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Abstract. The probability of ruin of an insurance company is one of the main risk measures considered

in risk theory, and the problems of its calculation and approximation have attracted much attention.

Statistical estimations have been developed on the ruin probability in infinite time for insurance loses

from heavy-tailed distributions. However, these estimation suffer heavily from under-coverage or have a

robustness problem, particularly when losses are contaminated by large variations in the arrival of claims.

We therefore need another method for estimating the probability of ruin in infinite time for heavy-tailed

losses. This is why, in this paper, we introduce a robust estimator of the infinite-time probability of

ruin for such distributions. Our methodology is based on extreme value theory, which offers adequate

statistical results for such distributions. Our approach is based on a sensitive distribution known as the

t-Hill estimator (t-score or score moment estimation) for the index of any tail distribution and introduced

in [Fabián and Stehĺık (2009)]. We establish their asymptotic normality, and through a simulation study,

illustrate their behavior in terms of absolute bias and mean squared error. The simulation results clearly

show that our estimators perform well and that they are fairly robust to outliers.
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1 Introduction

The effect of insurance operations is the total or partial transfer of the financial consequences of the risk

incurred by the insured to an insurance company. to an insurance company. The expenses covered by

the company may correspond either to indemnities to be paid to third parties in respect of the insured’s

liability (civil, professional or other), or to compensation for damage suffered by the insured. But what

happens to these insurance companies when they themselves are exposed to risk? One approach to this

problem is based on the use of ruin theory (see, e.g., [Panjer and Willmot (1992)]).

In the field of insurance, risk is defined as the probability that an insurance company’s reserve, i.e. the dif-

ference between the premium amount and the insurance amount, will be reduced of an insurance company,

which is the difference between the total premiums received and the total amount of claims paid, becomes

negative at some point. At that point, ruin is said to occur, due to a miscalculation of the policyholders’

contribution rate, or claims that are too large to cover. Indeed, the probability of such an event is seen as

a means of controlling risk behavior. It is also a useful way of controlling the insurer’s funds in long-term

planning. Let’s recall the definition of a standard mathematical model for insurance risk (see, for exam-

ple, [Čizěk et al (2005)], p. 345).

The insurance company’s initial capital is denoted u. The number of claims over the period (0, t], denoted

Mt, is described by a Poisson process with a fixed intensity (rate) λ > 0. We also define a sequence of non-

negative random variables {Xi}∞i=1 independent and identically distributed (i.i.d. ) with a loss distribution

function F1(x) := P(Xi ≤ x) representing loss severity, with an unknown finite mean µ1 =
∫∞
0

(1−F1(x))dx.

Knowledge of this mean value has been of great interest to insurance companies, since it is one of the most

commonly used premium calculation principles, known as the net premium, and corresponds to the ex-

pected amount of claims for a given insurance period.

Let’s then assume that X
′

is are independent of Mt and that the insurer collects a premium at a constant

rate c per unit time and that the net profit condition is met, i.e. c/λ > µ1. The classical risk process

{Rt}t>0 is given by:

Rt := u+ ct−
Mt∑
i=1

Xi, t > 0.

The corresponding claim surplus process is defined by

St := u−Rt = ct−
Mt∑
i=1

Xi, t > 0.

First of all, we’re interested in the probability that St exceeds an initial reserve u at a time t before or at

a horizon T . Explicitly, this probability can be written as follows:

ψT (u) := P
{

sup
0<t≤T

St > u

}
.

The ruin probability in infinite time is defined by,

ϕ (u) := lim
T→∞

ψT (u) . (1.1)

In the actuarial field, the costs of large claims require the modeling of rare events, i.e. events with a low

probability of occurrence, but with large claims amounts and disastrous effects. The analysis of these
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extreme events can be carried out using the extreme value methodology, whose distribution functions F1

are heavy-tailed and mainly characterized by their index, which indicates the size and frequency of cer-

tain extreme phenomena within a given probability distribution (see for example [Vandewalle and Beirlant

(2006)]).

The heavy-tailed nature of claims requires particular attention to the analysis of tail distributions. Extreme

value theory (EVT) therefore offers suitable statistical tools for modeling these distribution tails, see for

example [Matthys et al. (2004)], [Vandewalle and Beirlant (2006)] [Reiss and Thomas (2007)], [Necir et al.

(2010)], [Deme et al. (2013a)], [Deme et al. (2015)], [Deme et al. (2021)] etc... In addition, reinsurance

companies have to calculate premiums to cover these excess claims, which are generally very high. EVT

has become one of the leading theories in the development of statistical models for high insurance losses.

Now, suppose that F1 is heavy-tailed, that is:

lim
x→∞

exp (δx) (1− F1) = ∞, for all δ > 0. (1.2)

The class of regularly varying functions provides good examples of heavy-tailed models. We can cite the

following models: Pareto, Burr, Student, Lévy-stable and log-gamma (see, for example, [Beirlant et al

(2001)]). In the remainder of this paper, we restrict ourselves to this class of distributions. In other words,

we assume that the survival function 1− F1 is smoothly varying at infinity with index −1/γ < 0, that

lim
t→∞

1− F1 (tx)

1− F1 (t)
= x−1/γ , for any x > 0. (1.3)

The parameter γ is the tail index and governs tail behavior, with higher values indicating heavier tails.

For more details on these models, we can refer to [Bingham et al. (1987)], [Rolski et al (1999)] and [Reiss

and Thomas (2007)]. It has been shown that for large initial reserve u, the ruin probability ϕ (u) can be

approximated, under the assumption, by

ϕ (u) :=
( c
λ
− µ1

)−1
∫ ∞

u

(1− F1 (x)) dx, (1.4)

(see, e.g., [Asmussen (2000)]). This latter equation can be rewritten as

ϕ (u) =
µ2

ω − µ1
, (1.5)

where µ2 := E (Y ) < ∞, with Y := (X − u)+ = max (X − u, 0) and ω := c/λ. Then, the distribution

function of the stop-loss variable Y denoted by F2 also satisfies the relationship (1.3) with the same index

−1/γ < 0, i.e.

lim
t→∞

1− F2 (tx)

1− F2 (t)
= x−1/γ for any x > 0. (1.6)

Now let Qi, i = 1; 2 be the generalized inverse functions (or quantile functions) related to df Fi, i = 1, 2

and defined as follows for all s ∈ (0, 1]:

Qi (s) := inf {x > 0 : Fi (x) ≥ s} .

From Corollary 1.2.10 (p. 23) in [?], we have for any x > 0

lim
s↓0

Qi (1− sx)

Qi (1− s)
= x−γ , i = 1, 2. (1.7)
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By a change of variable, the expected values µi =
∫∞
0

(1 − Fi(x))dx, i = 1, 2 can be rewritten in terms of

quantile function Qi as follows: µi =
∫ 1

0
Qi(s)ds, i = 1, 2.. Thus, the probability of ruin in infinite time

can be rewritten as follows:

ϕ (u) =

∫ 1

0
Q2(s)ds

ω −
∫ 1

0
Q1(s)ds

. (1.8)

Notice that for fixed large u, we have

1− F1 (x) ∼ 1− F2 (x) as x→ ∞,

and therefore

Q1 (1− s) ∼ Q2 (1− s) as s ↓ 0.

This paper is organized as follows. In section 2, we present some preliminaries on classical estimators of

the probability of ruin phi (u). As these estimates suffer greatly from under-coverage or have a robustness

problem, especially when losses are contaminated by large variations in the arrival of claims, we introduce,

in subsection 3.1, a robust infinite-time estimator of the probability of ruin for heavy-tailed insured losses.

Using extreme value methodology, we establish its asymptotic distribution in subsection 3.2. In subsection

4.1, we perform a simulation study to illustrate the behavior of our robust estimator compared to the

classical estimator in terms of absolute bias and mean squared error. In subsection 4.2, we present a

contamination study in which the robustness of the estimator is evaluated. All proofs are reported in

section 5.

2 Estimating the ruin probability ϕ (u)

First, we set a large initial reserve u. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two independent samples of

risks X and Y respectively. The non-parametric estimators of the distribution functions F1 and F2 are

respectively defined as follows F1,n(x) = n−1
∑n

i=1 I{Xi≤x} and F2,n(y) = n−1
∑n

i=1 I{Yi≤y}. Thus, their

corresponding empirical quantile functions are expressed by Qi,n(s) = inf{x;Fi,n(x) ≥ s}, i = 1, 2 where

IS is the indicator function of the set S. Let’s denote by X1,n ≤ . . . ≤ Xn,n and Y1,n ≤ . . . ≤ Yn,n

the order statistics associated respectively with the samples (X1, . . . , Xn) and (Y1, . . . , Yn). Therefore,

Q1,n(t) = Xj,n and Q2,n(t) = Yj,n for all t ∈ ((j − 1)/n, j/n], and for all j = 1, ..., n.

To this end, a natural candidate for the empirical estimator of ϕ(u) is obtained by replacing in (1.8) the

real quantiles Q1(·) and Q2(·) by their respective sample quantiles Q1,n(·) and Q2,n(·). We obtain the

following ”traditional” non-parametric estimator of the probability of ruin:

ϕn (u) =
Y

ω −X
. (2.9)

where X := 1
n

∑n
j=1Xj and Y := 1

n

∑n
j=1 Yj are the sample estimators the mean of µ1 and µ2 respectively.

Note that for γ ≥ 1, the expected value of X (respectively Y ) does not exist. Consequently, we will

focus exclusively on distributions whose tail indices lie in the unit interval 0 < γ < 1.

Next, the random variable
√
n
(
ϕn (u)− ϕ (u)

)
can be rewritten as:

1(
ω −X

)
(ω − µ1)

√
n
((
Y − µ1

)
(ω − µ1) +

(
X − µ1

)
µ2

)
.
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According to the law of large numbers (LLN), the random variable (ω − X) converges in probability to

(ω− µ1). Using asymptotic theory for L-statistics (e.g. [Shorack and Wellner (1986)]), and the underlying

distributions with a with a sufficient number of finite moments, we obtain from [Jone and Zitikis(2007)]

the following asymptotic normality result:

√
n
(
ϕn (u)− ϕ (u)

) D→ N
(
0, σ2

ϕ

)
, as n→ ∞, (2.10)

where

σ2
ϕ =

1

(ω − µ1)
4

(
(ω − µ1)

2
σ2
2 + µ2

2σ
2
1 + µ2(ω − µ1) σ1,2

)
<∞,

with σ2
1 and σ2

2 represent respectively the variances of X and Y and σ1,2 =
∫ 1

0

∫ 1

0
(min(s, t) − st)dQ1(1 −

s)dQ2(1− t).

Note that in the case where the tail index γ is in the lower half of the unit interval, i.e. 0 < γ < 1
2 , the

second-order moments for the two random variables X and Y are finite. Consequently, the asymptotic

normality of ϕn (u) in (2.10) holds. This result is not respected when the loss distribution is heavy-tailed

with an index γ located in the upper half of the unit interval, i.e. 1/2 < γ < 1, since the asymptotic

variance σ2
ϕ is infinite, which is due in this case to the infitability of the second-order moments of the

loss X. In this case, ϕ (u) must be estimated using another approach that would guarantee asymptotic

normality.

To remedy this situation, [Rassoul (2014)] used extreme value theory taking into account Hill’s estimator

[Hill (1975)] estimator of the tail index γ and introduced a semi-parametric estimator for the probability

of ruin ϕ(u) for heavy-tailed losses with infinite second-order moments.

The estimation of γ has been extensively studied in the literature, and γ is a positive-tail index. Hill’s

estimator is the most popular estimator of the positive-tail index γ in extreme value theory, and is defined

as follows:

γ̂1,n,k := k−1
k∑

i=1

j (logXn−j+1,n − logXn−j,n) ,

for an intermediate sequence k = k (n), i.e., are sequences such that k → ∞ and k/n→ 0, as n→ ∞. On

the other hand, the Hill estimator associated with the stop loss sample (Y1, . . . , Yn is given as follows:

γ̂2,n,ℓ := ℓ−1
ℓ∑

i=1

j (log Yn−j+1,n − log Yn−j,n) ,

where ℓ = ℓ(n) is another intermediate sequences satisfying ℓ → ∞ and ℓ/n → 0, as n → ∞. In extreme

value theory, Hill’s estimator has been extensively studied, improved and even generalized to any real

parameter γ (see e.g. [Dekkers et al (1989)], [Beirlant et al. (1999)], [Lo and Fall (2011)]). Its weak

consistency was established under the condition of regular variation by [Mason (1982)] assuming only

that the underlying distribution varies regularly at infinity. [Deheuvels et al (1988)] proved the strong

consistency of Hill’s estimator.

However, the asymptotic normality of Hill’s estimator has been studied, under various conditions relating

to the tail of the distribution, by many researchers, including [Csörgő et al. (1985)], [Beirlant and Teugels

(1989)], [Dekkers et al (1989)].
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Note that µ1 and µ2 can be rewritten respectively as follows :

µ1 =

∫ 1−k/n

0

Q1 (s) ds+

∫ 1

1−k/n

Q1 (s) ds (2.11)

and

µ2 =

∫ 1−ℓ/n

0

Q2 (s) ds+

∫ 1

1−ℓ/n

Q2 (s) ds. (2.12)

Let us define respectively the following estimators for Q1(s) and Q2(s), s ∈ [0, 1):

Q̂1,n,k(s) =


Q1,n(s) for 0 ≤ s ≤ 1− k/n,

QW
1,n,k(s) for 1− k/n < s < 1,

and

Q̂2,n,ℓ(s) =


Q2,n(s) for 0 ≤ s ≤ 1− ℓ/n,

QW
2,n,ℓ(s) for 1− ℓ/n < s < 1,

whereQ1,n(s) andQ2,n(s) are the above empirical quantile estimators, QW
1,n,k(s) = ((1− s)n/k)

−γ̂H
1,n,k Xn−k,n

and QW
2,n,ℓ(s) = ((1− s)n/ℓ)

−γ̂H
1,n,ℓ Yn−ℓ,n are respectively the Weissman’s estimators ( [?]) of high quan-

tiles Q1(s) and Q2(s) for s→ 1.

Replacing in (2.11), Q1(s) (resp. in (2.12), Q2(s)) by Q̂1,n,k(s) (resp. by Q̂2,n,ℓ(s)), we arrive respectively

at the following alternative estimators for the means m1 and µ2 when losses are heavy tailed with tail

index γ in the upper haft of unit interval (1/2 < γ < 1):

µ̂1,n,k == n−1
n−k∑
i=1

Xi,n +
k

n

Xn−k,n

(1− γ̂1,n,k)
,

and

µ̂2,n,ℓ = n−1
n−ℓ∑
i=1

Yi,n +
ℓ

n

Yn−ℓ,n

(1− γ̂2,n,ℓ)
.

These estimators of means were first studied by [Peng (2001)] and also generalized in [?], [Necir et al.

(2010)], [?], [Deme et al. (2015)] and [Deme et al. (2021)] to assess financial and actuarial risk measures.

As in (2.9), substituting µ̂1,n and µ̂2,n with µ1 and µ2, respectively, on the right-hand side of the Equation

(1.5), [Rassoul (2014)] introduced the following alternative estimator for the ruin probability ϕ (u):

ϕ̃n,k,ℓ (u) :=
µ̂2,n,ℓ

ω − µ̂1,n,k
for 1/2 < γ < 1. (2.13)

[Rassoul (2014)] established the asymptotic normality of the estimator ϕ̃n,k,ℓ (u) under certain restrictive

assumptions. Finally, an asymptotic normal of ϕ(u), for 0 < γ < 1 takes the following form:

ϕ̂n(u) :=

ϕn(u), for 0 < γ ≤ 1/2,

ϕ̃n,k,ℓ (u) , for 1/2 < γ < 1.

Note that the alternative ruin probability estimator ϕ̃n,k,ℓ (u) is associated to the the Hill estimators γ̂1,n,ℓ

and γ̂2,n,ℓ.
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It is well known that these Hill estimators are both pseudo-maximum likelihood estimators based on

the exponential approximation of normalized log-spacings, i.e., V1,j := j(logXn−j+1,n − logXn−j,n), for

j = 1, ..., k and V2,j := j(log Yn−j+1,n− log Yn−j,n), for j = 1, ..., ℓ, see, eg. [Beirlant et al. (2004)], [Beirlant

et al. (1999)]. Clearly, these Hill estimators depend respectively on the choice of sample fractions k, ℓ and

their influence functions are slowly increasing but not bounded. Consequently, these estimators are not very

robust to large values of Vbullet,j , which makes the estimator of the probability of ruin widetildeϕn,k,ℓ (u)

sensitive. This constitutes a serious problem in terms of bias and root mean square error (RMSE). To

overcome this problem, we introduce in the next section a robust estimator of the probability of ruin

ϕ(u) for heavy-tailed distributions whose index lies in the upper half of the unit interval, and establish its

asymptotic properties.

3 Robust Estimator and main results

3.1 Robust Estimator for the ruin probability ϕ(u)

To solve the aforementioned problem of the classical Hill estimator, [Fabián and Stehĺık (2009)] proposed

a sensible distribution known as the t-Hill estimator (t-score or score moment estimate) for the tail index

of any distribution that varies the tail regularly. In addition, [Jordanova and Pancheva (2012)] discovered

the limiting distribution of the t-Hill estimator in the case where the rank S = k, ℓ of the higher-order

statistic is o(n) and proved its asymptotic normality.

This estimator of the score moment has been studied in [Stehĺık et al(2010)] and [Stehĺık et al(2012)].

According to these authors, this estimator is more robust than the classic Hill estimator. Recently, several

studies on t-Hill have been published, see [Beran et al (2014)] and [Jordanova et al (2016)]. In order

to improve the quality of the averages µ1 and µ2 given respectively in (2.11) and (2.12), which allows

us to improve the quality of the infinite-time ruin probability for a heavy-tailed distribution, instead of

implementing the Hill estimator, we propose to estimate the tail index γ by the so-called t-score moment

procedure, in order to obtain a robust result.

The formula of the t-Hill estimators of γ are given by:

γ̂ tH
1,n,k =:

(
1

k

k∑
i=1

Xn−k,n

Xn−i+1,n

)−1

− 1 (3.14)

and

γ̂ tH
2,n,ℓ =:

(
1

ℓ

ℓ∑
i=1

Yn−ℓ,n

Yn−i+1,n

)−1

− 1. (3.15)

For other robust estimators of the tail index γ, we may refer the reader to [ [Juárez SF and Schucany WR

(2004)], [Kim and Lee (2008)], [Peng and Welsh (2001)], [Vandewalle et al(2017)]].

As already mentioned, the ϕ̂n,k,ℓ (u) estimator given in (1.5) is not robust. To this end, we provide a

solution using the t-Hill estimator of γ to derive a robust estimator of the infinite-time probability of ruin

for heavy-tailed ϕ (u) distributions. We follow the same method and steps as [Rassoul (2014)] to write

this new estimator, but instead of the simple tail index estimators γ̂ tH
1,n,k and γ̂ tH

2,n,ℓ defining respectively in
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(3.14) and (3.15).and we introduce the following robust estimators of the ruin probability ϕ(u):

ϕ̂ tH
n,k,ℓ (u) =

µ̂ tH
2,n,ℓ

ω − µ̂ tH
1,n,k

, for 1/2 < γ < 1, (3.16)

where

µ̂ tH
1,n,k := n−1

n−k∑
i=1

Xi,n +
k

n

Xn−k,n

(1− γ̂ tH
1,n,k)

and

µ̂ tH
2,n,ℓ := n−1

n−ℓ∑
i=1

Yi,n +
ℓ

n

Yn−ℓ,n

(1− γ̂ tH
2,n,ℓ)

.

In the next subsection, we establish the asymptotic properties of our proposed estimator of the probability

of ruin.

3.2 Asymptotic Results of the estimator ϕ̂ tH
n,k,ℓ (u)

As usual in the extreme value framework, to prove asymptotic normality results, we need a second-order

condition on the function Ui (x) = Qi (1− 1/x) , x > 1, i = 1, 2, such as the following:

Condition (RUi). There exist a function Ai (x) −→ 0 as x −→ ∞ of constant sign for large values

of x and a second-order parameter ρi < 0 such that, for every x > 0

lim
t→∞

logUi (tx)− logUi (t)− γ log (x)

Ai (t)
=
xρi − 1

ρi
, i = 1, 2.

Note that condition (RUi
) implies that |Ai| is regularly varying with index ρi (see, e.g., [Geluk and de

Hann (1987)], [de Haan and Ferreira (2006)]). It is satisfied for most of the classical distribution functions

such as the Pareto, Burr, and Fréchet ones.

Theorem 3.1 Assume that Fi satisfies (RUi
) with γ ∈ (1/2, 1) . Then for any sequence of integer k = k (n)

and ℓ = ℓ (n) satisfying k → ∞, k/n → 0,
√
kA1(n/k) → 0, ℓ → ∞, ℓ/n → 0,

√
ℓA2 (n/ℓ) → 0 and

ℓ/k → θ <∞ as n→ ∞, we have:

√
n
(
ϕ̂ tH
n,k,ℓ (u)− ϕ (u)

)
(k/n)

1/2 U1 (n/k)

D
= κ1

3∑
i=1

Wn,i + θ(1/2−γ) κ2

3∑
i=1

Wn,i + oP(1)

where



Wn,1 = −
√
n

k

∫ 1− k
n

0

Bn (s)

Q1

(
1− k

n

)dQ1 (s),

Wn,2 = − γ

(1− γ)

√
n

k
Bn

(
1− k

n

)
,

Wn,3 =
γ (γ + 1)

2

(1− γ)
2

∫ 1

0

sγ−1Bn (s) ds,



Wn,1 = −
√
n

ℓ

∫ 1− ℓ
n

0

Bn (s)

Q2

(
1− ℓ

n

)dQ2 (s),

Wn,2 = − γ

(1− γ)

√
n

ℓ
Bn

(
1− ℓ

n

)
,

Wn,3 =
γ (γ + 1)

2

(1− γ)
2

∫ 1

0

sγ−1Bn (s) ds,
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with κ1 = µ2/ (ω − µ1)
2
, κ2 = (ω − µ1)

−1 and Bn(s), 0 ≤ s ≤ 1 is a sequence of Brownian, Bridges.

Now, by computing the asymptotic variances of the different processes appearing in Theorem 3.1, we

deduce the following corollary:

Corollary 3.1 Under the assumptions of Theorem 3.1, we have

√
n
(
ϕ̂ tH
n,k,ℓ (u)− ϕ (u)

)
(k/n)

1/2 U1 (n/k)

D−→ N
(
0, σ2(γ, θ)

)
where

σ2(γ, θ)) =
γ2

(1− γ)2(2γ − 1)

(
κ21 + κ22 θ

(1−2γ) + 2κ1κ2

)
+

γ2(γ + 1)2

(2γ + 1)(1− γ)4

(
κ1 + κ2 θ

(1/2−γ)
)2
.

Remark 3.1 In the case where k ∼ ℓ, as n → ∞, we have θ = 1 and the asymptotic variance σ2(γ, θ) is

equal to 4γ5(κ1 + κ2)
2/(1− γ)4(4γ2 − 1).

4 Simulation Study

4.1 Performance and comparative study

In this simulation study, we examine the performance of the new estimator ϕ̂ tH
n,k,ℓ (u) given in (3.16) with

the classical estimator ϕ̂n,k,ℓ (u) proposed by [Rassoul (2014)] and defined in (1.5). Thus, we generate

N = 1000 samples (X1, ..., Xn) with the sample size n = 1000, 1500, 2000 from a Pareto distribution

function defined as: F1(x) = 1 − x−1/γ , x ≥ 1 with extreme value index γ ∈ {2/3, 3/4}. For a given

initial large reserve u = 1.5, we derive for each sample its corresponding excess of loss (Y1, ..., Yn), where

Yj = max(Xj − u, 0).

The ruin probability estimators ϕ̂ tH
n,k,ℓ (u) and ϕ̂n,k,ℓ (u) are computed with the parameter ω = c/λ = 18

(in order to ensure that µ2 < ω − µ1) and with respectively the tail index estimators γ H
i,n,S and γ tH

i,n,S ,

(i, S) ∈ {(1, k), (2, ℓ)}, for different sample fractional numbers of top order statistics k = 1, . . . , n− 1 and

ℓ = 1, . . . ,mn − 1, where mn is the number of positive values of Yj ̸= 0, j = 1, . . . , n. Employing the

algorithm of [Reiss and Thomas (2007)], Page 137, the optimal values k∗ and ℓ∗ of the number of top

extremes of k and ℓ to compute the ruin probability estimators are respectively values k∗ and ℓ∗ defined

as:

k∗ = argmin
k

1

k

k∑
j=1

jδ
∣∣∣γ̂•1,n,j −median

(
γ̂•1,n,1, ..., γ̂

•
1,n,k

)∣∣∣, 1 ≤ k ≤ n− 1, (4.17)

and

ℓ∗ = argmin
ℓ

1

ℓ

ℓ∑
j=1

jδ
∣∣∣γ̂•2,n,j −median

(
γ̂•2,n,1, ..., γ̂

•
2,n,ℓ

)∣∣∣, 1 ≤ ℓ ≤ mn − 1, (4.18)

where 0 ≤ δ < 1/2 and γ̂•1,n,k (respectively γ̂•2,n,ℓ, is either the Hill’s or the t-Hill’s estimator of the tail

index γ computed with the sample (X1, . . . Xn), respectively with the excess sample (Y1, . . . , Yn). By the

way, choosing δ = 1/4, we compute the optimal values k∗ and ℓ∗ as in (4.17) and (4.18) for each tail index

estimator used in the computation of their associated ruin probability estimators.
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• Next, we compare the performance of the above-mentioned ruin probability estimators by computing

the absolute value of the mean as well as the mean square errors (MSE) based on the N = 500 simulated

samples, and defined as follows:

ABias
(
ϕ•n,k∗,ℓ∗(u)

)
:=

∣∣∣∣∣∣ 1N
N∑
j=1

ϕ•,jn,k∗,ℓ∗(u)

ϕ(u)
− 1

∣∣∣∣∣∣
and

MSE
(
ϕ•n,k∗,ℓ∗(u)

)
:=

1

N

N∑
j=1

(
ϕ•,jn,k∗,ℓ∗(u)

ϕ(u)
− 1

)2

,

where ϕ(u) is the true value of the ruin probability and ϕ•,jn,k∗,ℓ∗(u) is the j-th value (j = 1, ..., N) of any

ruin probability estimator ϕ•n,k∗,ℓ∗(u) of ϕ(u), evaluated at their optimal numbers of higher-order statistics.

The point estimates of the probability of ruin at their optimal k∗ values as well as their Abias and MSE

are summarized in the following Tables 4.1.

n = 1000

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576

ϕ̂ k∗,ℓ∗,n(u) 0.0893 ϕ̂tHk∗,ℓ∗,n(u) 0.0943 ϕ̂ k∗,ℓ∗,n(u) 0.1504 ϕ̂tHk∗,ℓ∗,n(u) 0.1638

ABais 0.1069 ABais 0.0648 ABais 0.0615 ABais 0.0585

MSE 0.0114 MSE 0.0042 MSE 0.0037 MSE 0.0034

n = 1500

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576

ϕ̂ k∗,ℓ∗,n(u) 0.0905 ϕ̂tHk∗,ℓ∗,n(u) 0.0953 ϕ̂ k∗,ℓ∗,n(u) 0.1638 ϕ̂tHk∗,ℓ∗,n(u) 0.1523

ABais 0.0946 ABais 0.0545 ABais 0.0526 ABais 0.0520

MSE 0.0089 MSE 0.0029 MSE 0.0027 MSE 0.0023

n = 2000

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576

ϕ̂ k∗,ℓ∗,n(u) 0.0925 ϕ̂tHk∗,ℓ∗,n(u) 0.0995 ϕ̂ k∗,ℓ∗,n(u) 0.1649 ϕ̂tHk∗,ℓ∗,n(u) 0.1546

ABais 0.0751 ABais 0.0354 ABais 0.0502 ABais 0.0358

MSE 0.0056 MSE 0.0013 MSE 0.0025 MSE 0.0012

Table 4.1: Estimation results of ϕ̂k∗ℓ∗,n(u) and ϕ̂
tH
k∗,ℓ∗,n(u) estimators of the ruin probability ϕ(u) = 0.1 for

u = 1.5 andω = c/λ = 18, computed with optimal numbers of top statistics k∗ and ℓ∗, based on N = 1000

samples of size n = 1000; 1500; 2000, from the distribution F1(x) = 1− x−1/γ , γ = 2/3; 3/4.

Examination of the table leads to two conclusions, whatever the situation. Firstly, we note that the absolute bias of

both probability of ruin estimators decrease to zero when the sample size n becomes large. Secondly, we find that

the MSEs of the ϕ̂ tH
n,k,ℓ(u) estimator converge faster to zero as n increases, compared with the MSEs of ϕ̂n,k,ℓ(u).

In this context, these numerical results show that the estimator ϕ̂ tH
n,k,ℓ(u) is the best.

4.2 Comparative robustness study

One way of increasing robustness is to create a contamination model, which is considered to replace some of the

variables of the data X with outliers. Thus, to assess the robustness of our estimator, a simulation was performed
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with contaminated data for each estimator. The main points here are to consider a ε− contamination model, which

consists in considering a Pareto distribution F1(x) = 1 − x−1/γ polluted by variables extracted from the other

Pareto distribution F1,a(x) = 1−
(
x
a

)−1/γ
and to use the following mixing distribution:

F c
1 (x) = (1− ε)× F1(x) + ε× F1,a(x) = 1− (1− ε)x−1/γ + ε

(x
a

)−1/γ

,

where ε ∈ (0, 1) is the contamination rate. Now, for a given ε = 10% and a = 3, we generate also N = 1000 samples

of size n = 1000, 1500, 2000 from the contaminated Pareto distribution F c
1 (x). This kind of ε-contaminated model

is used in [Fabián and Stehĺık (2009)], [Brahim and Kenioua (2016)] and [Bouali et al (2021)] to evaluate insured.

Next, as in subsection 4.1, we compare the new estimator ϕ̂ tH
n,k,ℓ (u) with the classical estimator ϕ̂n,k,ℓ (u) of the

ruin probability ϕ(u), by calculating the Absolute bias and the MSE. The results are shown in Table 4.2. It turned

out that the effect of contamination gets immediately apparent.

n = 1000

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576008

ϕ̂ k∗,ℓ∗,n(u) 0.0886 ϕ̂t.Hk∗,ℓ∗,n(u) 0.0995 ϕ̂ k∗,ℓ∗,n(u) 0.1424 ϕ̂t.Hk∗,ℓ∗,n(u) 0.1597

ABais 0.1145 ABais 0.0492 ABais 0.0985 ABais 0.0542

MSE 0.0131 MSE 0.0024 MSE 0.0097 MSE 0.0029

n = 1500

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576008

ϕ̂ k∗,ℓ∗,n(u) 0.0905 ϕ̂t.Hk∗,ℓ∗,n(u) 0.1012 ϕ̂ k∗,ℓ∗,n(u) 0.1724 ϕ̂t.Hk∗,ℓ∗,n(u) 0.1568

ABais 0.0981 ABais 0.0418 ABais 0.0974 ABais 0.0476

MSE 0.0096 MSE 0.0017 MSE 0.00948 MSE 0.0022

n = 2000

γ = 2/3, ϕ(u) = 0.1 γ = 3/4, ϕ(u) = 0.1576008

ϕ̂ k∗,ℓ∗,n(u) 0.0901 ϕ̂t.Hk∗,ℓ∗,n(u) 0.1008 ϕ̂ k∗,ℓ∗,n(u) 0.1422 ϕ̂t.Hk∗,ℓ∗,n(u) 0.1567

ABais 0.0947 ABais 0.0305 ABais 0.0939 ABais 0.0348

MSE 0.0089 MSE 0.0012 MSE 0.0088 MSE 0.0013

Table 4.2: Estimation results of ϕ̂k∗ℓ∗,n(u) and ϕ̂
tH
k∗,ℓ∗,n(u) estimators of the ruin probability ϕ(u) = .. for

u = .., computed with optimal numbers of top statistics k∗ and ℓ∗, based on N = 1000 samples of size

n = 1000; 1500; 2000, from the distribution F c
1 (x) = 1− (1− ε)x−1/γ + ε

(
x
a

)−1/γ
, γ = 2− 3, 3/4.
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5 Proofs

Let E1, ..., En be independent and identically distributed random variables from the unit Pareto distribution G,

defined as G(t) = 1 − t−1, t ≥ 1. For each n ≥ 1, let E1,n ≤ ... ≤ En,n be the order statistics pertaining to

E1, . . . , En. Clearly Xj,n
d
= U1(Ej,n) and Yj,n

d
= U2(Ej,n) j = 1, . . . , n. In order to use the results from [Csörgő

et al. (1986)], a probability space (Ω,A,P) is constructed carrying a sequence ξ1, ξ2, . . . of independent random

variables uniformly distributed on (0, 1) and a sequence of Brownian bridges Bn(s), 0 ≤ s ≤ 1, n = 1, 2 . . . such that

for all 0 ≤ ν < 1/2 and λ > 0

sup
λ/n≤ s≤1−λ/n

|βn(s)− Bn(s)|
(s(1− s))1/2−ν

= OP(n
−ν), (5.19)

where βn is following the uniform quantile process

βn (t) =
√
n (t− Vn (t))

with Vn denoting the empirical uniform quantile function defined to be Vn (t) = ξj,n,
j−1
n

< t ≤ j
n
, j = 1, . . . , n

and Vn(0) = 0.

Proof of Theorem 3.1

Recall that:

ϕ̂ tH
n,k,ℓ (u)− ϕ (u) =

µ̂ tH
2,n,ℓ

ω − µ̂ tH
1,n,k

− µ2

ω − µ1
,

where

µ̂ tH
1,n,k :=

∫ 1−k/n

0

Q1,n(s)ds+
k

n

Xn−k,n

1− γ̂ tH
1,n,k

,

and

µ̂ tH
2,n,ℓ :=

∫ 1−ℓ/n

0

Q2,n(s)ds+
ℓ

n

Yn−ℓ,n

1− γ̂ tH
2,n,ℓ

.

Then, one may be rewrite the random variable ϕ̂ tH
n,k,ℓ (u)− ϕ (u) as follows:

ϕ̂ tH
n,k,ℓ (u)− ϕ (u) =

µ2(
ω − µ̂ tH

1,n,k

)
(ω − µ1)

(
µ̂ tH
1,n,k − µ1

)
+

1

ω − µ̂ tH
1,n,k

(
µ̂ tH
2,n,ℓ − µ2

)
.

Under the assumption (1.6), we have from from Theorem 2.4.1 in [de Haan and Ferreira (2006)], Xn−k,n = Q1(1−

k/n){1+oP(1)}, as n → ∞ . Since the relation (1.6) is equivalent to Q1(1−s) = s−γℓQ1(s), s ∈ (0, 1), where ℓQ1 is a

slowly varying function, more precisely ℓQ1(sx)/ℓQ1(s) → 1, as s → 0, then (k/n)Q1(1−k/n) = (k/n)1−γℓQ1(k/n).

Thus, for a given γ ∈ (1/2, 1), we have from Proposition 1.3.6 in [Bingham et al. (1987)], (k/n)1−γℓQ1(k/n) → 0,

as n → ∞. Therefore, using the weak consistency of the estimator γ̂ tH
1,n,k to γ (see, [Jordanova et al (2016)] ), we

obtain (k/n)Xn−k,n/(1− γ̂ tH
1,n,k)

P→ 0, as n → ∞.

Also, under assumption we have from [Peng (2001)],

√
n
∫ 1−k/n

0
(Q1,n(s)−Q1(s))ds

(k/n)1/2Q1(1− k/n)

d
= −

∫ 1−k/n

0
Bn(s)dQ1(s)

(k/n)1/2Q1(1− k/n)
+ oP(1). (5.20)

Since the right term in (5.20) is bounded in probability, it comes for all large values of n,∫ 1−k/n

0

Q1,n(s)ds =

∫ 1−k/n

0

Q1(s)ds+ oP(1).

Remarking that k/n → 0, as n → ∞, we have
∫ 1−k/n

0
Q1(s)ds =

∫ 1

0
Q1(s)ds{1 + oP(1)}, as n → ∞. Which

leads to the convergence in probability of µ̂ tH
1,n,k to the mean µ1. Next, let’s denote by κ1 = µ2/(ω − µ1)

2 and

κ2 = 1/(ω − µ1). Then, for all n large enough, the random variable ϕ̂ tH
n,k,ℓ (u) − ϕ (u) can be also represented as

follows

ϕ̂ tH
n,k,ℓ (u)− ϕ (u)

d
= κ1

(
µ̂ tH
1,n,k − µ1

)
+ κ2

(
µ̂ tH
2,n,ℓ − µ2

)
.
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Consequently,

√
n
(
ϕ̂ tH
n,k,ℓ (u)− ϕ (u)

)
(k/n)1/2 Q1(1− k/n)

d
= κ1

n1/2
(
µ̂ tH
1,n,k − µ1

)
(k/n)1/2 Q1(1− k/n)

+κ2

√
ℓ/k

(
Q2(1− ℓ/n)

Q1(1− k/n))

)
n1/2

(
µ̂ tH
2,n,ℓ − µ2

)
(ℓ/n)1/2 Q2(1− ℓ/n)

,

:= A1,n +A2,n.

Now, let We first compute the A1,n term. By substituting µ̂ tH
1,n,k and µ1 with their expressions, we have

A1,n = κ1

√
n
∫ 1−k/n

0
(Q1,n(s)−Q1(s))ds

(k/n)1/2Q1(1− k/n)

+κ1

n1/2

(
(k/n)Xn−k,n

1− γ̂ tH
1,n,k

−
∫ 1

1−k/n

Q1(s)ds

)
(k/n)1/2 Q1(1− k/n)

:= A
(1)
1,n +A

(2)
1,n.

From the statement in (5.20), we have

A
(1)
1,n

d
= − κ1Wn,1 + oP(1), (5.21)

where

Wn,1 :=

∫ 1−k/n

0
Bn(s)dQ1(s)

(k/n)1/2Q1(1− k/n)
.

Next, remarking that U1(n/k) = Q1(1− k/n) and Xn−k,n
d
= U1(En−k,n), we have

A
(2)
1,n

d
=

4∑
i=1

Tn,i,

where

Tn,1 =
κ1

1− γ̂ tH
1,n,k

√
k

[
U1 (En−k,n)

U1 (n/k)
−
(
k

n
En−k,n

)γ]
,

Tn,2 =
κ1

1− γ̂ tH
1,n,k

√
k

((
k

n
En−k,n

)γ

− 1

)
,

Tn,3 =
κ1

(1− γ)
(
1− γ̂ tH

1,n,k

)√k
(
γ̂ tH
1,n,k − γ

)
,

Tn,4 = κ1

√
k

[
1

1− γ
−
∫ +∞
1

s−2U1 (ns/k) ds

U1 (n/k)

]
.

We study each term separately.

Term Tn,1. According to [de Haan and Ferreira (2006)], Theorem 2.3.9) , for any δ > 0, we have

√
k

(
U1 (En−k,n)

U1(n/k)
−
(
k

n
En−k,n

)γ)
=

√
k A1

(n
k

){( k

n
En−k,n

)γ
(
k
n
En−k,n

)ρ − 1

ρ
+ oP(1)

(
k

n
En−k,n

)γ+ρ±δ
}
,

Thus, since kEn−k,n/n → 1,
√
k A1(n/k) → 0 and γ̂tH

1,n,k
P→ γ, as n → ∞ (see, [Jordanova et al (2016)] ), it readily

follows that

Tn,1 = oP(1). (5.22)

Term Tn,2. The equality En−k,n
d
= (1− ξn−k,n)

−1 yields:

√
k

[(
k

n
En−k,n

)γ

− 1

]
d
=

√
k

((n
k
(1− ξn−k,n)

)−γ

− 1

)
= −γ

√
k
(n
k
(1− ξn−k,n)− 1

)
(1 + oP(1)) by a Taylor expansion

= −γ

√
n

k
βn

(
1− k

n

)
(1 + oP(1))

= −γ

√
n

k

(
Bn

(
1− k

n

)
+OP(n

−ν)

(
k

n

)1/2−ν
)
(1 + oP(1)),
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for 0 ≤ ν < 1/2, by [Csörgő et al. (1986)]. Thus, using again the weak consistency of γ̂tH
1,n,k to γ, it follows that:

Tn,2
d
= κ1Wn,2(1 + oP(1)), (5.23)

where

Wn,2 = − γ

(1− γ)

√
n

k
Bn

(
1− k

n

)
.

Term Tn,3. From the Proposition 1 in [Brahim and Kenioua (2016)], page 877, we have

√
k
(
γ̂ tH
1,n,k − γ

)
d
= γ (γ + 1)2

∫ 1

0

sγ−1Bn (s) ds+ oP(1).

And by using again the consistency in probability of γ̂tH
1,n,k to γ, we get for all n large enough:

Tn,3 = κ1
γ (γ + 1)2

(1− γ)2

∫ 1

0

sγ−1Bn (s) ds+ oP(1) = κ1Wn,3 + oP(1). (5.24)

Term Tn,4. A change of variables and an integration by parts yield

Tn,4 = κ1

√
k

{
1

1− γ
−
∫ ∞

1

x−2U1(nx/k)

U1(n/k)
dx

}
= −κ1

√
k

∫ ∞

1

x−2

(
U1(nx/k)

U1(n/k)
− xγ

)
dx.

Theorem 2.3.9 in [de Haan and Ferreira (2006)] entails that, for γ ∈ (1/2, 1),

Tn,4 = −κ1

√
kA1

(n
k

)∫ ∞

1

xγ−2 xρ − 1

ρ
dx (1 + oP(1))

= κ1

√
kA1

(n
k

) 1

(1− γ)(γ + ρ− 1)
(1 + oP(1)).

= oP(1), by
√
k A1(n/k) → 0. (5.25)

Combining (5.21), (5.22), (5.23), (5.24) and (5.25), we get

An,1
d
= κ1

(
Wn,1 +Wn,2 +Wn,3

)
+ oP(1). (5.26)

Now let’s compute the A2,n term. We first have: Q2(1 − ℓ
n
) ∼ Q1(1 − ℓ

n
) = Q1(1 − ℓ

k
k
n
) ∼ ( ℓ

k
)−γQ1(1 − k

n
), as

n → ∞. Since by assumption ℓ/k → θ > 0, then Q2(1− ℓ
n
) ∼ θ−γQ1(1− k

n
), as n → ∞. This leads for large values

of n to

A2,n
d
= θ(1/2−γ) κ2

n1/2
(
µ̂ tH
2,n,ℓ − µ2

)
(ℓ/n)1/2 Q2(1− ℓ/n)

.

Further, Substituting µ̂ tH
2,n,ℓ and µ2 with their expressions and using similar arguments as those developed to show

the expression A1,n in (5.26) together with Yn−ℓ,n
d
= U2(En−ℓ,n), it comes:

An,2
d
= θ(1/2−γ) κ2

(
Wn,1 +Wn,2 +Wn,3

)
+ oP(1), (5.27)

where

Wn,1 := −
∫ 1−ℓ/n

0
Bn(s)dQ2(s)

(ℓ/n)1/2Q2(1− ℓ/n)
,

Wn,2 := − γ

1− γ

√
n

ℓ
Bn

(
1− ℓ

n

)
,

Wn,3 :=
γ (γ + 1)2

(1− γ)2

∫ 1

0

sγ−1Bn (s) ds.

Finally, for all n large enough, the Theorem 3.1 holds with

√
n
(
ϕ̂ tH
n,k,ℓ (u)− ϕ (u)

)
(k/n)1/2 Q1(1− k/n)

d
= κ1

3∑
i=1

Wn,i + θ(1/2−γ) κ2

3∑
i=1

Wn,i + oP(1)
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Proof of Corollary 3.1

From Theorem 3.1, we need to compute the asymptotic variance σ2(γ, θ) of the limiting process. More precisely,

have

σ2(γ, θ) = lim
n→∞

(
(κ1)

2
{
E
(
W2

n,1

)
+ E

(
W2

n,2

)
+ E

(
W2

n,3

)}
+ (κ2)

2 θ(1−2γ)
{
E(W2

n,1) + E(W2
n,2) + E(W2

n,3)
}

+ 2 (κ1)
2
{
E(Wn,1Wn,2) + E(Wn,1Wn,3) + E(Wn,2Wn,3)

}
+ 2 (κ2)

2 θ(1−2γ)
{
E(Wn,1Wn,2) + E(Wn,1Wn,3) + E(Wn,2Wn,3)

}
+ 2κ1κ2 θ

(1/2−γ)
{
E(Wn,1Wn,1) + E(Wn,1Wn,2) + E(Wn,1Wn,3)

}
+ 2κ1κ2 θ

(1/2−γ)
{
E(Wn,2Wn,1) + E(Wn,2Wn,2) + E(Wn,2Wn,3)

}
+ 2κ1κ2 θ

(1/2−γ)
{
E(Wn,3Wn,1) + E(Wn,3Wn,2) + E(Wn,3Wn,3)

})
.

Recall that Q1(1 − su)/Q1(1 − u) → s−γ , Q2(1 − su)/Q2(1 − u) → s−γ and Q1(1 − u) ∼ Q2(1 − u) as u → 0,

u → 0u → 0. Following [Deme et al. (2015)] with some algebraic operations, we get, as n → ∞:

E
(
W2

n,1

)
−→ 2γ

2γ − 1
, E

(
W2

n,2

)
−→ γ2

(1− γ)2
,

E
(
W2

n,3

)
=

γ2 (γ + 1)2

(2γ + 1) (γ − 1)4
, E (Wn,1Wn,2) −→

γ

1− γ
,

E (Wn,1Wn,3) = 0 + o(1), E (Wn,2Wn,3) = 0 + o(1),

E
(
W2

n,1

)
−→ 2γ

2γ − 1
, E

(
W2

n,2

)
−→ γ2

(1− γ)2
,

E
(
W2

n,3

)
=

γ2 (γ + 1)2

(2γ + 1) (γ − 1)4
, E

(
Wn,1Wn,2

)
−→ γ

1− γ
,

E
(
Wn,1Wn,3

)
= 0 + o(1), E

(
Wn,2Wn,3

)
= 0 + o(1),

E
(
Wn,1Wn,1

)
−→ γ

1− γ

(
1

2γ − 1
− θ(1−γ)

)
θ(γ−1/2), E

(
Wn,1Wn,2

)
−→ γ

1− γ
θ1/2,

E
(
Wn,1Wn,3

)
= 0 + o(1), E

(
Wn,2Wn,1

)
−→ γ(1− γ θ(1−γ))

(1− γ)2
θ(γ−1/2),

E
(
Wn,2Wn,2

)
−→ γ2

(1− γ)2
θ1/2, E

(
Wn,2Wn,3

)
= 0 + o(1),

E
(
Wn,3Wn,1

)
= 0 + o(1), E

(
Wn,3Wn,2

)
= 0 + o(1), E

(
Wn,3Wn,3

)
=

γ2(1 + γ)2

(1 + 2γ)(1− γ)4
.
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M. (2016). Weak properties and robustness of t-Hill estimators, Extremes, 19(4),591–626.
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