations (-). For an intermediate value of competition, approximately less than half of Lansing

populations disappear, relative to non-Lansing ones. Table (b) shows the ratio of the number of individuals generated between Lansing and

non-Lansing populations. On average, Lansing populations generate approximately twice as many individuals as non-Lansing ones. (c) On

average, Lansing populations grow 20% more than the non-Lansing. Values highlighted in green are discussed further below.

Ageing populations show higher evolvability than non-ageing ones.

In order to understand the evolutionary success of a characteristic that seems to decrease an organism’s fitness, we

computed the average Malthusian parameter of each population through time. We had previously identified that this

intermediate set of c and p was associated with the highest success rate of Lansing bearing populations and

presented the results for this set (highlighted in green, Table 1). First, we observe that, on average, Lansing

populations (blue) grow while non-Lansing ones (red) decrease in size (Figure 3a - blue and red curves represent

deciles 1, 5 and 9). In the simulations where both populations coexist, the higher fitness of the Lansing population is

marginal, with these populations growing 20% more than the non-Lansing population (Figure 3b). This higher success

rate seems to be driven by a faster and broader exploration of the Malthusian parameter space in the Lansing

population (Figure 3c). This maximization of the Malthusian parameter is not associated with any significant

difference of individual lifespan (time of death - time of birth) distributions of either population (Figure 3d). Although

subjected to the same competition c, the distribution of the progeny from non-Lansing populations is essentially that

of the parental trait in the first 5 generations, while Lansing progenies (not affected by the Lansing effect; we

excluded progeny with xd = 0 for the comparison) explore a broader part of the trait space (Figure 3e). Interestingly,

low fitness progeny (xd = 0) represents up to 10% of the population for a significant amount of time (Figure 3f). As a

consequence, Lansing populations reach the equilibrium trait faster than the non-Lansing ones (Figure 3g). Thus, the

relatively higher success rate of Lansing bearing populations seems to be associated with a higher genotypic diversity.

This, in theory, leads to a broader range of fitness types. The “optimal” fitness is therefore achieved earlier (or more

easily), thus explaining the relative success of the population. This is an example of a population that demonstrates a

greater ability to evolve (i.e. the population “possesses” the attribute termed “evolvability”).
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Figure 3: The Lansing effect maximizes populational survival by increasing its evolvability. 100 independent simulations were run with a

competition intensity of 9.10-4 and a mutation rate p = 0.1 on a mixed population made of 500 non-Lansing individuals and 500 individuals

subjected to such effect. At t0, the population size exceeds the maximum load of the medium thus leading to a population decline at start. At t0,

all individuals are of age 0. Here, we plotted a subset of the 100.106 plus individuals generated during the simulations. Each individual is

represented by a segment between its time of birth and its time of death. In each graph, blue and red curves represent deciles 1, 5 and 9 of the

distribution at any time for each population type. (a) The higher success rate of Lansing bearing populations does not seem to be associated

with a significantly faster population growth but with a lower risk of collapse. (b) For cohabitating populations, the Lansing bearing population

(blue) is overgrowing by only 10% the non-Lansing one (red). (c) This higher success rate is associated with a faster and broader exploration of

the Malthusian parameter - surrogate for fitness - space in Lansing bearing populations (d) that is not associated with significant changes in

the lifespan distribution (e) but a faster increase in genotypic variability within the [0; 10] time interval. (f) This occurs although progeny from

physiologically old parents can represent up to 10% of the Lansing bearing population and leads to it reaching the theoretical optimum within

the timeframe of simulation (g) with the exception of Lansing progenies. (e-g) horizontal lines represent the theoretical limits for (xb - xd) in

Lansing (blue) and non-Lansing (red) populations.

The relative success of Lansing-bearing populations is not determined by initial trait

Our model explains, in mathematical terms, why organismal maintenance is evolutionarily linked to reproductive

mechanisms (or fertility). Nevertheless, the numerical exploration of our model’s behavior has been limited so far to

initial conditions, where the competing populations were of equal Malthusian parameters. The low number of

generations involved suggests that the conditions for the development, selection, and maintenance of mechanisms of

ageing (Lemoine, 2021) occurrs early on in evolutionary history, in a population of mixed individuals. As such, we

decided to test the evolution of the trait (xb - xd) in Lansing and non-Lansing bearing individuals of uniformly

distributed traits on [-10; +10] (Figure 4 - left panel). We chose to plot one (Figure 4 - central panel) of the hundred

simulations we made. This simulation is representative of the general results. Simulations show, in over 110 million

individuals, an early counter-selection of extreme trait values, typically (xb - xd) > 4. Interestingly, the whole space of

(xb - xd) trait is not explored evenly and the positive part of the trait space represents approximately 2/3 of the

individuals (although the branched evolution process led to both the positive (‘Too young to die’ – Figure 1a) and

negative (‘Menopause’ – Figure 1c) sides of the trait space). Both the Lansing and non-Lansing bearing populations

manage to co-exist until the end of the simulation, each reaching a distribution centered on their respective

theoretical solutions (Figure 4 - right panel): 0 for the Lansing (Méléard et al., 2019) and log(3)/2 for the non-Lansing.

In this context, where the initial condition does not restrict the competition to individuals of identical Malthusian
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parameters, the Lansing bearing population is significantly less successful than the non-Lansing one (representing

only one third of the final population size). As such, the evolution of a mixed population of individuals with a trait (xb -

xd) initially uniformly distributed on [-10; +10], with or without a strong inter-generational effect, will lead to a mixed

solution of individuals carrying a trait that converges towards the theoretical solution (such as xd ≲ xb), thus allowing

the maximization of fertility without cluttering the environment with non-fertile individuals. This result is very similar

to Weismann’s first intuition (Weismann, 1882). Nevertheless, this interpretation seems somehow finalist (i.e.

presumes that the effects necessitate the causes) and does not yet discriminate why the Lansing population is

evolutionarily successful in comparison to the non-Lansing population. Thus, we next explore the parameter of

evolvability further, which leads us to yet again conceptualize ageing as an adaptive trait.

Figure 4: Mixed populations lead to (xb - xd) theoretical limit in a limited time and cohabitation of Lansing and non-Lansing populations.

Starting with a homogenous population of 5000 Lansing bearing and 5000 non-Lansing individuals with traits uniformly distributed from -10 to

+10 (left panel), we ran 100 independent simulations on time in [0; 1000]. (center panel) Plotting the trait (xb - xd) as a function of time for one

simulation shows a rapid elimination of extreme traits and branching evolution. (right panel) The final distribution of traits in each population

type is centered on the theoretical convergence limit for each. Ntotal ≅ 110 million individuals, c = 9.10-4, p = 0.1

The fitness gradient of Lansing individuals is asymmetric

Populations that consist of Individuals who can transmit ageing ‘information’ to the next generation are relatively

more successful, within the framework of our model. Thus, to understand the origin of this pattern, we examined the

differential landscape of the Malthusian parameters as a function of the trait (xb, xd) for both Lansing and non-Lansing

populations. We built this landscape numerically using the Newton method implemented in Annex 2. First, it is

interesting to notice that, from the equations, we’ve derived the maximum rate of increase for Malthusian

parameters, this being 1/id with a maximum fitness value capped by ib (Annex 2). Consistent with our previous

characterization of the Trait Substitution Sequence in populations with Lansing effect (Méléard et al., 2019), Lansing
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individuals have a symmetrical fitness landscape (Figure 5, blue lines) centered on the diagonal xb = xd (Figure 5, green

diagonal). Along the latter, we can directly observe what is responsible for a “selection shadow”. As xband xd increase,

a mutation of the same magnitude has smaller and smaller effects on the fitness, thus allowing the accumulation of

mutations (Figure 5, blue arrows). The graphical representation of non-Lansing individuals is asymmetric— the

rupture of symmetry occurs on the xb = xd diagonal. For xd > xb (Figure 5, upper diagonal), fitness isoclines of the two

types of individuals fully overlap, thus showing an equal response of both Lansing and non-Lansing fitness to

mutations. In addition, as expected, the fitness of Lansing individuals is equal to that of non-Lansing ones for a given

trait. On the lower part of the graph, corresponding to xd < xb, non-Lansing fitness isoclines separate from that of

Lansing individuals, making the fitness of non-Lansing individuals higher to that of Lansing ones for a given trait.

Nevertheless, the fitness gradient is significantly stronger for Lansing individuals as represented within Figure 5 by the

yellow arrow and associated yellow area. For an individual of trait (xb = 2.45; xd = 1.05), a mutation making a

non-Lansing individual 0.1 in fitness (isocline 0.7 to isocline 0.8) will make a Lansing individual increase its own by

0.42 (isocline 0.1 to above isocline 0.5). With a 4-fold difference, the Lansing population produces 4 times as many

individuals as the non-Lansing ones for a given mutation probability. But this reasoning can be extended to any trait

(xb, xd) with or without Lansing effect. Organisms ageing rapidly - i.e. with low xb and xd - will see their fitness

significantly more affected by a given mutation h than individuals with slower ageing affected by the same mutation.

As such, because ageing favors the emergence of genetic variants, ageing populations are therefore more evolvable.

Figure 5: The Lansing effect is associated with an increased
fitness gradient. We were able to derive Lansing and
non-Lansing Malthusian parameters from the model’s
equations (see Annexe 1-2.3 and 1-5) and plot them as a
function of the trait (xb, xd). The diagonal xb= xd is drawn in light
green. The corresponding isoclines are overlapping above the
diagonal but significantly differ below, with non-Lansing fitness
(red lines) being higher than that of Lansing’s (light blue lines).
In addition, the distance between two consecutive isoclines is
significantly more important in the lower part of the graph for
non-Lansing than Lansing bearing populations. As such, a
mutation leading a non-Lansing individual’s fitness going from
0.7 to 0.8 (yellow arrow) corresponds to a Lansing individual’s
fitness going from 0.1 to 0.52. Finally, Hamilton’s decreasing
force of selection with age can be observed along the diagonal
with a growing distance between two consecutive fitness
isoclines as xb and xd continue increasing.
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Discussion

Ageing is, despite its phenotypic diversity (Jones et al., 2014), an evolutionarily conserved phenomenon. How

ageing evolved, however, is presently debated. Although early theories (Weisman, 1882) conceive ageing as adaptive,

ageing is now generally viewed as a side-effect, or byproduct, of diminished selective pressure and therefore not

adaptive.

The mathematical model we have presented here allows us to propose an alternative theory: ageing necessarily

emerges for any system showing the two minimal properties of life (Trifonov, 2011), namely a) reproduction with

variation (xb) and b) organismal maintenance (xd). We formally show that a haploid and asexual organism with these

two properties will rapidly evolve, within a few dozen generations, towards a solution such that (xb - xd) is strictly

positive, meaning that the risk of mortality starts to increase before the end of the fertility period. Importantly, the

time separating both parameters is independent from their absolute values and only depends on the rate of each,

respectively ib for xb and id for xd. This explains the observed trade-off between the fertility of an organism and its

lifespan. Thus, our work addresses outstanding questions outlined in the disposable-soma theory (Kirkwood, 1977) —

why and how a highly fertile organism either dies or ages earlier. Indeed, the lower limit condition for the production

of descendants by an individual in our model is xb * ib > 1. As such, an organism with low fertility (ib << 1) will obtain a

progeny only if fertile longer (xb >> 1). Conversely, a highly fertile organism will evolve towards its minimum viable

condition, requiring only a small xd. The apparent trade-off between fertility and longevity is thus solely a

consequence of xb * ib > 1 and lim+∞(xb - xd)t. Our model need not implement any constraint on resource allocations or

other tradeoffs for this effect to occur.

Because xb and xd converge, this favors the onset of a period in which an individual's fertility drops while its risk of

dying becomes non-zero; this is the organism entering the “senescence phase” corresponding to the Smurf phase

described in (Rera et al., 2012). This necessary convergence of fertility’s end and senescence’s start would thus

facilitate the selection of any molecular mechanism that couples the two processes (Echave, 2021). Additionally, and

in opposition to what is suggested in (Stearns, 1989), we observe that any two genes that are not functionally linked

can be co-selected.

While the Lansing effect somewhat decreases the fitness of individuals within a population, the probability of

survival of a population is significantly greater in Lansing populations when in competition with a non-Lansing

population of equal Malthusian parameter at t0. We observed, numerically, that this slight increase in survival is

mediated by an increase in the genetic variability generated within the population. Thus, we propose that such an

active mechanism of ageing can be selected during evolution through its ability to increase an organism's evolvability.

As mentioned above, evolvability is understood as the “the capacity to generate heritable selectable phenotypic

variation”(Kirschner and Gerhart, 1998). It is an interesting concept as it allows for a trait that has no direct effect on

fitness - even a negative one (Maynard Smith, 1971) - to be under strong selection, given its ability to generate

genetic or phenotypic variation. Furthermore, such a two-phase mechanism would be of great advantage in a

constantly varying environment. Indeed, when environmental conditions become less permissive, xd might be

affected and individuals would be pushed to enter the [xd; xb] space earlier, thus increasing the evolvability of the

population. This is what we observe in the laboratory where individuals submitted to harsh conditions will enter the

Smurf phase earlier than the control conditions (Rera et al., 2012).

Because we, without fail, observe the convergence of the end of fertility and the start of senescence, our

generalized model - supported by a formal analysis - predicts a high degree of conservation of ageing, specifically as

something that can be selected. This gives rise to organisms that lose homeostatic capacities amidst and during the
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period of fertility. We have identified a mathematical constraint that explains the biphasic pattern of ageing proposed

in (Tricoire and Rera, 2015), allowing for the positive selection of ageing through evolutionary time. More

importantly, the negative impacts of ageing on individuals’ fitness seem to be fully compensated at the population

level. Our work, at large, thus demonstrates the following: 1) fertility and senescence always converge if an organism

is both fertile and homeostatic, 2) ageing populations are more successful through time, and 3) more evolvable.

Therefore, we defend that ageing can, in theory, be re-conceptualized as adaptive.

This two phase model is very simple, yet able to describe all types of ageing observed in the wild, including a

rapid post-reproductive onset of mortality, a menopause-like mortality plateau, and what we’ve identified as a

two-phase Smurf-like process. The strong mathematical constraint between xb, xd, ib and id limits the possible

configurations. Additionally, our mathematical model of ageing, as a two-phase process (Tricoire and Rera, 2015),

shows that the mortality rate of the second phase of life is considerably constant across Drosophila lines of

significantly different life expectancies, ranging from 15 to 70 days. In these conditions, if id is a constant parameter,

can we experimentally affect xd by acting on ib and/or xd? Experimental evolution using only Drosophila progeny

conceived later in the life of the parent has shown that the onset of mortality, within these progeny, occurs rather

late, sometimes even after the end of the fertility period (Burke et al., 2016; Rose et al., 2002). Although the authors

report previous studies of their own with divergent results, other independent experiments have led to results

suggesting an increase of xd following an artificial increase of xb (Luckinbill and Clare, 1985; Sgro et al., 2000).

Without the need to implement resource allocation constraints, pleiotropic antagonistic functions nor late-life

accumulation of mutations, our model is able to predict the evolution of ageing while encompassing phenomena that

previously led to the two above-mentioned theories (mutation accumulation and antagonistic pleiotropy). More

importantly, our model suggests a central role of ageing in evolution, as the mathematical constraint we show is likely

to apply to any function affecting fertility and homeostasis. Could this broader application of constraints be

responsible for the stereotyped gene expression changes - reminiscent of the so-called hallmarks of ageing - we

recently described in Smurfs (Zane et al., 2023)? Although this model helps us to see the conditions under which

ageing is an evolutionarily adaptive force, it is still a toy model. The mortality and fertility functions we used are

binary and we are now developing more complex versions of the model, notably to assess the interactions existing

between ib, id, xb and xd but more importantly to assess their co-evolution with maturation, sex, ploidy or varying

environmental conditions.

Materials and Methods

See Annex 2 for code, packages and the software used.
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Annexe 1 : mathematical proofs - A scenario for an
evolutionary selection of ageing.

Roget T.∗, MacMurray C.†, Jolivet P.‡, Méléard S.§, Réra M.¶

September 18, 2023
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1 The mathematical individual-based bd model
We model an haploid and asexual population of individuals with evolving life-histories by
a stochastic individual-based model, similar to the one introduced in [?] and a particular
case of [?]. Each individual is characterized by its age and by a life-history trait x “
pxb, xdq P R2

` that describes for each individual the age xb at the end of reproduction
and the age xd when mortality becomes positive. The trait can change through time, by
mutations occuring continuously in time.

More precisely, the Markovian dynamics of the population process is defined as follows.
The individuals reproduce and die independently. An individual with trait pxb, xdq repro-
duces at rate ib as long as it is younger than xb. Further, he cannot die as long as it is
younger than xd and has a natural death rate id after age xd.

The life-history of an individual with trait x “ pxb, xdq is described by the couple of
birth and death functions pBx, D

c
xq defined on R` by

@a P R`, Bxpaq “ ib1aďxb
, Dc

xpaq “ id1aąxd
` cN. (1)

Here, the individual age a is the physical age, N the (varying) population size and c ą 0
the competition pressure exerted by an individual on another one. The death rate will be
extended to

Dc
xp0q “ `8, for xb ă 0 or xd ą 0,

meaning that an individual appearing by mutation will be able to survive only if the two
components if its trait are non negative.
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Note that the date of birth and lifespan of an individual are stochastic and the
law of the lifespan on an individual with trait x born at time τ is given by fxpsq “
Dc
xpsq expp´

şτ`s

τ
Dc
xpaqdaq.

We also take into account genetic mutations which create phenotypic variation, and which
added to competition between individuals, will lead to natural selection.
At each reproduction event, a mutation appears instantaneously on each trait xb and xd
independently with probability p P s0, 1r. If the trait xb mutates (resp. if xd mutates),
the trait of the newborn is xb ` hb ( resp. xd ` hd). The mutation effect hb (resp. hd)
is distributed following a centered Gaussian law with variance σ2. This Gaussian law is
denoted by kphqdh.

Note that a similar model has been defined in [?], including a Lansing effect on the
reproductive lineage of "old" individuals.

2 The Malthusian parameter

2.1 The demographic parameters
We now introduce the classical demographic parameters for age-structured (without com-
petition) population, where all individuals have the same trait x P R2

` (cf. [?]). We
are looking for a triplet pλpxq, Nx, φxq where λpxq P R is the Malthusian parameter,
Nxpaq, a P R` the stable age distribution and φxpaq, a P R` the reproductive value. They
describe the asymptotic growth of the population dynamics and measure the fitness of
life-histories: λpxq is the growth rate of the population at its demographic equilibrium,
Nx the age distribution of the population and φxpaq is the probability that an individual
with trait x has a newborn after age a. It is known (cf. [?]), that pλpxq, Nx, φxq is solution
of the direct and dual eigenvalue problems:

#

´BaNxpaq ´DxpaqNxpaq “ λpxqNxpaq

Nxp0q “
ş`8

0 BxpαqNxpαqdα, Nxp0q “ 1,
(2)

#

Baφxpaq ´Dxpaqφxpaq `Bxpaqφxp0q “ λpxqφxpaq

φxp0q “ 1,
(3)

where Bxpaq “ ib1taďxbu and Dxpaq “ id1taąxdu.

Proposition 2.1. For all x P R2
`, there exists a unique solution pλpxq, Nx, φxq P RˆL1pR`qˆ

L8pR`q of (2) and (3). The Malthusian parameter λpxq is the unique solution of the equa-
tion:

ib

ż xb

0
e´idpa´xdq`´λpxqada “ 1. (4)

The stable age distribution Nx and the reproductive value φx verify

Nxpaq “ e´idpa´xdq`´λpxqa, φxpaq “
ib1aďxb

Nxpaq

ż xb

a

Nxpαqdα. (5)

Proof. The proof is straightforward by solving the first equations in (2) and (3), and then
by using the equations satisfied by the boundary conditions.

2
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Remark 2.2. The quantities λpxq, Nx, φx are the eigenelements (cf. Proposition 2.1)
associated with the linear operator that generates the dynamics vxpt, aq of a non density
dependent population with age structure and birth-death rates given by pBx, Dxq. More
precisely, vxpt, aq satisfies the McKendrick Von-Foerster Equation

#

Btvxpt, aq ` Bavxpt, aq “ ´Dxpaqvxpt, aq, t ě 0, a ě 0
vxpt, 0q “

ş

R`
Bxpαqvxpt, αq.

The use of these quantities as an indicator of fitness is justified by the convergence of
e´λpxqt vxpt, aq to p

ş

R`
vxp0, αqφxpαqdαqNxpaq as t tends to infinity (cf. [?] for example).

2.2 Computation and regularity of the Malthusian parameter
The Malthusian parameter λpxq is defined as the unique real number such that

ib

ż xb

0
e´idpa´xdq`´λpxqada “ 1.

Let us introduce

U1 “ tx P R2
` : xb ă xdu , U2 “ tx P R2

` : xd ă xbu , H “ tx P R2
` : xb “ xdu. (6)

For all x P U1 YH, the Malthusian parameter λpxq satisfies:

ib

ż xb

0
e´λpxqada “ 1 “ ib

λpxq
p1´ e´xbλpxqq.

Then λpxq can be numerically computed by Newton’s method applied to the function
Kxb

pλq “ 1
λ
p1´ e´xbλq ´ 1

ib
, since λpxq is solution of Kxb

pλq “ 0, .
In the case where x P U2, we have

ib

ż xb

0
e´idpa´xdq`´λpxqada “ ib

ż xd

0
e´λpxqada` ib

ż xb

xd

e´idpa´xdq´λpxqada

“ ib

"

1
λpxq

p1´ e´λpxqxdq `
eidxd

λpxq ` id

`

e´pλpxq`idqxd ´ e´pλpxq`idqxb
˘

*

,

which has to be equal to 1. That involves a function

Hpxb,xdqpλq “
1
λ
p1´ e´λdq `

eidxd

λ` id

`

e´pλ`idqxd ´ e´pλ`idqxb
˘

´
1
ib
.

Newton’s method still allows to resolve numerically the equation and find λpxq.

Let us now prove some regularity properties of the Malthusian parameter. We show
that its gradient is a simple function of the stable age distribution, the reproductive value
and the mean generation time G defined for all x by

Gpxq “ ib

ż xb

0
aNxpaqda.
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Proposition 2.3. The function x P pR˚`q2 ÞÑ λpxq is of class C1 and we have:

@x P pR˚`q2, ∇λpxq “ 1
Gpxq

pibNxpxbq, idNxpxdqφxpxdqq .

Note that the derivatives are positive, meaning that xb Ñ λpxq and xd Ñ λpxq are non
decreasing.

Proof. Coming back to the definition of λ and using the the implicit function theorem,
we obtain that λ is differentiable and

@x P U1,
Bλpxq

Bxb
“

ibe
´λpxqxb

Gpxq
“
ibNxpxbq

Gpxq
; Bλpxq

Bxd
“ 0 “ Nxpxdqφxpxdq

Gpxq
;

@x P U2,
Bλpxq

Bxb
“

ibe
´idpxb´xdqe´λpxqxb

Gpxq
“
ibNxpxbq

Gpxq

Bλpxq

Bxd
“

ibide
idxd

şxb

xd
e´pid`λpxqqada

Gpxq
“
ibidNxpxdqφxpxdq

Gpxq
. (7)

We deduce that λ has continuous partial derivatives, which concludes the proof.

2.3 Viability set
The viability set is the set V Ă R2

` of traits x “ pxb, xdq such that λpxq ą 0. From
Equation (4), λpxq ą 0 if and only if the mean number Rpxb, xdq of descendants per
individual is larger than one, i.e if and only if we have:

Rpxb, xdq :“ ib

ż xb

0
e´idpa´xdq`da ą 1. (8)

A precise characterization of the set V is given in Lemma 2.4. In Figure 1, we represent
the set V for ib “ 1.5 and id “ 2.

Figure 1: The set V “ tpxb, xdq P R2
`; Rpxb, xdq ą 1u is the convex set delimited by the

black curve with equation Rpxb, xdq “ 1.

Lemma 2.4. We have:

V “ tx P R2
`;xb ą xd ´ logpidxd ` 1´ pib{idqq if xb ą xd; ibxb ą 1 if xb ď xdu,

and for all x P V, λpxq ď ib. Moreover, the map x P V ÞÑ ∇λpxq is Lipschitz continuous.

Proof. We are looking for which x “ pxb, xdq P R2
`, the mean number of descendants

Rpxb, xdq is greater than 1. Recall that Rpxq “ ib
şxb

0 exp
`

´id
şa

0 1αąxd
dα

˘

da. For x P
U1 (defined in (6)), we have Rpxq “ ibxb and Rpxq ą 1 if and only if ibxb ą 1. For
x P U2, we have Rpxq “ ibxd ` pib{idq ´ pib{idqe

´idpxb´xdq and Rpxq ą 1 if and only if
xb ą xd ´ logpidxd ` 1 ´ pib{idqq. We conclude for the first assertion arguing that the
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map λ ÞÑ ib
şxb

0 exp
`

´id
şa

0 1αąxd
idα ´ λa

˘

da is decreasing. Let us now show that λpxq is
upper-bounded by ib. Assume that there exists x P V such that λpxq ą ib. Then

1 “ ib

ż xb

0
e´idpa´xdq`´λpxqada ă ib

ż xb

0
e´ibada “ 1´ e´xb ,

which is absurd and allows us to conclude. The next claim is shown arguing that the map
x P V ÞÑ ∇λpxq is differentiable on U1 Y U2 and admits bounded partial derivatives.

Let us develop different examples:

In the case where ib “ 0.01 and id “ 1, we obtain

Rpxb, xdq ą 1 ðñ xd `
´

1´
´

2.01
¯´ 1

1.01
¯

ą 100,

which gives essentially that xd has to be greater than 100.
In the case where ib “ id , the formula is simpler. We obtain

Rpxb, xdq ą 1 ðñ xd `
1
ib

´

1´ 3´ 1
2

¯

ą
1
ib
.

We deduce
Rpxb, xdq ą 1 ðñ xd ą

1
ib
?

3
.

If we assume that ib “ id “ 1 then we obtain that

Rpxb, xdq ą 1 ðñ xd ą
1
?

3
“ 0.577.

Let us finally note that if we assume to be in the limit of the canonical equation and
then to be in the case when xb ´ xd “

log 3
2ib

, we also obtain a characterization of the
viability set using xb:

Rpxb, xdq ą 1 ðñ xb ą
1
ib

` 1
?

3
`

log 3
2

˘

.

For ib “ 1, that gives xb ą 1.126

3 Monomorphic equilibrium
Let us come back to the general case with competition, but for a monomorphic population
with trait x (and then without mutation). It can be proved (cf. [?] Proposition 2.4) that
for a large population, the stochastic process converges in probability to the solution of
the following Gurtin-MacCamy partial differential equation (see [?]).

#

Btnxpt, aq ` Banxpt, aq “ ´
´

Dxpaq ` c
ş

R`
nxpt, αqdα

¯

nxpt, aq

nxpt, 0q “
ş`8

0 Bxpαqnxpt, αqdα, pt, aq P R2
` .

(9)
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This equation describes the density-dependent dynamics of a large population with trait
x (without mutation). The trait x P R2

` being given, let us study the positive equilibria
of the equation

For x P V , Equation (9) admits a unique non-trivial solution:

Proposition 3.1. For all x P V, there exists a unique globally stable equilibrium nx to
Equation (9), i.e a solution of

#

´Banxpaq ´
´

Dxpaq ` c
ş

R`
nxpαqdα

¯

nxpaq “ 0
nxp0q “

ş`8

0 Bxpαqnxpαqdα,
(10)

which satisfies λpxq “ c
ş

R`
nxpαqdα.

Note that
nxp0q “

λpxq

c
ş`8

0 Nxpαqdα
.

Proof. The existence part of the proof is trivial from (2) and Proposition 2.1 using that
V “ tx P R2

` : λpxq ą 0u. The long-time behavior of the solutions of (9) is studied in [?,
Section 5.4].

4 Canonical equation

4.1 Invasion fitness
We now compute the invasion fitness function associated with the individual-based model.
We use the definition of invasion fitness given in [?]. The invasion fitness 1 ´ zpy, xq of
a mutant with trait y in a resident population with trait x is defined as the survival
probability of an age-structured branching process with birth rates Bxpaq and death rates
Dxpaq ` c

ş

R`
nxpaqda.

Proposition 4.1. Let y P pR˚`q2 and x P V, we have

1´ zpy, xq “
”λpyq ´ λpxq

ib

ı

`
.

Proof. The proof is a direct application of Equation (3.6) in [?].

4.2 Trait Substitution sequence and Canonical equation
For this part, we refer principally to [?] where the Theory of Adaptive Dynamics is
rigorously developed for general age-structured populations.

We introduce the canonical equation describing the evolution of the trait x “ pxb, xdq
at a mutation time-scale, under the assumptions of adaptive dynamics (large population,
rare and small mutation, invasion and fixation principle, as well known since Metz et al.
[?], Dieckman-Law [?]). In [?], it is shown that this equation can be obtained as a two-step
limit from the individual based model. The first step consists in defining the Trait Substi-
tution Process describing the successive advantageous mutant invasions in monomorphic
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populations at equilibrium. It is obtained as support dynamics of the measure-valued
limit of the rescaled population process (at the mutation time-scale), when mutations are
rare (but not small). The measure-valued limiting process is rigorously derived from the
individual-based model in [?] Section 3. It jumps from a state δxpdzqsnxpaqda to a state
δypdzqsnypaqda. The trait support process takes values in V and its dynamics is described
as follows.
Definition 4.2. The Trait Substitution Sequence is the càdlàg process pXt, t ě 0q with
values in V whose law is characterized by the infinitesimal generator L defined for all
bounded and measurable function ϕ : V Ñ R by:

Lϕpxq “

ż

R2
pϕpx` ph1, h2qq ´ ϕpxqq

”λpx` ph1, h2qq ´ λpxq

ib

ı

`

λpxq

c
ş`8

0 Nxpaqda
µpdh1, dh2q,

where µpdhq “ δ0pdh2qkph1qdh1`δ0pdh1qkph2qdh2
2 and the distribution k has been defined in Sec-

tion 1.
Note that since by Proposition 2.3, the partial derivatives of λ are positive, then the

increment λpx`ph1, h2qq´λpxq is non negative if and only if h1 and h2 are non negative.

The second step consists in assuming that mutation amplitudes are small and of order
ε, for ε ą 0. We then define the rescaled process Xε by Xεptq “ εXp t

ε2
q. introduce the

Canonical Equation that describes the limit behaviour of the Trait Substitution Sequence
when mutations are small.
Proposition 4.3. Let T ą 0. Assume that Xεp0q converges to x0 P V in probability.
Then the sequence of processes pXεqε converges in law in the Skorohod space Dpr0, T s ,Vq
to the solution pxptq, t ě 0q of the ordinary differential equation:

dx
dt “

λpxq

4c
ş`8

0 Nxpαqdα

∇λpxqσ2

ib
, x P V Ă R2

` (11)

Recall that the Malthusian parameter λpxq is defined in (4), the stable age distribution
Nx is defined in (5) and σ2pxq denotes the variance of the mutation kernel. Recall that
(see Proposition 2.3)

∇λpxq “ 1
Gpxq

pibNxpxbqq, idNxpxdqφxpxdqqq . (12)

It describes the strength of selection at ages xb and xd. Hence, this canonical equation
allows to interpret the age specific strength of selection at ages xb and xd as the evolution
speed of the traits xb and xd respectively, under the assumptions of adaptive dynamics.

Proof. The proof is classical and can be easily adapted from that of [?, Theorem 4.1].
The canonical equation only charges the set V Ă R2

` (defined in Section 2.1) and writes
as follows:

dx
dt “ ´∇yzpx, xq

nxp0q
2

ż

R`

h2kphqdh, x P V . (13)

The set V is the set of traits that admit a positive stable monomorphic equilibrium nx
in a such way that nxp0q equals the birth rate of a mutant (see Proposition 3.1); σ2 is
the variance of the mutations and 1 ´ zpy, xq is the invasion fitness. Computing these
parameters gives (11).
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In Figure 2, we present a simulation of a solution of (11). We observe that the traits

Figure 2: Simulation of the canonical equation with x0 “ p3.5, 1.3q and ib “ id “ 1. (a):
Dynamics of xb. (b): Dynamics of xd. (c): Dynamics of xb ´ xd, the black curve has equation
y “ logp3q{2.

xb and xd increase with time (cf. Figure 2 (a),(b)), with decreasing speed tending to zero.
The trait xbptq ´ xdptq converges to some positive number (cf. Figure 2 (c)) that we can
rigorously compute. That is the aim of the next section.

4.3 Long-time behaviour of the canonical equation
In this section we study the long-time behaviour of the solutions of the Canonical Equation
(11). We prove the following theorem.

Theorem 4.4. Let x0 P V and let pxptq, t ě 0q be the solution of (11) started at x0 P V.
Then we have:

xbptq ´ xdptq ÝÑ
tÑ`8

logp1` ib`id
id
q

ib ` id
.

We first prove the following lemma. We always denote U1 “ tx P V : xb ă xdu,
U2 “ tx P V : xd ă xbu and H “ tx P V : xd “ xbu.

Lemma 4.5. Let x0 P V and let pxptq, t ě 0q be the solution of (11) started at x0 P V.
Then we have:

(i) There exists T ą 0, such that for all t ě T , xptq P U2 YH.

(ii) There exists C ą 0 such that for all t ě 0, |xbptq ´ xdptq| ă C,

(iii) We have xbptq increases to `8, xdptq increases to `8 and λpxptqq Ñ ib as tÑ `8.

Proof. For all x P V , let us define:

vpxq “
λpxq

ş`8

0 h2kphqdh

2ibcGpxq
ş`8

0 Nxpαqdα
.

and we remark that there exist vpx0q, vpx0q ą 0 such that vpx0q ď vpxq ď vpx0q.
(i): Let T :“ inftt ě 0 : xptq P U2 Y Hu P r0,`8s. We first show that T ă `8. If
x0 P U2 Y H, it is obvious. If x0 P U1, assume that T “ `8. Then for all t ě 0,
xdptq “ x0

d. Indeed, as soon as xb ă xd, φpxdq “ 0 and the trait xd does not move (see
(7)). We obtain that

@t ě 0, dpxbptq ´ xdptqq
dt “

dxbptq
dt ě v1pxqibe

´λpxqxb ě vpx0
qibe

´λpxqxb ą 0,

that allows us to obtain the contradiction. So we have T ă `8. We conclude the proof
arguing that for all t ě 0 such that xptq P H, dxdptq{dt “ 0 and dxbptq{dt ą 0.
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(ii): By (i), we assume without loss of generality that pxptq, t ě 0q Ă U2YH. By Equation
(11), we obtain that:

dpxbptq ´ xdptqq
dt “ ibvpxptqq

˜

e´idpxbptq´xdptqq´λpxqptqxbptq ´ id

ż xbptq

xdptq

e´idpa´xdptqq´λpxptqqada

¸

“ ibvpxptqq

ˆ

e´idpxbptq´xdptqq´λpxqptqxbptq

´
ide

idxdptq

id ` λpxptqq
pe´pid`λpxptqqqxdptq ´ e´pid`λpxptqqqxbptqq

˙

“
ibvpxptqq

id ` λpxptqq

`

p2id ` λpxptqqqe´idpxbptq´xdptqq´λpxptqqxbptq ´ ide
´λpxptqqxdptq

˘

“
ibidvpxptqqe

´λpxptqqxdptq

id ` λpxptqq

ˆ

2id ` λpxptqq
id

e´pid`λpxptqqpxbptq´xdptqq ´ 1
˙

.

(14)
By (14) and using the fact that for x P V , 0 ă λpxq ď ib (cf. Lemma 2.4), we obtain that

dpxbptq ´ xdptqq
dt ď

ibidvpxptqqe
´λpxptqqxdptq

id ` λpxptqq

ˆ

2id ` ib
id

e´idpxbptq´xdptqq ´ 1
˙

.

From the previous inequality, we deduce that on the set
#

t ě 0 : xbptq ´ xdptq ą
logp2id`ib

id
q

id

+

,

the quantity xbptq ´ xdptq is decreasing, which allows us to conclude.
(iii): As before and by (i), we assume without loss of generality that pxptq, t ě 0q Ă U2YH.
Using (ii) and since λpxq ď ib (cf. Lemma 2.4), we obtain that

dxbptq
dt “ ibvpxptqqe

´idpxbptq´xdptqqe´λpxptqqxbptq

ě ibvpx
0
qe´Ce´ibxbptq,

that allows to conclude that xbptq increases to `8 and by (ii) we also have a similar
behavior for xdptq. We now prove that λpxptqq Ñ ib as tÑ `8. Let us recall that for all
t ě 0, λpxptqq is the unique solution of

ib

ż xbptq

0
e´idpa´xdptqq`´λpxptqqada “ 1,

that we rewrite

ib

ż xdptq

0
e´λpxptqqada` ib

pe´λpxptqqxdptq ´ e´idpxbptq´xdptqq´λpxptqqxbptqq

id ` λpxptqq
“ 1. (15)

The map t ÞÑ λpxptqq is clearly increasing (using (7) and the positivity of x1bptq and x1dptq)
and bounded by ib. So there exists λ˚ ą 0 such that λpxptqq Ñ λ˚. By taking the limit
tÑ `8 in (15) and using the previous part of the proof, we deduce that

ib

ż `8

0
e´λ

˚ada “ 1,

and λ˚ “ ib that concludes the proof.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2023. ; https://doi.org/10.1101/2022.03.11.483978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483978
http://creativecommons.org/licenses/by-nc-nd/4.0/


We now prove Theorem 4.4.

Proof of Theorem 4.4. By Lemma 4.5 (i), we assume without loss of generality that
pxptq, t ě 0q Ă U2 YH, i.e that for all t ě 0, xbptq ´ xdptq ě 0. We recall that Equality
(14) gives:

dxbptq ´ xdptq
dt “

ibidvpxptqqe
´λpxptqqxdptq

id ` λpxptqq

ˆ

2id ` λpxptqq
id

e´pid`λpxptqqpxbptq´xdptqq ´ 1
˙

. (16)

We define f, h : R` Ñ R by:

fptq “
ibidvpxptqqe

´λpxptqqxdptq

id ` λpxptqq

and
hptq “

2id ` λpxptqq
id

e´pid`λpxptqqqpxbptq´xdptqq ´
2id ` ib
id

e´pid`ibqpxbptq´xdptq.

Note that hptq Ñ 0 as tÑ `8 using Lemma 4.5 (ii). Let us also define uptq “ xbptq´xdptq.
So Equation (16) rewrites

duptq
dt “ fptq

ˆ

2id ` ib
id

e´pid`ibquptq ´ 1` hptq
˙

.

We deduce that for all ε ą 0, there exists t0 ą 0 such that for all t ě t0,

fptq

ˆ

2id ` ib
id

e´2pib`idquptq ´ 1´ ε
˙

ď
duptq
dt ď fptq

ˆ

2id ` ib
id

e´pid`ibquptq ´ 1` ε
˙

. (17)

Let us consider the differential equation

dwptq
dt “ fptq

ˆ

2id ` ib
id

e´pib`idqwptq ´ 1` ε
˙

.

By using the change of variables s “ epib`idqw, we solve the previous equation and we find
that there exists a constant Cpx0q such that

wptq “
1

ib ` id
log

ˆ

2id ` ib
idp1´ εq

´
Cpx0q

1´ ε exp
ˆ

´pib ` idqp1´ εq
ż t

0
fpsqds

˙˙

.

We conclude by proving that the integral above tends to infinity as t tends to infinity.
First, the inequality xbptq ě xdptq implies that

fptq ě
ibidvpxptq

id ` λpxptqq
e´λpxptqqxbptq.

Moreover, Equation (11) gives that

vpxptqqe´λpxptqqxbptq “ eidpxbptq´xdptqqx1bptq.

Since λpxptqq ď ib, we obtain that

fptq ě
ibid
ib ` id

x1bptq

10
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and that
ż t

0
fpsqds ě

ibid
ib ` id

xbptq ÝÑ
tÑ`8

`8.

By (17), we conclude that for all ε ą 0:

1
ib ` id

log
ˆ

2id ` ib
idp1` εq

˙

ď lim inf
tÑ`8

uptq ď lim sup
tÑ`8

uptq ď
1

id ` ib
log

ˆ

2id ` ib
idp1´ εq

˙

that concludes the proof.

optimalnolans.png

Figure 3: Optimal configurations as xb and xd tend to infinity.

5 On the selection of Lansing effect
In this section, we ask the question of the apparition of a pro-senescence and non-genetic
mechanism similar to the Lansing effect [?, ?]. We recall that the Lansing effect is the
effect through which the progeny of old parents do not live as long as those of young
parents.

We will show that the Lansing effect can represent a selective advantage, as an accel-
erator of the evolution.

5.1 The bd model with Lansing effect
The bd-model with Lansing effect is defined by modifying the bd-model that we introduced
in Section 1. It was introduced and studied in details in [?] in the case where ib “ id “ 1.
The authors show that under the assumptions of the adaptive dynamics theory (large
population, rare and small mutations), the evolution of the trait pxb, xdq is described by
the solutions a differential inclusion which reach the diagonal tpxb, xdq P R2

` : xb “ xdu
and then stay on it. The formula given here are generalized to the case where ib ‰ id.

The model. We assume that an individual which reproduces after age xd transmits to
its descendant a shorter life-expectancy. If an individual with trait x “ pxb, xdq reproduces
at age a, the trait of its descendant is determined by a two-phases mechanism. The first
phase is non-genetic and modifies the trait x: if a ă xd we define x̃ “ x but if a ą xd,
x̃ “ pxb, 0q. The second phase corresponds to genetic mutations which modify the trait x̃
similarly as in Section 1. Hence, on configurations tpxb, xdq P R2

` : xb ă xdu, the dynamics
is similar as in the model described in Section 1. Let us note that the population is then
composed of two subpopulations, a population with traits tpxb, xdq, xb ą 0, xd ą 0u and a
population with traits tpxb, 0q, xb ą 0u.
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Demographic parameters. We now give for the model with Lansing effect, the
analogous of the demographic parameters introduced in Section 2. We refer to [?] for the
justification. We denote by λ`pxq the Malthusian parameter describing the asymptotic
growth of the population with Lansing effect. It is solution of

ib

ż xb^xd

0
e´λ

`pxqada “ 1.

Then it can been easily computed by Newton’s method (as seen in Section 2) and the set
of viability V` is simple. It is composed of the traits x “ pxb, xdq such that

xb ^ xd ą
1
ib
.

The associated stable age distribution N `
xpaq “ pN

`,1
x paq, N

`,2
x paqq satisfies

N `,1
x paq “ ib e

´idpa´xdq`´λ
`pxqa, N `,2

x paq “ ib F pλ
`
pxqqe´pid`λ

`pxqqa,

where F is some function that we don’t detail here (cf. [?, Proposition 3.5]). The functions
N `,1
x and N `,2

x describe the stable age distributions for populations with traits pxb, xdq and
pxb, 0q respectively. The generation time G`pxq is given by

G`
pxq “

ż xb^xd

0
a ib e

´idpa´xdq`´λ
`pxqada “ ib

ż xb^xd

0
ae´λ

`pxqada. (18)

We observe that the Malthusian parameter λ`pxq and the mean generation time G`pxq
only take into account the individuals reproducing before age xb ^ xd.

Evolution of the trait with Lansing effect. Let us now describe the behaviour of
the trait.
On the subset txb ă xdu, the Lansing effect doesn’t act. So, the dynamics is similar as the
one described in the above sections. The trait dynamics is described by the differential
equation

dxbptq
dt “

Bλ`pxq

Bxb

λ`pxq

2ib c
ş

R`
pN `,1

x `N `,2
x qpaqda

σ2
pxq,

dxdptq
dt “ 0.

Thus, the trait xb increases while the trait xd stays constant.
On the subset txb ą xdu, only individuals breeding before the age xd will have viable
offspring. Thus, there is no selective advantage in extending the reproduction phase
by increasing xb, but only in increasing survival by increasing xd. More precisely, on
txb ă xdu, we have:

dxdptq
dt “

Bλ`pxq

Bxd

λ`pxq

2ib c
ş

R`
pN `,1

x `N `,2
x qpaqda

σ2
pxq,

dxbptq
dt “ 0. (19)

Indeed, the derivatives of the fitness are given as follows (see [?] Proposition 4.1).

@x P U1,∇λ`pxq “

˜

ibe
´λ`pxqxb

G`pxq
, 0
¸

; @x P U2,∇λ`pxq “

˜

0, ibe
´λ`pxqxd

G`pxq

¸

.
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We observe that the trait xd increases while the trait xb stays constant. Hence, whatever
the initial condition, the trait x reaches in finite time the diagonal txb “ xdu and then
stays on it. On this diagonal the trait can evolve at different speeds (the dynamics is not
unique): the global behavior of the trait is described by a differential inclusion (cf. [?,
Theorem 4.17]).

5.2 Selection for Lansing effect
Let us first note that for Non Lansing and Lansing populations, as observed in the study
of adaptive dynamics, the long time strategy leads to traits xb and xd going to infinity,
with xb´xd “ logp1` ib`id

id
q{pib` idq in the Non Lansing case and xb “ xd in the Lansing

case (see [?, Theorem 4.17] in that case). It is then easy to deduce that in both cases, the
Malthusian parameter, which has been proved to be less than ib, converges to ib when t
tends to infinity. Therefore the evolution will give the same selective advantage to both
populations, making possible the cohabitation of the two populations. In addition, we
observe that the partial derivatives of the Malthusian parameters with respect to xb or xd
(in both cases) are positive, meaning that the convergences are increasing. Let us consider
a monotype population with trait pxb, xdq P U2, then by definition, we obtain that

λn`pxq ą λ`pxq

at time 0. Thus there are periods where the Lansing fitness will increase much more than
the Non Lansing one.

In order to assess the relative evolutionary success of Non Lansing/Lansing popula-
tions, we consider a population composed of two sub-monomorphic populations with traits
respectively x` “ px`b, x`dq and xn` “ pxn`b , xn`d q, the first one subject to the Lansing effect
and the second one which is not affected by this senescence effect, both subjected to the
same competitive pressure. The traits have been chosen such that the two sub-populations
have the same darwinian fitness λn`pxn`q “ λ`px`q. In each sub-population, the dynamics
is described either in Section 1 (without Lansing effect) or in Section 5.1 (with Lansing
effect). Let us first note that since λn`pxn`q “ λ`px`q and since by definition,

ib

ż x`
d

0
e´λ

`px`qada “ 1 “ ib

ż xn`
d

0
e´λ

n`pxn`qada` ib

ż xn`
b

xn`
d

e´idpa´x
n`
d qe´λ

n`pxn`qada,

we deduce immediately that
xn`b ą x`d ą xn`d .

We observe the isoclines of λn` and λ` when they have the same values. Although
they are very simple (horizontal or vertical lines) in the Lansing case, and in the region
U1 for the non-Lansing case, they have a more complicated form in the region U2 for the
non-Lansing case (cf. Figure 5 of the main paper).

Let us consider the points xn` P U2 such that λn`pxn`q has a fixed constant value.
Using the Implicit Function Theorem, we know the existence of a real-valued smooth
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function ϕn` such that for all these points, xn`d “ ϕn`px
n`
b q. Further,

ϕ1n`px
n`
b q “ ´

Bλn`

Bxn`
b

Bλn`

Bxn`
d

pxn`q.

The previous computations showed that the partial derivatives of λn` are positive, and
then that ϕ1n`px

n`
b q ă 0 , yielding the function ϕ` to be decreasing on U2. Moreover, the

exact computation gives

ϕ1`px
n`
b q “ ´

ibe
´idpx

n`
b ´x

n`
d qe´λpx

n`qxn`
b

ibide
idx

n`
d

şxn`
b

xn`
d
e´pid`λn`pxn`qqada

ě ´
1

idpxn`b ´ x
n`
d q
.

The last inequality explains the almost vertical tangent observed when xn` is close to the
diagonal (see Figure 5 of the main paper).
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Annexe 2: codes for simulations and data visualization

*Package IBMPopSim (R package IBMPopSim v0.3.1):

https://cran.r-project.org/web/packages/IBMPopSim/index.html

*Github repository for simulation results and code:

https://github.com/MichaelRera/EvoAgeing/tree/main/article_sims

*Environment for simulations using IBMPopSim:

https://mybinder.org/v2/gh/MichaelRera/EvoAgeing/HEAD

.Exploring parameters for Lansing populations Modele_Lansing_evo.ipynb

.Exploring parameters for non-Lansing populations Modele_nonLansing_evo.ipynb

.Lansing / non-Lansing competition for equal Malthusian parameters L_nL_compet_eqMalth.ipynb

.Lansing / non-Lansing competition (xb-xd) € [-10; 10] L_nL_compet_heteroPop.ipynb

Supplementary figures

Supplementary figure 1: The magnitude of the Lansing effect does not influence the outcome of evolution. 100 independent simulations

were run for each Lansing effect magnitude ranging from 0 (no Lansing effect) to 1 (progeny from parents age € [xd; xb] have xd = 0), starting

with 500 Lansing (1.5; 1.3) and 500 non-Lansing (1.5; 0.83) individuals. We plot here the distribution density of xb - xd at the end of the

simulation (individuals born in the time interval [990; 1000]), for Lansing populations (blue) and non-Lansing ones (red). Surprisingly, the

magnitude of the Lansing effect does not seem to affect the optimal xb - xd solution value.
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Supplementary figure 2: Evolution of the average Malthusian parameter value in Lansing and non-Lansing populations as a function of time.

p is the mutation rate and c is the logistic competition intensity. Individual values are plotted, the line represents the average value amongst

populations. In all conditions with p > 0, the Malthusian parameter grows faster and remains slightly higher in the Lansing populations than in

the non-Lansing ones.

Supplementary figure 2: Evolution of the Lansing and non-Lansing populations size as a function of time. p is the mutation rate and c is the

logistic competition intensity.
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