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In insurance companies, the ruin probability is considered as the one of the main risk measures developed in risk theory, and the problems of its calculation and approximation have attracted a lot of attention. Statistical estimation have been investigated on the ruin probability in infinite time for heavy-tailed insurance loses. However, these estimation suffer heavily from under-coverage or have a bias problem. We therefore need another method for estimating the probability of ruin in infinite time for heavy-tailed losses. This is why, in this paper, we propose a reduced-bias estimator for the ruin probability in infinite time for heavy-tailed distributions with an index in the upper half of the unit interval. Our approach is based on a reduced-bias estimator for this specific index in the context of heavy-tailed distributions. Additionally, we demonstrate the behavior of the proposed estimator and compare it to the classical estimator in terms of bias and mean squared error. The simulation results clearly show that our bias reduction methodology performs well.

Introduction

In insurance, risk is defined as the probability that an insurance company's reserve, which is the difference between the total premiums collected and the total amount to be paid to claimants, will become negative at a given time. At that moment, we say that there is ruin, because of a miscalculation of the contribution rate of the insureds or because of too large claims to cover a risk. We now recall the definition of a standard mathematical model for insurance risk (see, for example, Čizěk et al (2005), p. 345). The initial capital of the insurance company is denoted u. The number of claims during the period (0, t], denoted by Mt is described by a Poisson process with a fixed intensity (rate) λ > 0.

We define a sequence of independent and identically distributed (i.i.d.) non-negative random variables (rv) {X i } ∞ i=1 with distribution function F 1 representing the severities of the losses, with an unknown mean µ 1 < ∞. We assume that X i 's are independent of Mt. Suppose that the insurer collects a premium at a constant rate of c per unit time and that the so-called net profit condition is satisfied, i.e. c/λ > µ 1 . The classical risk process {Rt} t>0 is given by

Rt := u + ct - M t i=1 X i , t > 0.
We are mainly interested in the probability that Rt is negative at some time t before or at a time horizon T. Explicitly, this probability can be written as follows ϕ (u, T ) := P inf 0<t≤T

Rt < 0|R 0 = u .

The ruin probability in infinite time is defined by

ϕ (u) := lim T -→∞ ϕ (u, T ) .
Suppose now that F 1 is heavy-tailed, that is lim

x-→∞ exp (δx) (1 -F 1 ) = ∞ for all δ > 0.

(1.1)

The class of regularly varying functions provides good examples of heavy-tailed models. The following models can be mentioned : Pareto, Burr, Student, Lévy-stable and log-gamma. (see, for example, [START_REF] Beirlant | Heavy-tailed distributions and rating[END_REF]). In the rest of the article, we restrict ourselves to this class of distributions. In other words, we assume that the survival function 1 -F 1 is smoothly varying at infinity with index -1/γ < 0, that lim t-→∞ 1 -F 1 (tx) 1 -F 1 (t) = x -1/γ for any x > 0.

(1.2)

For more details on these models, we refer to [START_REF] Bingham | Regular Variation[END_REF], [START_REF] Rolski | Stochastic Processes for Insurance and Finance[END_REF] and [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields[END_REF].

It has been shown that for large initial reserve u, the ruin probability ϕ (u) may be approximated, under assumption, by

ϕ (u) := c λ -µ 1 -1 ∞ u (1 -F 1 (x)) dx,
(see, e.g., [START_REF] Asmussen | Ruin Probabilities[END_REF], p. 251). This latter equation may be rewritten as

ϕ (u) = µ 2 ω -µ 1 , (1.3)
where µ 2 := E (Y ) with Y := (X -u) + = max (X -u, 0) and ω := c/λ. Then, 1 -F 2 is also a regularly varying at infinity with the same index -1/γ < 0, that is

lim t-→∞ 1 -F 2 (tx) 1 -F 2 (t) =
x -1/γ f or any x > 0.

(1.4)

Let, for 0 < s ≤ 1 Q i (s) := inf {x > 0 : F i (x) ≥ s} , i = 1, 2, be the generalised inverse functions (or quantile functions) pertaining to df F i , i = 1, 2.

From Corollary 1.2.10 (p.23) in de [START_REF] De Haan | Extreme Value Theory : An Introduction[END_REF], we have for any x > 0

lim s↓0 Q i (1 -sx) Q i (1 -s) = x -γ , i = 1, 2. (1.5)
By a change of variable, the expected values

µ i = ∞ 0 (1 -F i (x))dx, i = 1, 2 can be rewritten in term of the quantile function Q i as follows : µ i = 1 0 Q i (s)ds, i = 1, 2.
Thus, the ruin probability in the infinite time can be rewritten as :

ϕ (u) = 1 0 Q 2 (s)ds ω -1 0 Q 1 (s)ds . (1.6)
Notice that for fixed large u, we have

1 -F 1 (x) ∼ 1 -F 2 (x) as x -→ ∞,
and therefore

Q 1 (1 -s) ∼ Q 2 (1 -s) as s ↓ 0.

Estimating the ruin probability ϕ (u)

First, we fix an initial large reserve u. Let (X 1 , ..., Xn) and (Y 1 , ..., Yn) be two independent samples of risks X and Y respectively. The nonparametric estimators of the distribution functions F 1 and F 2 are respectively defined as

F 1,n (x) = n -1 n i=1 1 {X i ≤x} and F 2,n (y) = n -1 n i=1 1 {Y i ≤y} .
Thus, their respective corresponding empirical quantile functions are expressed by Q i,n (s) = inf{x; F i,n (x) ≥ s}, i = 1, 2 where 1 S is the indicator function of the set S. Denote by X 1,n ≤ ... ≤ Xn,n and Y 1,n ≤ ... ≤ Yn,n the order statistics associated respectively to the samples (X 1 , . . . , Xn) and (Y 1 , . . . , Yn). Therefore, Q 1,n (t) = X j,n and Q 2,n (t) = Y j,n for all t ∈ ((j -1)/n, j/n], and for all j = 1, ..., n.

For this, one natural candidate for the empirical estimator of ϕ(u) is obtained by replacing in (1.6) the true quantiles Q 1 (•) and Q 2 (•) with their respective sample quantiles Q 1,n (•) and Q 2,n (•) . We arrive at the following 'traditional' nonparametric ruin probability estimator :

ϕ n (u) = Y ω -X . (1.7)
where X := 1 n n j=1 X j and Y := 1 n n j=1 Y j are the sample estimators the mean of µ 1 and µ 2 respectively. Notice that for γ ≥ 1, the expected value of X (respectively of Y ) does not exist. Hence, our focus will be exclusively on those distributions with tail indices in the unit interval 0 < γ < 1.

Next, the random variable

√

n ϕ n (u) -ϕ (u) can be rewritten as :

1 ω -X (ω -µ 1 ) √ n Y -µ 2 (ω -µ 1 ) + X -µ 1 µ 2 .
By the law of large numbers (LLN), the random variable (ω -X) converges in probability to (ω -µ 1 ). Therefore the asymptotic normality of ϕn (u) follows directly from the classical Central Limit Theorem (CLT) applied to the sample mean X and Y . We have

√ n ϕ n (u) -ϕ (u) D → N 0, σ 2 ϕ , as n → ∞, (1.8) where σ 2 ϕ = 1 (ω -µ 1 ) 4 (ω -µ 1 ) 2 σ 2 2 + µ 2 2 σ 2 1 + µ 2 (ω -µ 1 ) σ 1,2 < ∞,
with σ 2 1 and σ 2 2 represent respectively the variances of X and Y and σ

1,2 = 1 0 1 0 (min(s, t) -st)dQ 1 (1 -s)dQ 2 (1 -t).
Note that in the case where tail index γ is in the lower haft of unit interval i.e 0 < γ < 1 2 , the second order moments for both random variables X and Y are finite. Therefore the asymptotic normality of ϕn (u) in (1.8) holds. This result is violated when the distribution of losses is heavy-tailed with index γ is in the upper half of the unit interval, that is 1/2 < γ < 1, since the asymptotic variance σ 2 ϕ is infinite, which is due in that case to the infiteness of the second order moments of the loss X. Then, ϕ (u) has to be estimated according to another approach that would guarantee the asymptotic normality.

To overcome to that situation, Rassoul (2014) used the extreme value theory by taking account the Hill's estimator [START_REF] Hill | A simple approach to inference about the tail of a distribution[END_REF] of tail index γ and introduced a semiparametric estimator for the ruin probability ϕ(u) for heavy tailed losses with infinite second order moments. The estimation of γ has been extensively studied in the literature and The Hill's estimator is the most popular estimator of positive tail index γ in the frameworks of extreme value theory and is defined as : Csörgö et al (1985) extended the Hill's estimator into a kernel class of estimators :

γ H 1,n,k := k -1 k i=1 j (log X n-j+1,n -log X n-j,n ) and γ H 2,n,ℓ := ℓ -1 ℓ i=1 j (log Y n-j+1,n -log Y n-j,n ) , for an intermediate sequences k = k (n), ℓ = ℓ (n) i.e., are sequence such that k → ∞, ℓ → ∞ and k/n → 0, ℓ/n → 0 as n → ∞. More generally,
γ K 1,n,k := k -1 k j=1 jK j k + 1 log X n-j+1,n X n-j,n and γ K 2,n,ℓ := ℓ -1 ℓ i=1 jK j ℓ + 1 log Y n-j+1,n Y n-j,n ,
where K is a kernel integrating to one. Note that the Hill estimator corresponds to the particular case where K = K := 1 {0,1} , with 1 {} the indicator function.

The Hill's estimator has been thoroughly studied, improved and even generalized to any real parameter γ. Its weak consistency was established under the regulary variying condition by [START_REF] Mason | Laws of large numbers for sums of extreme values[END_REF] assuming only that the underlying distribution is regularly varying at infinity. [START_REF] Deheuvels | Almost sure convergence of the Hill estimator[END_REF] proved the strong consistency of the Hill's estimator.

However, the asymptotic normality of Hill's estimator has been investigated, under various conditions on the distribution tail, by numerous researchers, including Csörgö and Mason (1985), [START_REF] Beirlant | Asymptotic normality of Hill's estimator[END_REF] and [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF].

Notice that µ 1 and µ 2 can be rewritten as :

µ 1 = 1-k/n 0 Q 1 (s) ds + k/n 0 Q 1 (1 -s) ds =: µ (1) 1 + µ (2) 1
and

µ 2 = 1-ℓ/n 0 Q 2 (s) ds + ℓ/n 0 Q 2 (1 -s) ds =: µ (1) 2 + µ (2) 2 .
By the used of extreme quantile estimators of Q 1 (1 -s) and Q 2 (1 -s) proposed by [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] as :

Q 1,n,k (1 -s) = (ns/k) -γ H 1,n,k X n-k,n and Q 2,n,ℓ (1 -s) = (ns/ℓ) -γ H 2,n,ℓ Y n-ℓ,n ,
respectively, alternative estimators for the means µ 1 and µ 2 are defined as follows :

μ1,n,k = μ(1) 1,n,k + μ(2) 1,n,k := n -1 n-k i=1 X i,n + k n X n-k,n 1 -γ H 1,n,k , and 
μ2,n,ℓ = μ(1) 2,n,ℓ + μ(2) 2,n,ℓ := n -1 n-ℓ i=1 Y i,n + ℓ n Y n-ℓ,n 1 -γ H 2,n,ℓ .
The estimators of the means has been studied and generalized in [START_REF] Necir | Estimating the conditional tail expectation in the case of heavytailed losses[END_REF], Deme et al (2013a), [START_REF] Deme | Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions[END_REF] and [START_REF] Deme | Estimation of risk measures from heavytailed[END_REF] to assess financial and actuarial risk measures.

As in (1.7), substituting µ 1,n and µ 2,n for µ 1 and µ 2 , respectively, on the right-hand side of the Equation (1.3), Rassoul (2014) introduced the following alternative estimator for the ruin probability ϕ (u) :

ϕ n,k,ℓ (u) := µ 2,n,ℓ ω -µ 1,n,k
for 1/2 < γ < 1.

(1.9)

Rassoul ( 2014) established the asymptotic normality of the estimator ϕ n,k,ℓ (u) under some restrictive assumptions.

The goal of this paper is twofold. First, we state an asymptotic normality result for exhibiting the bias term (Section 2)

and thus generalizing the one of [START_REF] Rassoul | Estimation of the Ruin Probability in Infinite Time for Heavy Right-Tailed Losses[END_REF]. Second, the precise knowledge of the first order of the bias allows us to propose a reduced-bias approach. The efficiency of our method is illustrated in a small simulation study in Section 3. All the proofs are postponed to Section 4.

Main Results

As usual in the extreme value framework, to prove asymptotic normality results, we need a second-order condition on tail the function

U i (x) = Q i (1 -1/x) , x > 1, i = 1
, 2, such as the following :

Condition R U i . There exist an function A i (x) → 0 as x → ∞ of constant sign for large values of x and a second-order parameter ρ i < 0 such that, for every x > 0.

lim t→∞ log U i (tx) -log U i (t) -γ log (x) A i (t) = x ρ i -1 ρ i , i = 1, 2.
Note that condition R U i implies that | A i | is regularly varying with index ρ i (see, e.g., Geluk and de Hann (1987)). It is satisfied for most of the classical distribution functions such as the Pareto, Burr, and Fréchet ones.

Asymptotic Results for the Estimator

ϕ n,k,ℓ (u) Theorem 1 Assume that F i satisfies R U i with γ ∈ (1/2, 1). Then for any sequence of integer k = k (n) and ℓ = ℓ (n) satisfying k → ∞, k/n → 0, √ kA 1 (n/k) = O (1), ℓ → ∞, ℓ/n → 0, √ ℓA 2 (n/ℓ) = O (1) and ℓ/k → θ < ∞, as n → ∞ ; we have : √ n ϕ n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U 1 (n/k) D = a 1 √ kA 1 (n/k) AB (γ, ρ 1 ) + a 2 θ (1/2-γ) √ ℓ A 2 (n/ℓ) AB (γ, ρ 2 ) + 3 j=1 a 1 W n,j + a 2 θ (1/2-γ) W n,j ,
where

AB (γ, ρ) = γρ (1 -ρ) (1 -γ) 2 (γ + ρ -1) ρ ∈ ρ 1 , ρ 2 ,
and

                           W n,1 = -n k 1-n k 0 Bn (s) Q 1 1 -n k dQ 1 (s), W n,2 = -γ 1-γ n k Bn 1 -k n , W n,3 = γ (1-γ) 2 n k 1 0 Bn (1 -sk/n) s d (sK (s)),                            W n,1 = -n ℓ 1-n k 0 Bn (s) Q 2 1 -n ℓ dQ 2 (s), W n,2 = -γ 1-γ n ℓ Bn 1 -ℓ n W n,3 = γ (1-γ) 2 n ℓ 1 0 Bn (1 -sℓ/n) s d (sK (s)), with a 1 = µ 2 (ω -µ 1 ) 2 , a 2 = 1 ω -µ 1 ,
and Bn is a sequence of Brownian, Bridges. Now, by computing the asymptotic variances of the different processes appearing in Theorem 1, we deduce the following corollary :

Corollary 1 Under the assumptions of Theorem 1, if

√ kA 1 (n/k) → λ 1 ∈ R and √ ℓA 2 (n/ℓ) → λ 2 ∈ R, we have √ n ϕ n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U 1 (n/k) D → N AB ϕ (γ, ρ 1 , ρ 2 ) , AV ϕ (γ)
where

AB ϕ (γ, ρ 1 , ρ 2 ) = a 1 λ 1 AB (γ, ρ 1 ) + a 2 θ (1/2-γ) λ 2 AB (γ, ρ 2 ), AB (γ, ρ i ) i = 1, 2, are as above, and
where

AV ϕ (γ) = γ 2 (1 -γ) 2 (2γ -1) κ 2 1 + κ 2 2 θ (1-2γ) + 2 κ 1 κ 2 + γ 2 (1 -γ) 4 κ 1 + κ 2 θ (1/2-γ) 2
.

Remark 1 In the case where k ∼ ℓ, as n → ∞, we have θ = 1 and the asymptotic variance

AV ϕ (γ) is equal to γ 4 (κ 1 + κ 2 ) 2 /(1 -γ) 4 (2γ -1).
Note that this result generalizes Tin [START_REF] Rassoul | Estimation of the Ruin Probability in Infinite Time for Heavy Right-Tailed Losses[END_REF] in the case of λ 1 ̸ = 0 and λ 2 ̸ = 0. The goal of the next section is to propose a reduced-bias estimator of the ruin probability ϕ (u).

Reduced-Bias estimator of the ruine probability ϕ(u)

Recall that, from Theorem 1,

ϕ n,k,ℓ (u) -a 1 (k/n)A 1 (n/k) U 1 (n/k) AB (γ, ρ 1 ) -a 2 (ℓ/n)A 2 (n/ℓ) U 2 (n/ℓ) AB (γ, ρ 2 ) (2.10) is an asymptotically unbiased estimator for ϕ (u) . Note that γ, ρ 1 , ρ 2 , U 1 (n/k), U 2 (n/ℓ), A 1 (n/k), and A 2 (n/ℓ) are
unknown quantities that we have to estimate.

Using the second order condition R U i i = 1, 2, [START_REF] Feuerverger | Estimating a tail exponent by modeling departure from a Pareto distribution[END_REF] and REFERENCES BIBLIOGRPHIQUE A CORRIGER [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF], [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF] proposed the following exponential regression model for the log-spacing of order statistics :

j log X n-j+1,n X n-j,n ∼ γ + A 1 n k j k + 1 -ρ 1 + ε j,k , 1 ≤ j ≤ k, (2.11) and j log Y n-j+1,n Y n-j,n ∼ γ + A 2 n ℓ j ℓ + 1 -ρ 2 + εj,ℓ , 1 ≤ j ≤ ℓ, (2.12)
where εj,m , m = k, ℓ are zero-centered error terms. If we ignore respectively the term A 1 (n/k) and A 2 (n/ℓ) in (2.11) and

(2.12), we retrieve the Hill-type estimators γH 1,n,k and γH 2,n,ℓ , by taking respectivelly the mean of the left-hand sides of (2.11) and (2.12).

By using the least-squares approach, the equations (2.11) and (2.12) can be further exploited to propose reduced bias estimators of γ in which, the second order parameters ρ 1 and ρ 1 are substituted with consistent estimators ρ 1 = ρ 1,n,k and ρ 2 = ρ 2,n,ℓ respectively (see for instance [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF], Deme et al (2013a), FragaAlves et al (2003)) or by a canonical choice, such as ρ 1 = ρ 2 = -1 (see, e.g., [START_REF] Feuerverger | Estimating a tail exponent by modeling departure from a Pareto distribution[END_REF] or. [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]. The least-squares estimators of γ, A 1 (n/k), and A 2 (n/ℓ) are then given by :

             γ LS 1,n,k ( ρ 1 ) = 1 k k j=1 j log X n-j+1,n X n-j,n - A LS 1,n,k ( ρ 1 ) 1 -ρ 1 , γ LS 2,n,ℓ ( ρ 2 ) = 1 ℓ ℓ j=1 j log Y n-j+1,n Y n-j,n - A LS 2,n,ℓ ( ρ 2 ) 1 -ρ 2 ,
and

                   A LS 1,n,ℓ ( ρ 1 ) = (1 -2 ρ 1 ) (1 -ρ 1 ) 2 ρ 2 1 1 k k j=1 j k + 1 -ρ 1 - 1 1 -ρ 1 j log X n-j+1,n X n-j,n , A LS 2,n,ℓ ( ρ 2 ) = (1 -2 ρ 2 ) (1 -ρ 2 ) 2 ρ 2 2 1 ℓ ℓ j=1 j ℓ + 1 -ρ 2 - 1 1 -ρ 2 j log Y n-j+1,n Y n-j,n .
The main asymptotic properties of γ LS 1,n,k ( ρ 1 ), γ LS 2,n,ℓ ( ρ 2 ), A LS 1,n,k ( ρ 1 ) and A LS 2,n,ℓ ( ρ 2 ) as functionals of the sequence of Brownian bridges Bn have been established in [START_REF] Deme | Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions[END_REF], Lemma 5). Note also that γ LS 1,n,k ( ρ 1 ), γLS 2,n,ℓ ( ρ 2 ) can be respectively viewed as kernel estimators :

γ LS 1,n,k ( ρ 1 ) = 1 k k j=1 jK ρ 1 j k + 1 log X n-j+1,n X n-j,n , and 
γ LS 2,n,k ( ρ 2 ) = 1 ℓ ℓ j=1 jK ρ 1 j ℓ + 1 log Y n-j+1,n Y n-j,n ,
where, for 0 < u < 1, [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF]). Under the second-order refinements of assumption R U 1 , [START_REF] Matthys | Estimating catastrophic quantile levels for heavy-tailed distributions[END_REF] used the estimators γ LS 1,n,k ( ρ 1 ) and A LS 1,n,k ( ρ 1 ) to construct an asymptotically unbiased estimators of extreme quantiles.

Kρ i (u) = 1 -ρ i ρ i K (u) + 1 - 1 -ρ i ρ i K ρ i (u) , i = 1, 2, with K ρ i (u) = ((1 -ρ i ) /ρ i ) u -ρ i -1 1 {0<u<1} , i = 1, 2 (see Sect.3 of
In the spirit of (2.10), substituting the unknown quantities γ, ρ 1 , ρ 2 , U 1 (n/k), U 2 (n/ℓ), A 1 (n/k), A 2 (n/ℓ), a 1 and a 3 with their asymptotically unbiased estimators, we arrive at the following reduced-bias estimator of ϕ (u) :

ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) = ϕ n,k,ℓ (u) -(k/n) a 1,n,k,ℓ A LS 1,n,k ( ρ 1 ) X n-k,n AB γ LS 1,n,k ( ρ 1 ) , ρ 1 -(ℓ/n) a 2,n,k A LS 2,n,ℓ ( ρ 2 ) Y n-ℓ,n AB γ LS 2,n,ℓ ( ρ 2 ) , ρ 2 .
(2.13)

where

a 1,n,k,ℓ := µ LS 2,n,ℓ /(ω -µ LS 1,n,k ) 2 and a 2,n,k := (ω -µ LS 1,n,k ) -1 , with µ LS 1,n
,k and µ LS 2,n,ℓ denote the asymptotically unbiased estimators for the means µ 1 and µ 2 respectively and defined as :

µ LS 1,n,k := µ 1,n,k - k n A LS 1,n,k ( ρ 1 ) X n-k,n AB γ LS 1,n,k ( ρ 1 ) , ρ 1 , and µ LS 2,n,ℓ := µ 2,n,ℓ - ℓ n A LS 2,n,ℓ ( ρ 2 ) Y n-ℓ,n AB γ LS 2,n,ℓ ( ρ 2 ) , ρ 2 .
The unbiased estimators µ LS 1,n,k and µ LS 2,n,ℓ are special cases of those introduced and studied in Deme et al (2013a), [START_REF] Deme | Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions[END_REF] and [START_REF] Deme | Estimation of risk measures from heavytailed[END_REF] to assess risk premiums in insurance. We note also that direct computations show that the unbiased estimator ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) can be rewritten as :

ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) = µ LS 2,n,ℓ ω -µ LS 1,n,k .
Our next goal is to establish, under suitable assumptions, the asymptotic normality of ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u). This is done in the following theorem.

Theorem 2 Under the assumptions of Theorem 1 if ρ

i , i = 1, 2 is a consistent estimator of ρ i then we have √ n ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U 1 (n/k) D = 5 j=1 j̸ =3 a 1 W n,j + a 2 θ (1/2-γ) W n,j + o P (1) ,
where W n,1 , W n,2 , W n,1 , W n,2 are defined in Theorem 1, and

                                         W n,4 = - (1 -γ) (1 -ρ 1 ) γ + ρ 1 -1 W n,3 , (W n,3 is as in Theorem 1), W n,4 = - (1-γ)(1-ρ 2 ) γ+ρ 2 -1 W n,3 , (W n,3 is as in Theorem 1), W n,5 = γ 2 ρ 1 (1-γ) 2 (γ+ρ 1 -1) n k 1 0 s -1 Bn (1 -sk/n) d (sKρ 1 (s)), W n,5 = γ 2 ρ 2 (1-γ) 2 (γ+ρ 2 -1) n ℓ 1 0 s -1 Bn (1 -sℓ/n) d (sKρ 2 (s)).
Now, by computing the asymptotic variances of the different processes appearing in Theorem 2, we deduce the following corollary.

Corollary 2 Under the assumptions of Theorem 1, if ρ i are consient estimator of ρ i , i = 1, 2, then we have

√ n ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U 1 (n/k) D -→ N 0, AV ϕ (γ, ρ 1 , ρ 2 ) ,
where

AV ϕ (γ, ρ 1 , ρ 2 ) = a 2 1 + a 2 2 θ (1-2γ) γ 2 (1 -γ) 2 (2γ -1) + a 2 1 γ 2 (1 -γ) 2 (1 -ρ 1 ) 1 + 2γ 2 -2γ + γ 3 (1 -ρ 1 ) ρ 1 (1 -γ) 3 (γ + ρ 1 -1) 2 + a 2 2 θ (1-2γ) γ 2 (1 -γ) 2 (1 -ρ 2 ) 1 + 2γ 2 -2γ + γ 3 (1 -ρ 2 ) ρ 2 (1 -γ) 3 (γ + ρ 2 -1) 2 + 2a 1 a 2 θ (1/2-γ)   γ 2 γ (1 -γ) (ρ 2 (1 -ρ 1 ) + ρ 1 (1 -ρ 2 )) θ -1/2 + (1 -ρ 1 ) (1 -ρ 2 ) (1 -γ) 2 + γ 2 θ 1/2 (1 -γ) 4 (γ + ρ 1 -1) (γ + ρ 2 -1)   .

A Small Simulation Study

In this section, the biased estimator ϕ n,k,ℓ (u) and the reduced-bias one ϕ LS,-1,-1 n,k,ℓ

(u) are compared on a small simulation study. Thus, we generate N = 1000 samples (X 1 , ..., Xn) with the sample size n = 1000, 1500, 2000 from a Burr distribution function defined as : F (x) = (1 + x -ρ/γ ) 1/ρ , with extreme value index γ ∈ {2/3, 3/4} and different values of ρ ∈ {-0.5, -0.75, -1}. For a given initial large reserve u = 1.5, we derive for each sample its corresponding excess of loss (Y 1 , ..., Yn), where Y j = max(X j -u, 0).

It is known that this distribution is heavy-tailed and satisfies the second order condition (R U ) with A(t) = γt ρ .

We note that this kind of Burr distribution and its unidentified parameters were previously used by various authors such as Deme et al (2013a), [START_REF] Deme | Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions[END_REF] and [START_REF] Deme | Estimation of risk measures from heavytailed[END_REF] to assess risk measures for heavy-tailed loses.

The ruin probability estimators ϕ n,k,ℓ (u) and ϕ LS,-1,-1 n,k,ℓ (u), are computed with the parameter ω = c/λ = 18 (in order to ensure that µ 2 < ω -µ 1 ) and with respectively the tail index estimators γ H i,n,S and γ LS i,n,S , (i, S) ∈ {(1, k), (2, ℓ)}, for different sample fractional numbers of top order statistics k = 1, ..., n -1 and ℓ = 1, ..., mn -1, where mn is the number of positive values of Y j ̸ = 0, j = 1, ..., n. Employing the algorithm of [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields[END_REF], Page 137, the optimal values k * and ℓ * of the number of top extremes of k and ℓ to compute the ruin probability estimators are respectively values k * and ℓ * defined as :

k * = arg min k 1 k k j=1 j δ γ • 1,n,j -median γ • 1,n,1 , ..., γ • 1,n,k , 1 ≤ k ≤ n -1, (3.14) 
and

ℓ * = arg min ℓ 1 ℓ ℓ j=1 j δ γ • 2,n,j -median γ • 2,n,1 , ..., γ • 2,n,ℓ , 1 ≤ ℓ ≤ mn -1, (3.15)
where 0 ≤ δ < 1/2 and γ • 1,n,k (respectively) γ • 2,n,ℓ , is either the Hill's or unbiased estimator of the tail index γ computed with the sample (X 1 , ..., Xn), respectively with the excess sample (Y 1 , ..., Yn). By the way, choosing δ = 1/4, we compute the optimal values k * and ℓ * as in (3.14) and (3.15) for each tail index estimator used in the computation of their associated ruin probability estimators.

We compare the performance of the mentioned ruin probability estimators by computing the absolute value of the mean together with the mean squared errors (MSE) defined as :

ABias ϕ • n,k * ,ℓ * (u) := 1 N N j=1 ϕ •,j n,k * ,ℓ * (u) ϕ(u) -1 and MSE ϕ • n,k * ,ℓ * (u) := 1 N N j=1 ϕ •,j n,k * ,ℓ * (u) ϕ(u) -1 2 ,
where ϕ(u) is the true value of the ruine probability and ϕ •,j n,k * ,ℓ * (u) is the j-th value (j = 1, ..., N ) of any ruin probability estimator ϕ • n,k * ,ℓ * (u) of ϕ(u), evaluated at their optimal numbers of top order statistics k * and ℓ * as mentioned above.

We summarize the simulation results in Table 3.1, 3.2 and 3.3. After the inspection of the table, two conclusions can be drawn regardless of the situation. First, we notice that the absolute bias of both estimators increases as ρ goes to 0.

Second, the reduction bias estimator is more efficient than the bias one regardless to the absolute bias and the mean squared error when ρ is closer to 0. 

n = 1000 ρ = -1 γ = 2/3, ϕ(u) = 0.0997 γ = 3/4, ϕ(u) = 0.1611 ϕ n,k,ℓ (u) 0.1224 ϕ LS,-1,-1 n,k,ℓ (u) 0.0928 ϕ n,k,ℓ (u) 0.2020 ϕ LS,-1,-1 n,k,ℓ ( 
γ = 2/3, ϕ(u) = 0.0997 γ = 3/4, ϕ(u) = 0.1611 ϕ n,k,ℓ (u) 0.1134 ϕ LS,-1,-1 n,k,ℓ (u) 0.1011 ϕ n,k,ℓ (u) 0.1904 ϕ LS,-1,-1 n,k,ℓ ( 
n = 2000 γ = 2/3, ϕ(u) = 0.0997 γ = 3/4, ϕ(u) = 0.1611 ϕ n,k,ℓ (u) 0.1107 ϕ LS,-1,-1 n,k,ℓ (u) 0.1002 ϕ n,k,ℓ (u) 0.1789 ϕ LS,-1,-1 n,k,ℓ ( 
(x) = 1 -(1 + x -ρ/γ ) 1/ρ for ρ = -1. n = 1000 ρ = -0.75 γ = 2/3, ϕ(u) = 0.0885 γ = 3/4, ϕ(u) = 0.1443 ϕ n,k,ℓ (u) 0.1246 ϕ LS,-1,-1 n,k,ℓ (u) 0.0808 ϕ n,k,ℓ (u) 0.2056 ϕ LS,-
n = 1500 γ = 2/3, ϕ(u) = 0.0885 γ = 3/4, ϕ(u) = 0.1443 ϕ n,k,ℓ (u) 0.1075 ϕ LS,-1,-1 n,k,ℓ (u) 0.0853 ϕ n,k,ℓ (u) 0.1857 ϕ LS,-1,-1 n,k,ℓ ( 
n = 2000 γ = 2/3, ϕ(u) = 0.0885 γ = 3/4, ϕ(u) = 0.1442 ϕ n,k,ℓ (u) 0.1029 ϕ LS,-1,-1 n,k,ℓ (u) 0.0889 ϕ n,k,ℓ (u) 0.1713 ϕ LS,-
F (x) = 1 -(1 + x -ρ/γ ) 1/ρ for ρ = -0.5. n = 1000 ρ = -0.5 γ = 2/3, ϕ(u) = 0.0669 γ = 3/4, ϕ(u) = 0.1112207 ϕ n,k,ℓ (u) 0.1749 ϕ LS,-1,-1 (u) 0.0588 ϕ n,k,ℓ (u) 0.2138 ϕ LS,-
n = 1500 γ = 2/3, ϕ(u) = 0.0669 γ = 3/4, ϕ(u) = 0.1112 ϕ n,k,ℓ (u) 0.1007 ϕ LS,-1,-1 n,k,ℓ (u) 0.0621 ϕ n,k,ℓ (u) 0.1765 ϕ LS,-1,-1 n,k,ℓ (u 
n = 2000 γ = 2/3, ϕ(u) = 0.0669 γ = 3/4, ϕ(u) = 0.1112 ϕ n,k,ℓ (u) 0.0864 ϕ LS,-1,-1 n,k,ℓ (u) 0.0622 ϕ n,k,ℓ (u) 0.1496 ϕ LS,-1,-1 n,k,ℓ ( 

Proofs

Let E1, ..., En be independent and identically distributed random variables from the unit Pareto distribution G is defined as G (y) = 1 -y -1 , y ⩾ 1. For each n ⩾ 1, let E1,n ⩽ ... ⩽ En,n be the order statistics pertaining to E1, ..., En. Clearly, Xj,n = U1 (Ej,n) and Yj,n = U2 (Ej,n) . We shall assume that we are in the probability space (Ω, A, P) of Theorem 2.1 of [START_REF] Csörgö | Weighted empirical and quantile processes[END_REF] carrying a sequence of independent and identically distributed uniform (0,1) random variables ξ1, ξ2, ... and a sequence of Brownian bridges Bn (s), 0 ⩽ s ⩽ 1,

n = 1, 2... such that for all 0 ⩽ ν ⩽ 1/2 and λ > 0 sup λ/n⩽t⩽1-λ/n |βn (t) -Bn (t)| (t (1 -t)) 1/2-ν = OP n -ν ,
where βn is the uniform quantile process

βn (t) = √ n (t -Vn (t))
with Vn denoting the empirical uniform quantile function defined to be Vn (t) = ξj,n, j-1 n < t ≤ j n , j = 1, ..., n and Vn(0) = 0.

Next, remarking that U1(n/k) = Q1(1 -k/n) and X n-k,n d = U1(E n-k,n ), we have A (2) 1,n d = 4 i=1 Tn,i, where Tn,1 = µ2 (ω -µ1) 2 (1 -γ H 1,n,k ) √ k U (E n-k,n ) U (n/k) - k n E n-k,n γ , Tn,2 = µ2 (ω -µ1) 2 (1 -γ H 1,n,k ) √ k k n E n-k,n γ -1 , Tn,3 = µ2 (ω -µ1) 2 (1 -γ) 1 -γ H 1,n,k √ k γ H 1,n,k -γ , Tn,4 = µ2 (ω -µ1) 2 √ k 1 1 -γ - +∞ 1 s -2 U1 (ns/k) ds U1 (n/k) .
We study each term separately.

Term Tn,1. According to de [START_REF] De Haan | Extreme Value Theory : An Introduction[END_REF], Theorem 2.3.9) , for any δ > 0, we have

√ k U1 (E n-k,n ) U1(n/k) - k n E n-k,n γ = √ k A1 n k k n E n-k,n γ k n E n-k,n ρ 1 -1 ρ1 + oP(1) k n E n-k,n γ+ρ 1 ±δ , Thus, since kE n-k,n /n → 1 and γ H 1,n,k P → γ, as n → ∞, it readily follows that
Tn,1 = oP(1).

(4.18)

Term Tn,2. The equality

E n-k,n d = (1 -ξ n-k,n ) -1 yields : √ k k n E n-k,n γ -1 d = √ k n k (1 -ξ n-k,n ) -γ -1 = -γ √ k n k (1 -ξ n-k,n ) -1 (1 + oP(1)) by a Taylor expansion = -γ n k βn 1 - k n (1 + oP(1)) = -γ n k Bn 1 - k n + OP(n -ν ) k n 1/2-ν
(1 + oP(1)), for 0 ≤ ν < 1/2, by [START_REF] Csörgö | Weighted empirical and quantile processes[END_REF]. Thus, using again the weak consistency of γ H 1,n,k to γ, it follows that :

Tn,2 d = - γ µ2 (ω -µ1) 2 (1 -γ) n k Bn 1 - k n (1 + oP(1)) = µ2 (ω -µ1) 2 Wn,2 + oP(1). (4.19)
Term Tn,3. By using again the consistency in probability of γ H 1,n,k to γ, we get

Tn,3 = µ2 (ω -µ1) 2 (1 -γ) 2 √ kA1 n k 1 -ρ1 + γ n k 1 0 s -1 Bn 1 -s k n d(sK(s) = µ2 (ω -µ1) 2 √ kA1 n k (1 -γ) 2 (1 -ρ1) + Wn,3 + oP(1) (4.20)
Term Tn,4. A change of variables and an integration by parts yield

Tn,4 = µ2 (ω -µ1) 2 √ k 1 1 -γ - ∞ 1 x -2 U1(nx/k) U1(n/k) dx = - µ2 (ω -µ1) 2 √ k ∞ 1 x -2 U1(nx/k) U1(n/k) -x γ dx.
Theorem 2.3.9 in de [START_REF] De Haan | Extreme Value Theory : An Introduction[END_REF] entails that, for γ ∈ (1/2, 1),

Tn,4 = - µ2 (ω -µ1) 2 √ kA1 n k ∞ 1 x γ-2 x ρ -1 ρ1 dx (1 + oP(1)) = √ kA1 n k µ2 (ω -µ1) 2 (1 -γ)(γ + ρ1 -1)
(1 + oP(1)).

(4.21)

Combining (4.17), (4.18), (4.19), (4.20) and (4.21), we get

An,1 d = µ2 (ω -µ1) 2 (Wn,1 + Wn,2 + Wn,3) + √ kA1 n k µ2 (ω -µ1) 2 γρ1 (1 -γ) 2 (1 -ρ1)(γ + ρ1 -1)
+ oP(1). 

= U2(E n-ℓ,n ), ℓ/k → θ and Q(1 -k/n) ∼ Q2(1 -ℓ/n),
as n → ∞, we get : Now let's compute the A2,n term. We first have :

Q2(1 -ℓ n ) ∼ Q1(1 -ℓ n ) = Q1(1 -ℓ k k n ) ∼ ( ℓ k ) -γ Q1(1 -k n ), as n → ∞. Since by assumption ℓ/k → θ > 0, then Q2(1 -ℓ n ) ∼ θ -γ Q1(1 -k n ),
as n → ∞. This leads for large values of n to

An,2 d = 1 ω -µ1 θ (1/2-γ) n 1/2 ( µ 2,n,ℓ -µ2) (ℓ/n) 1/2 Q2(1 -ℓ/n) .
Further, Substituting µ 2,n,ℓ and µ2 with their expressions and using similar arguments as those developed to show the expression A1,n in (4.22) together with Y n-ℓ,n d = U2(E n-ℓ,n ), it comes :

An,2 d = 1 ω -µ1 θ (1/2-γ) Wn,1 + Wn,2 + Wn,3 + √ ℓA2 n ℓ θ (1/2-γ) ω -µ1 γρ2 (1 -γ) 2 (1 -ρ2)(γ + ρ2 -1)
+ oP(1), (4.23)

. Combining 4.22 and 4.23 Theorem 1 follow.

Proof of Corollary 1

From Theorem 1, we need to compute the asymptotic variance AV ϕ (γ, θ) of the limiting process. More precisely, have + 2 a1a2 θ (1/2-γ) E(Wn,3Wn,1) + E(Wn,3Wn,2) + E(Wn,3Wn,3) .

AV ϕ (γ, θ) = lim n→∞ (a1) 2 E W 2 n,1 + E W 2 n,2 + E W 2 n,3 + (a2) 2 θ (1-2γ) E(W 2 
Using [START_REF] Deme | Reduced-biased estimators of the conditional tail expectation for heavy-tailed distributions[END_REF] and after the tedious computations, we get the following expressions :

E W 2 n,1 -→ 2γ 2γ -1 , E W 2 n,2 -→ γ 2 (1 -γ) 2 , E W 2 n,3 = γ 2 (γ -1) 4 , E (Wn,1Wn,2) -→ γ 1 -γ , E (Wn,1Wn,3) = 0 + o(1), E (Wn,2Wn,3) = 0 + o(1), E W 2 n,1 -→ 2γ 2γ -1 , E W 2 n,2 -→ γ 2 (1 -γ) 2 , E W 2 n,3 = γ 2 (γ -1) 4 , E Wn,1Wn,2 -→ γ 1 -γ , E Wn,1Wn,3 = 0 + o(1), E Wn,2Wn,3 = 0 + o(1), E Wn,1Wn,1 -→ γ 1 -γ 1 2γ -1 -θ (1-γ) θ (γ-1/2) , E Wn,1Wn,2 -→ γ 1 -γ θ 1/2 , E Wn,1Wn,3 = 0 + o(1), E Wn,2Wn,1 -→ γ(1 -γ θ (1-γ) ) (1 -γ) 2 θ (γ-1/2) , E Wn,2Wn,2 -→ γ 2 (1 -γ) 2 θ 1/2 , E Wn,2Wn,3 = 0 + o(1), E Wn,3Wn,1 = 0 + o(1), E Wn,3Wn,2 = 0 + o(1), E Wn,3Wn,3 = γ 2 (1 -γ) 4 .
Combining all these results, Corollary 1 follows.

Proof of Theorem 2.

Inspired by theorem 1, the asymptotic normality of the corrected estimator of ϕ (u) is given by

√ n ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U1 n k = µ LS 2,n,ℓ ω -µ LS 1,n,k (ω -µ1) T * 1,n + ℓ/k ω -µ LS 1,n,k Q2(1 -ℓ/n) Q1(1 -k/n) T * 2,n .
By the convergence in probability of µ LS 1,n,k to the mean µ1 and for all n large enough, the random variable ϕ n,k,ℓ (u) -ϕ (u) can be also represented as follows

√ n ϕ LS, ρ 1 , ρ 2 n,k,ℓ (u) -ϕ (u) (k/n) 1/2 U1 n k = µ2 (ω -µ1) 2 T * n,1 + ℓ/k ω -µ1 Q2(1 -ℓ/n) Q1(1 -k/n) T * 2,n
where

T * 1,n := n 1/2 µ LS 1,n,k -µ1 (k/n) 1/2 U1 n k and T * 2,n := n 1/2 µ LS 2,n,ℓ -µ2 (ℓ/n) 1/2 U2 n ℓ .
For the T * 1,n we use the following decomposition 

T * 1,n = 7 i=1 Si,n where 
S1,n = - n k 1-n k 0 Bn (s) Q1 1 -n k dQ1 (s) S2,n = 1 1 -γ LS 1,n,k ( ρ1) 1 - ÂLS 1,n,k ( ρ1) γ LS 1,n,k ( ρ1) + ρ1 -1 √ k U1 (Y n-k,n ) U1 (n/k) - k n Y n-k,n γ , S3,n = 1 1 -γ LS 1,n,k ( ρ1) 1 - ÂLS 1,n,k ( ρ1) γ LS 1,n,k ( ρ1) + ρ1 -1 √ k k n Y n-k,n γ -1 , S4,n = 1 1 -γ LS 1,n,k ( ρ1) (1 -γ) √ k γ LS 1,n,k ( ρ1) -γ , S5,n = √ kA1 (n/k)   1 (1 -γ) (γ + ρ1 -1) - 1 1 -γ LS 1,n,k ( ρ1) γ LS 1,n,k ( ρ1) + ρ1 -1   , S6,n = - 1 1 -γ LS 1,n,k ( ρ1) γ LS 1,n,k ( ρ1) + ρ1 -1 √ k A LS 1,n,k ( ρ1) -A1 (n/k) , S7,n = n √ kU1 (n/k) k/n 1 -γ 1 - A1 (n/k) γ + ρ1 -1 U1 (n/k) -µ1 ( 
S2,n = 1 1 -γ LS 1,n,k ( ρ1) 1 - A LS 1,n,k ( ρ1) γ LS 1,n,k ( ρ1) + ρ1 -1 Tn,1
where Tn,1 is defined in the proof of Theorem 1. Thus, combining Lemma 5 in [START_REF] Deme | Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions[END_REF] 

Proof of Corollary 2

From Theorem 2, we only have to compute the asymptotic variance AV ϕ (γ, ρ1, ρ2) of the limiting process.

More precisely, we have + 2 a1a2 θ (1/2-γ) E(Wn,5Wn,1) + E(Wn,5Wn,2) + E(Wn,5Wn,4) + E(Wn,5Wn,5) .

As in Corollary1, the computations are quite direct and the desired asymptotic variance can be obtained by noticing that

E W 2 4 -→ γ 2 (1 -ρ1) 2 (1 -γ) 2 (γ + ρ1 -1) 2 , E W 2 5 -→ γ 4 (1 -ρ1) 2 (1 -γ) 4 (γ + ρ1 -1) 2 , E (W1W4) -→ 0, E (W1W5) -→ 0, E (W2W4) -→ 0, E (W2W5) -→ 0, E (W4W5) -→ ρ1γ 3 (1 -ρ1) (1 -γ) 3 (γ + ρ1 -1) 2 , E W 2 4 -→ γ 2 (1 -ρ2) 2 (1 -γ) 2 (γ + ρ2 -1) 2 , E W 2 5 -→ γ 4 (1 -ρ2) 2 (1 -γ) 4 (γ + ρ2 -1) 2 , E W1W4 -→ 0, E W1W5 -→ 0, E W2W4 -→ 0, E W2W5 -→ 0, E W4W5 -→ ρ2γ 3 (1 -ρ2) (1 -γ) 3 (γ + ρ2 -1) 2 , E W1W4 -→ 0, E W1W4 -→ 0, E W1W5 -→ 0, E W1W5 -→ 0, E W2W4 -→ 0, E W2W4 -→ 0, E W2W5 -→ 0, E W2W5 -→ 0, E W4W4 -→ γ 2 (1 -ρ1) (1 -ρ2) (1 -γ) 2 (γ + ρ1 -1) (γ + ρ2 -1) , E W4W5 -→ γ 3 ρ2 (1 -ρ1) (1 -γ) 3 (γ + ρ1 -1) (γ + ρ2 -1)
θ -1/2 , E W4W5 -→ γ 3 ρ1 (1 -ρ2) (1 -γ) 3 (γ + ρ1 -1) (γ + ρ2 -1) θ -1/2 , E W5W5 -→ γ 4 (1 -ρ1) (1 -ρ2) (1 -γ) 4 (γ + ρ1 -1) (γ + ρ2 -1) θ 1/2 .

  (u), estimators of the ruin probability ϕ(u) = 0.1611 for γ = 2/3 and ϕ(u) = 0.099 for γ = 3/4 for u = 1.5, computed with optimal numbers of top statistics k * and ℓ * , based on N = 1000 samples of size n = 1000; 1500; 2000, from the distribution F

  (u), estimators of the ruin probability ϕ(u) = 0.0885 for γ = 2/3 and ϕ(u) = 0.1443 for γ = 3/4 for u = 1.5, computed with optimal numbers of top statistics k * and ℓ * , based on N = 1000 samples of size n = 1000; 1500; 2000, from the distribution

  , estimators of the ruin probability ϕ(u) = 0.0669 for γ = 2/3 and ϕ(u) = 0.1112 for γ = 3/4 for u = 1.5, computed with optimal numbers of top statistics k * and ℓ * , based on N = 1000 samples of size n = 1000; 1500; 2000, from the distribution F (x) = 1 -(1 + x -ρ/γ ) 1/ρ for ρ = -0.75.

  s compute compute the A2,n term. Substitute µ 2,n,ℓ and µ2 with their expressions and using similar arguments as those developed to show the expression A1,n in (4.22) with together Y n-ℓ,n d

  θ (1/2-γ) E(Wn,2Wn,1) + E(Wn,2Wn,2) + E(Wn,2Wn,3)

where

  with the consistency of ρ and 4.18, we obtain that S2,n = o P(1) . (4.25) Term S3,n. Similarly, we observe that S3,n = Tn,3 1 + o P(1) where Tn,3 is defined in the proof of Theorem 1n. Combining Lemma 5 in Deme et al (2013b) with the consistency of γ LS 1,n,k we infer that S4,n d = γ + ρ1 -1 γρ1 Wn,4 + o P(1) . (4.27) Term S5,n. Under the assumption that √ kA1(n/k) = O(1) and by the consistency of ρ1 and γ LS 1,n,k ( ρ1) we have S5,n = o P(1) (4.28) Term S6,n. Using Lemma 5 in Deme et al (2013b), we get Tn,4 is defined in the proof of Theorem 1. Thus using 4.21 and the assumption that √ kA1 (n/k) =O(1), we deduce that S7,n = oP(1). µ1) 2 (Wn,1 + Wn,2 + Wn,4 + Wn,5) . Now let's compute compute the T * 2,n term. Substituting µ LS 2,n,ℓ and µ2 with their expressions and using similar arguments as those developed to show the expression T * 1,n and by the relationQ2(1 -ℓ n ) ∼ θ -γ Q1(1 -k n ),as n → ∞ we get : γ) Wn,1 + Wn,2 + Wn,4 + Wn,5 .Combining T *1,n and T * 2,n , Theorem 2 follows.

Table 3

 3 

	u) 0.1701

.1 -Estimation results of ϕ n,k,ℓ (u) and ϕ LS,-1,-1 n,k,ℓ

Table 3

 3 

	1,-1 (u) 0.1522

.2 -Estimation results of ϕ n,k,ℓ (u) and ϕ LS,-1,-1 n,k,ℓ

Table 3

 3 

	u) 0.1094

.3 -Estimation results of ϕ n,k,ℓ (u) and ϕ LS,-

  2) . Now, we are going to study separately the terms S1,n, ..., S7,n.

	Term S1,n. Statement (4.3) in Necir et al (2010) leads to	
	S1,n = W1 + o P(1) .	(4.24)
	Term S2,n. Note that	

Proof of Theorem 1

Suppose that γ ∈ (1/2, 1), then

, and µ 2,n,ℓ :=

. This expression may be rewritten as follows

Under the assumption (1.5), we have from from Theorem 2.4.1 in de [START_REF] De Haan | Extreme Value Theory : An Introduction[END_REF],

where ℓQ 1 is a slowly varying function, more precisely ℓQ

Thus, for a given γ ∈ (1/2, 1), we have from Proposition 1.3.6 in [START_REF] Bingham | Regular Variation[END_REF],

Also, under assumption we have from [START_REF] Peng | Estimating the mean of a heavy tailed distribution[END_REF],

Since the right term in (4.16) is bounded in probability, we get for all large values of n,

Remarking that k/n → 0, as n → ∞, we have 1-k/n 0 Q1(s)ds = 1 0 Q1(s)ds{1 + oP(1)}, as n → ∞. Which leads to the convergence in probability of µ 1,n,k to the mean µ1. Thus, for all n large enough, the random variable ϕ n,k,ℓ (u) -ϕ (u) can be also represented as follows

Now, let We first compute the A1,n term. By substituting µ 1,n,k and µ1 with their expressions, we have

From the statement in (4.16), we have (4.17)