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A three-dimensional contact problem with the orthotropic Coulomb friction is formulated in the form of a system of nonlinear equations. The non linear complementarity formulation derived naturally from the three-dimensionalfrictional contact phenomenon is used in the numerical analysis without such linearization as previously introduced. The probability-one homotopy method known as a globally convergent zero-finding algorithm is implemented as an exact method and applied to each incremental step. The method is illustrated by two three-dimensional problems and the results are compared with those of commercial package and other approxima tions.

Introduction

As seen from the literature, notwithstanding the importance and intensive study for several decades, the frictional contact problem has still remained as one of the most difficult problem. Especially three-dimensional frictional contact problems have rarely been treated. No attempt of exact approach seemed available until now. In general, numerical methods for the contact problem with friction can be divided into two cate gories, that is, iterative trial and error methods and mathe matical formulations such as variational inequality and com plementarity. In the former methods, the solution for the con tact problem is sought iteratively by a trial and error scheme until it satisfies some contact and friction conditions in the discretized formulation [START_REF] Okamato | Finite Element Incremental Contact Analysis with Various Frictional Conditions[END_REF]Rah man, Rowlands and Cook, 1984;[START_REF] Torstenfelt | An Automatic Incrementation Technique for Contact Problems with Friction[END_REF][START_REF] Bathe | A Solution Method for Planar and Axisymmetric Contact Problems[END_REF]. Contact or interface elements are often used in this approach. In the latter category, the variational ine quality is useful in obtaining mathematical properties of the solution such as existence and uniqueness (Duvaut and Lions, 1976;Panagiotopoulos, 1985). However, it has been limited to the case in which either normal pressure or contact area is known, or some mathematical assumptions on smoothness of friction law are used [START_REF] Oden | Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity[END_REF]. Complementarity formulation where a subdifferential analysis is used under the restriction that contact area is constant has been derived by [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF]. [START_REF] Lee | A Complementarity Problem Formu lation for Two-Dimensional Frictional Contact Problem[END_REF][START_REF] Kwak | Numerical Implementation of Three-Dimensional Fric tional Contact by a Linear Complementarity Problem[END_REF][START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF] have derived a complementarity principle directly from the natural law for the frictional contact phenomenon, which leads to a linear complementarity problem (LCP) for a two-dimensional case and a nonlinear comple mentarity problem for general three-dimensional cases. In the latter case, by introducing a polyhedral law of friction, the problem has been transformed to a linear complementarity problem, but the nonlinear complementarity per se has not been treated yet.

The complementarity problem has relevant equivalences to a certain type of variational inequality, fixed point problem, system of nonlinear equations and so on [START_REF] Cottle | Variational.Inequalities and Complementarity Problems[END_REF]. In this line, a useful theorem regarding the equivalence between a complementarity problem and a system of nonlinear equations was developed by [START_REF] Mangasarian | Equivalence of the Complementarity Problem to a System of Nonlinear Equations[END_REF]. In his theorem, it was shown that the resulting nonlinear equa tions preserve the useful properties such as continuity and differentiability. [START_REF] Watson | Solving the Nonlinear Complementarity Problem by a Homotopy Method[END_REF] proposed a numerical scheme for a general nonlinear complementarity problem using this theorem and homotopy method.

The Newton-type methods and the continuation methods are two major branches of solution methods for the system of nonlinear equations. Both have some disadvantages. Due to the first proposition by [START_REF] Chow | Findin g Zeros of Maps: Homotopy Methods that are Constructive with Probability One[END_REF], the homotopy based continuation method is gaining interest as a valuable tool for the numerical solution of tough nonlinear equations in several variables. Theoretically, this method has the prob ability-one convergence property under mild conditions. It has been successfully applied to several difficult problems [START_REF] Watson | A Homotopy Method Applied to Elastica Problems[END_REF].

In this paper the nonlinear complementarity formulation of three-dimensional frictional contact presented by [START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF] is transformed to a system of nonlinear equations using Man gasarian 's theorem and solved by the homotopy method with an ordinary differential equation based, zero-curve following method in HOMPACK [START_REF] Watson | Algorithm 652: HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algo rithms[END_REF]. Considering inherent nonlinearities of the contact problem, the updated Lagrangian formulation is adopted with the finite element discretization. The internal degrees-of-freedom can be statically condensed out. For the numerical examples, the three-dimensional contact of an elastic body on a rigid surface is considered and changes of pressure distribution and slips on the contact surface are observed and compared with ABAQUS. The problem of a flat-ended square rigid punch on the elastic half surface is also solved and the results are compared with others in the literature [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF].

2 Formulation of Three-Dimensional Contact Problem With The Coulomb Friction 2.1 Finite Element Approximation and Condensation of the Internal DOF. Considering the loading-path dependent nature of friction phenomena and other nonlinearities, an in cremental formulation is used. The description based on the updated Lagrangian incremental approach as in [START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF] is adopted. The configuration and state up to loading step t are known and those at t + 1::.. t are sought. Employing a usual finite element discretization scheme to the linearized varia tional form of the equation of motion and imposing traction and displacement boundary conditions, the governing finite element matrix equation is obtained. where u =the nodal displacement increment vector KL= the linear incremental stiffness matrix KNL =the nonlinear incremental stiffness matrix i+ .:i.1F =the internal force vector (1) and i + .:i. t R is the external force vector which involves the body force, the surface traction, and the unknown contact traction at the potential contact surface, which is selected sufficiently large to cover the real contact area.

Partitioning u into the nodal displacement increments Uc on the potential contact surface r c and internal nodal displace ment increments u;, the matrix equation is rewritten as

[Ku K;c] \ u;{ = \F; { . Kc , Kee l uc) l S c) (2)
The internal degrees of freedom u; can be condensed out and then the matrix equation for Uc is obtained as follows:

Kuc= Sc -K1F;, (3) 
where K =Kee -Kc;K;°j 1K;c and K1= Kc;K ii 1• So the relationship between the displacement increment and the force at the potential contact surface for the kth body is expressed as

u� = BkS� + T k Ff, (4) 
where Bk=K-1 and Tk= -K-'K1.

The displacement increment u� on the contact surface and the contact force S� in Eq. ( 4) are unknown and these must satisfy the contact and friction conditions described in [START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF]. They are briefly summarized with the same notations as used there.

(J) Global Equilibrium. For configuration at t + l::..t, the global equilibrium equation for body 1 where rigid-body motion is allowed is obtained as follows:

� l+AtF ; Hu l+A t dl' + � t +At S;Au l+Atdl' = 0 . (5) (2) Compatibility Condition. Since either contact gap Dn(a)) or contact normal force t+ .:i. t p between the mating con tact points a) and if after load increment l::..t must be equal to zero, the following condition is satisfied:

t+At p•fln(a)) =0
for all a! On I'�. (3) Coulomb friction condition. The form of the static friction law is described by the following inequality between the tangential traction component Sa and Sb, and the normal P and shown in Fig. 1:

CE= (Sa, Sb, P) __ a + __ b ::s,l+A t p ' [ 1[(1 +.:i.1 s )2 (1 + .:i. 1 s )2]1 12 ] µ, a µ, b (7) 
If strict inequality holds, there is no slip. Otherwise, a relative motion is imminent.

In this latter case it is known (Panagiotopoulos, 1985) that there exists a non-negative f.. such that

1+ .:i. 1 s 1+.:i.1 s Da= -f.. � and Db= -f.. --2 - b (8) µ, a µ, b
where Da and Db are appropriately defined relative tangential displacements along the principal axes of the friction.

2.2 Nonlinear Complementarity Problem Formulation.

The relative displacements and all tangential components are well defined in Fig. 3 and Eq. ( 22) in [START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF]. Here and in the following, the exact same definitions and notations are adopted to avoid unnecessary repeating.

The unknown displacement vector on the potential contact region r� of body k was expressed as a function of the contact traction vector in (4). Symbolically it can be expressed as fol lows:

u�=u�(+Ms�; 1 +.:i.1pk), k= l , 2 (9) 
where the subscript c refers to the potential contact region; and t+At s� denotes a traction vector with both normal and tangential components and can be expressed by t+ Msa. t+ Msb, and t+ .:i. t sn. If Eq. ( 9) is used, the gap function can be expressed in the following functional form

(10)
where 'a! and 'af are mating contact points predetermined at configuration t, and q denotes the rigid-body displacement. Then the condition in Eq. ( 6) becomes t+ Mpnn = O (11) where t + .:i. t P"2:.0 and Dn"2:.0

The Coulomb friction law, (7), can be directly transformed to• a complementarity form. First, introduce a non-negative real number t +.:i. t p• and t+ .:i. 1 01 such that (15)

Introducing a slack variable T, the friction condition ( 7) can be expressed as This indicates that the direction of tangential contact force can be different from the direction of slip for the orthotropic law.

By similar fashion, the global equilibrium Eq. ( 5) can be expressed symbolically as follows:

From ( 12) and ( 16), By substituting (20) to ( 10), ( 15) and ( 19), we can express them only in terms of t+L>.tp, T, t+t>.11J 1 and q as follows: and D, , =D ,,(1+t>.tp, T, t+t>.t f) f i q)

Da= Da( 1+t>.tp, T, t+t>.tlJ J , q)

Db=D b( t+t>.tp, T, t+t>.11J 1 , q)

(21)

(22) (23) E(1+Mp, T, t+t>.11J 1 , q) = 0. ( 24 
)
Also from ( 13) and ( 18) the following relation is obtained:

Db = µ, a tan t+ Ll. t f) J • Da µ, b (25) 
Now, the complete description of three-dimensional friction contact problems with the orthogonal Coulomb law is obtained by two complementarity conditions ( 11), ( 17) and the two equality conditions ( 24), ( 25). The unknowns are t+L>.tp, T, t+ t>.11J 1, and q. But the two complementarity conditions are nonlinear because of (12). The only treatment in the literature components of F and z, respectively. The problem of finding a z E R" such that By taking IJ(t) = t3, the nonlinear complementarity condi tions can be converted to the system of nonlinear equations as follows:

(28)

The choice IJ(t ) = t3 is taken because it is the simplest strictly increasing function satisfying C 2 continuity and IJ(O) = 0.

Using (28), we can transform the nonlinear complementarity conditions ( 11) and ( 17 where subscript i represents each contact point and nc is the total number of contact points.

For numerical efficiency in treating the direction of friction force IJ1, we introduce two independent variable u and v such that u=sin IJ1 and v=cos IJ1.

(31)

Substituting ( 31), global equilibrium Eq. ( 24) can be re written as

H3: E;(1+ t>.t p, T, u, v, q) = 0 i = 1, .. . , n, (32) 
where n, is the number of independent rigid-body motions. By the same fashion, ( 21 (35)

Equations ( 13) and ( 18) can be rewritten and applied to each point on the potential contact surface. Then, H4: [(µaU;) 2 + ( µ bv; (

) (39) 38 
Obviously, ( 29), ( 30), ( 32), (36) (or (38)) and (37) (or (39)) represent the complete system of equations for the three dimensional contact problem with the Coulomb friction and the total number of variables is 4nc + n,. is to approximate the elliptic or circular type friction law by polygons [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF][START_REF] Kwak | Complementarity Problem Formulation of Three-Di mensional Frictional Contact[END_REF] as shown in Fig. l, resulting in a set of linear complementarity. But, in the next section a solution method to solve the nonlinear complemen-. 3 tarity problem without such approximation is proposed. For

Homotopy Method

Newton-type methods have been widely used to solve non linear equations in engineering and science for their fast con vergence near the solution. But there are many difficult problems that cannot be solved by these methods. For an attempt to those difficult problems, the continuation methods have been used in various forms. Incremental loading, incre mental displacement, and arc-length methods in nonlinear structural analysis are particular types of continuation. The homotopy method is a new class of continuation methods for this purpose, the nonlinear complementarity problem is trans formed to a system of nonlinear equations suitable for the application of the homotopy method.

2.3 System of Nonlinear Equations Formulation. One such transformation of the complementarity problem to a sys tem of nonlinear equations has been shown by [START_REF] Mangasarian | Equivalence of the Complementarity Problem to a System of Nonlinear Equations[END_REF], and is given in the following theorem: Let F: R" - R", let z E R" and let F; and z;, i = l, . . . , n, denote the computing (Brouwer) fixed points and zeros of nonlinear sys tems. It is robust and converges from an arbitrary starting point almost surely under mild conditions, such as C 2 contin uities and asymptotic similarity conditions [START_REF] Watson | Numerical Linear Algebra Aspects of Globally Con vergent Homotopy Methods[END_REF]. This method is globally convergent as opposed to local con vergence of most iterative methods. Useful theorems with an abstract algorithm regarding homotopy method were first pub lished by [START_REF] Chow | Findin g Zeros of Maps: Homotopy Methods that are Constructive with Probability One[END_REF]. From that time, many efforts to complete the background theory and to es tablish numerical algorithms had been performed by [START_REF] Watson | Numerical Linear Algebra Aspects of Globally Con vergent Homotopy Methods[END_REF][START_REF] Watson | Solving the Nonlinear Complementarity Problem by a Homotopy Method[END_REF][START_REF] Watson | Algorithm 652: HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algo rithms[END_REF].

The general idea of probability-one homotopy methods is as follows: Suppose that a root of a system of nonlinear equa tions F(x) is to be found where F: R" -R" is a C 2 map. Construct a homotopy map such that

Pa (A, x) = AF(x) + ( 1-A)(x-a). ( 40 
)
From this it can be easily shown that Pa(O , x) = (x -a) and Pa(l , x) = F(x). A zero curve of ( 40) is tracked by varying A from O to 1. Starting from ("A, x) = (0, a) , where a is an arbitrarily chosen starting point, it reaches to a point (A, x) =

(1, :X), where F(:X) = 0. There are many algorithms that can be used for tracking the zero curve P a(A, x) such as an ordinary differential equation based algorithm, Davidenko's normal flow algorithm and Rheinholdt ' s augmented Jacobian matrix algorithm (Rheinholdt and Burkardt, 1983).

In solving the previously formulated nonlinear system of equations for the three-dimensional frictional contact problem, it is very difficult to choose the starting points especially for the direction of slips which can change abruptly. Because of this, the probability-one homotopy method is adopted with the homotopy as follows:

where z= (P, T, u, v, q) ER4nc+n,, aER4"c+n,,

Pa= AF(z) + (1-A)(z-
The subscript i previously used to refer to the ith contact point is omitted to avoid notational complexity.

It is apparent that F(z) is a C 2 map but difficult to check the asymptotic similarity condition necessary for the guarantee of global or probability-one convergency. No failure, however, has been experienced in solving several three-dimensional con tact problems. For the tracking of zero curves, the ordinary differential equation based method in HOMPACK [START_REF] Watson | Algorithm 652: HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algo rithms[END_REF] is used. Detailed theory and al gorithm regarding this method can be found in [START_REF] Watson | Numerical Linear Algebra Aspects of Globally Con vergent Homotopy Methods[END_REF]. To increase the accuracy of solutions, the Newton iteration is adopted near "A = 1 of the zero curve of the homotopy map.

Numerical Examples

Due to scarcity of solved problems in the literature and therefore difficulty of comparisons, only constant contact area problems with the isotropic friction law are considered. The present formulation, however, does not differentiate between these problems and more general problems with variable con tact area and orthotropic friction case.

Example 1. Elastic Body on a Flat Rigid Surface. To test the proposed method, three-dimensional frictional contact be tween a rectangular elastic body and a flat rigid surface is considered. The size of the elastic body is 20 x 20 x 25 (mm3)
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- The arrows represent the directions of slips not magnitudes and the pressure distributions are scaled by the maximum ap plied pressure. Rapid changes of pressure distributions and contact status such as the process of outward slip-adhesion inward slip, mentioned and shown by other authors for two dimensional and axisymmetric contact [START_REF] Torstenfelt | An Automatic Incrementation Technique for Contact Problems with Friction[END_REF][START_REF] Lee | A Complementarity Problem Formu lation for Two-Dimensional Frictional Contact Problem[END_REF] at unloading steps, are well observed in Fig. 3 and4. Pressure distribution and slips at 100 percent loading are compared with the results of a commercial package, ABA QUS for 10 7 of "stiffness in stick" which is a penalty parameter used to impose zero relative slip when the friction force does not exceed the friction limit. Their agreement is good as shown in Figs. 5 and 6. Slight differences are observed in the pressure though probably due to the approximation nature specific to the method used in ABAQUS as compared to the present exact treatment. The results of ABAQUS converged to those of the proposed method as the value of "stiffness in stick" was in creased and obviously, more computing time was needed. For

A B �tl--+--+-+--l -B (b)
• the value larger than 10 7 ABAQUS failed to converge.

Example 2. Rigid Punch on the Elastic Half Surface. Indentation of an elastic half-space by a flat-ended square rigid punch as treated in [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF] is solved by the proposed method. The material is isotropic and homogeneous and fric tion coefficient is 0.1848. Material properties are given in a consistent unit. Poisson's ratio and Young ' s modulus are taken to be 0.3 and 2000, respectively. Only one quarter of the half space is modeled considering the symmetry of the problem. The dimension of the quarter model is 10.0 x 10.0 x 10.0 and the area of contact surface is 1.0 x 1.0. For the FEM model, 1575 nodes, 1176 eight-noded brick elements, and 49 contact nodes are used as shown in Fig. 7, which is coarser than that of [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF]. The same loading cases as in [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF] are used for comparison, that is monotoni cally increasing vertical displacement of the rigid punch and gradually removing it. In ). The general behavior of contact status is nearly similar to the result by linear complementarity formulation using oc tagonal friction law [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF]) but more reasonable smooth changes of slip angles are obtained in this work. Pres sure distribution at 100 percent loading is compared with [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF] in Fig. 9. The discrepancies observed are presumably due to the difference in the two discretizations and especially the linearization of the friction law in [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF]. Comparison of the magnitude of tangential displace ments on the contact surface is shown in Fig. 10. Slips of the present work are relatively larger than those of [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF] in the region from 0.6 to 0.95 of r/a. This region approximately corresponds to the situation where the octagonal approxi mation of the circular-type friction law causes relatively large error. An underestimate of the tangential displacements by [START_REF] Klarbring | A Mathematical Programming Approach to Three Dimension Contact Problems with Friction[END_REF] is plausible.

Conclusions

A new solution method for three-dimensional contact prob lems with the orthotropic Coulomb friction using a homotopy method has been presented. The nonlinear complementarity problem exactly describing three-dimensional frictional con tact phenomena has been transformed to a system of nonlinear equations and solved by the probability-one homotopy method. The formulation is very general without any specific restric tions as previously introduced on the normal contact force and on the contact area. Also, no linearization scheme of the or thotropic Coulomb friction law has been necessary. Moreover, the problem of large matrix size in solving LCP is alleviated in this solution method because the number of variables is only 4nc + n, after condensation, where nc is the number of potential contact points and n, is the number of rigid degrees-of-free dom. Although no comparisons under the exact same condi tions are possible due to the difference in the nature of approximation and discretization, the results of two examples have been presented together with those from a commercial package and literature.
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 2 Fig. 2 Modeling of elastic body; (a) FEM model; (b) FEM mesh and contact points on the bottom surface
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 56 Fig. 5 Comparison of tangential displacement with ABAQUS 1.4 r---------------, ---Homotopy(25 contact node) o ABAQUS(25 contact node)

Fig. 7

 7 Fig. 7 Modeling of half-space; (a) FEM model; (b) FEM mesh and contact points on the contact surface
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 8910 Fig. 8 Direction of tangential displacement; at load level of (a) 100 percent; (b) 39.8 percent; (c) 29.3 percent; (d) 17.9 percent
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