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Smoothing newton method for solving two-and three-dimensional frictional contact problems

Two-and three-dimensional frictional contact problems are uniformly formulated as a system of nondifferentiable equations based on variational inequality theory. Through constructing a simple continuously differentiable approximation function to the non-differentiable one, the smoothing Newton method is directly implemented as an exact method. Both the global convergence and the local quadratic convergent rate of the method are guaranteed. None of the additional variables and linear approximations on Coulomb friction law is introduced and hence the formulation exactly describes the frictional contact phenomenon in both two-and three-dimensional cases. Numerical experiments suggest that the method is very efficient and promising.

KEY WORDS: frictional contact problem; system of non-differentiable equations; smoothing Newton method adopting penalty function. In this method, the contact condition is replaced with penalty function and solved by an iterative method. However, it is well known that the former is difficult to guarantee convergence and the latter will be confronted with the ill-condition for large penalty factors in numerical calculations and hence the accuracy of the solution is difficult to control. In consideration of deficiency of early direct iterative methods, the strict mathematical formulations for frictional contact problems, such as Variational Inequality (VI), Linear and Non-linear Complementarity Problems (LCP and NCP), have been studied. The VI formulations are mainly used to analyse the mathematical properties of the problem in certain infinite-dimensional space before discretization. Using this formulation, the existence and uniqueness of the solutions have been proved in the special case in which either normal pressure or contact area is known, or the adopted friction law satisfies certain mathematical smoothness conditions. The complementarity formulations are often used to obtain the solution in the finite-dimensional space after discretization. Due to the existence of utilizable algorithms in mathematical programming, the LCP formulation is very attractive.\ For three-dimensional problems, however, a polyhedral law of friction has to be adopted for forming the LCP formulation and hence a large number of additional variables have to be introduced. Consequently, besides the error coming from the linearization on friction law, the calculation amount and the storage requirement often increase rapidly as the number of candidate contact points and the accuracy requirement grow. For three-dimensional problems, the VI and NCP formulations will exactly describe the friction contact phenomenon but they are more difficult to solve compared with the LCP. Research in this line has also appeared.\ In Reference 14, the discretized contact problem was exactly formulated as an NCP and was solved by using the quite general homotopy method in Reference 15 through reformulating the NCP into a system of non-linear equations. Along the recent active research on the finite-dimensional VI and NCP in mathematical programming,\ a system of B-differentiable equations formulation was also presented in References 16 and 17 and it was suggested that the formulation could be solved by using Pang's generalized Newton method.

In the present paper, by using the well-known equivalence between the variational inequality and a certain fixed-point problem, the two-and three-dimensional problems with Coulomb friction law are uniformly formulated as a system of non-differentiable equations by a quite simple and clear way. Motivated by a key observation that, in almost all practical circumstances, the function involved in the system of non-differentiable equations is just differentiable at the solution, a well-conditioned system of continuously differentiable equations is constructed to replace the non-differentiable one. The relation between two systems of differentiable and non-differentiable equations is analysed. Based on this theoretical preparation, the smoothing Newton method is directly used to exactly solve both two-and three-dimensional frictional contact problems after discretization. Besides the locally quadratically convergent rate, the global convergence of the method is guaranteed. Compared with the homotopy method and the Pang's generalized Newton method,\ the method presented in this paper is more simple and easy in numerical implementation. The numerical results of a computational study which is aimed at demonstrating the practical efficiency and reliability of the method are reported.

TWO-DIMENSIONAL PROBLEM

Consider the contact system consisting of two linear elastic bodies B and B occupying open sets and in the global co-ordinate system o-xy, so that parts and of their respective boundaries and are qualified as candidate contact boundary . For simplicity, the two

INTRODUCTION

The contact problem is an important topic in contemporary non-linear mechanics. When the friction and slip along the contact surface are taken into account, unlike the conservativeness in elastic frictionless contact cases, the non-linearity of the frictional contact problem is dissipative in nature and hence the classic minimum energy principles do not hold. Few theories have been available and it is difficult to obtain the solutions. Especially in the three-dimensional problem, the relative slipping of the contact point may occur in any directions on the contact surface, instead of in two directions as for two-dimensional cases, hence much more difficult situation will be encountered. Although intensive studies have been carried out, the frictional contact problem, especially the three-dimensional case, is still one of the most difficult problems.

Early numerical solution method for solving frictional contact problems is the direct iterative method. It is mainly based on certain mechanical intuitions and rarely strict mathematical formulation is involved. One common technique of this method is the trial-and-error iteration,\ in which, the contact status (stick, slip or separation) is repeatedly adjusted with a heuristic trial-and-error manner until the real contact status is found. Another technique is bodies are constrained against rigid-body motion, the candidate contact points are in node-tonode contact and only the static formulation is considered. All the discussions in this paper can be easily extended for the problem involving rigid body motion and the analysis of the pathdependent phenomenon.

Equilibrium equation

In the finite element method, the whole contact system is decomposed into finite elements and the governing equation is, in matrix form,

Ku"f ( 1 
)
where K is the stiffness matrix, u the displacement vector and f the applied force vector for the whole contact system. Here and hereafter, capital boldface letters are used to denote matrices, lowercase boldface letters denote vectors and lowercase letters denote the components of corresponding vectors. Equation ( 1) can be written in partitioned form as follows:

K K K K u u " f p (2) 
Subscripts f and c are used to indicate the given force boundary condition and unknown boundary condition at the contact points, respectively, p denotes the contact force f . The research on solving contact problems is just concerned with finding the contact force vector p or the displacement vector u at candidate contact points.

Contact force and relative contact displacement

Let nI and tI denote the unit outward normal boundary vector and the tangential boundary vector at the candidate contact point with respect to body BI, respectively. Particularly, take the vectors n"n, t"t as the local system. The normal contact force pI L and the tangential contact force pI are defined on the candidate point as

p L "p ) n, p R "p ) t (3) p L "!p ) n, p R "!p ) t
where pI is the nodal force at an arbitrary candidate contact point with respect to body BI. Note that the normal pressure is taken to be positive. The relative normal and tangential contact displacements d L and d R between each pair of candidate contact points are defined as

d L "u ) n!u ) n#d L (4) d R "u ) t!u ) t L
where uI is the nodal displacement at an arbitrary candidate contact point with respect to body BI and d is the initial gap, i.e.

d L "(x G !x G ) n G , xI 3 I , k"1, 2 

Contact condition

(1) ¸aw of action and reaction: The contact forces at each candidate contact point is subject to the law of action and reaction, i.e.

p L "p L "p L , p R "p R "p R (5) 
(2) Geometric compatibility condition: The relative normal contact displacement d L and the normal contact pressure p L must be non-negative and one or the other must be zero at each candidate contact point after deformation. This condition can also be understood as the minimum between the two values of d L and p L must be zero, i.e. 

if p L "0 then p R "0 (separation) if p L '0 then if "p R "( p L then d R "0 (stick) if p R " p L then d R )0 (negative slip) if p R "! p L then d R *0 (positive slip) (7) 
where is the friction coefficient.

Under the geometric compatibility condition (6), the friction condition [START_REF] Oden | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF] can be induced as an equation as follows:

h (p, d), ) d R #min +0, max +0, p L !d L ,#p R !d R , #max +0,! max +0, p L !d L ,#p R !d R ,"0 where d"(d L , d R )2, p"(p L , p R )2
and the operators 'min' and 'max' denote the minimum and maximum of two related values, respectively.

Equation ( 8) is derived by using results in variational equality theory, details are given in Appendix. However, one can directly see the equivalence between the friction condition [START_REF] Oden | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF] and equation ( 8) under condition [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF]. To show this, note that at least one of two terms

min +0, max +0, p L !d L ,#p R !d R , (9) 
and

max +0, ! max +0, p L !d L ,#p R !d R , (10) 
must be zero due to max +0, p L !d L ,*0

In the case that two terms ( 9) and ( 10) are simultaneously zero, equation ( 8) corresponds to the stick status. if p L '0 and d L "0, then the case of term ( 9) or [START_REF] Wanxie | A finite element methode for elasto-plastic structure and contact problem by parametric quadratic programming[END_REF] is not zero corresponds to the positive slip or negative slip, respectively. If p L "0 and d L '0, then equation [START_REF] Klarbring | A mathematical programming approach to three-dimensional contact problem with friction[END_REF] means that p R "0, hence, corresponds to the separation status.

The considered contact problem is just defined with equations ( 2), ( 5), ( 6) and [START_REF] Klarbring | A mathematical programming approach to three-dimensional contact problem with friction[END_REF]. In this case the linear equations ( 2) and ( 5) are easy to treat. All the non-linearities of the problem are included in equations ( 6) and [START_REF] Klarbring | A mathematical programming approach to three-dimensional contact problem with friction[END_REF]. It can be shown that the functions h and h in equations ( 6) and ( 8) are continuous every where but not differentiable when

p L !d L "0 (11) or max +0, p L !d L ,#p R !d R "0 (12) 
or

! max +0, p L !d L ,#p R !d R "0 (13) 
Let us view once the mechanical sense of equations ( 11)- [START_REF] Gakwaya | A boundary element and mathematical programming approach for frictional contact problems[END_REF].

Denote d* L , d* R , p* L , p* R
the solution to the considered problem, then they satisfy one of the equations ( 11)-( 13) if and only if

p* L "0, d* L "0 or p* R "! p* L or p* R " p* L and d* R "0
The above cases are just corresponding to the critical contact status of both stick and separation or both slip and stick, respectively. However, it is easily seen that the case of the finite element nodes just lie in such critical contact status almost never happen, i.e. in almost all practical circumstances, functions h and h in equations ( 6) and ( 8) are differentiable at the solution and the non-differentiability only happens where we are not concerned. This fact gives us a possibility to replace the system of non-differentiable equations ( 6) and [START_REF] Klarbring | A mathematical programming approach to three-dimensional contact problem with friction[END_REF] equivalently with a differentiable one. Details are discussed in Section 4.

Condensed form of equilibrium equation

In numerical calculations, when the candidate contact points are in the majority of the total nodes, the problem should be solved based on equation (2) for utilizing the sparseness of the total stiffness matrix K. However, in many practical cases, the candidate contact points are only in the minority of total nodes. In such case, to reduce the number of variables and calculation amount, the parts of linearity of the problem often has to be treated beforehand, i.e. the governing equation (2) will be condensed to the candidate contact points. To pay attention the non-linearity of the problem in a more concise formulation in theory, only the condensed form is discussed in this paper.

Through equation ( 2), equilibrium equation ( 1) can be expressed as follows in condensed form:

K u "p#q (14) 
where

K "K !K K\ K , q"!K K\ f
The condensed stiffness matrix K can be partitioned into two components with respect to the two bodies, i.e.

K K K K u u " p p # q q (15) 
Subscripts k"1, 2 are used to indicate the bodies B and B, respectively. When there is no common part between the two contact bodies except the candidate boundaries, the condensed stiffness coupling the two bodies K and K is zero, otherwise, in such contact of a cracked body, submatrices K and K are not zero. Let be the angle between the normal direction n and the x-direction of the candidate contact point. Then Through expression [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF], the equilibrium equation can be transformed into

uI " uI L uI R "SuI, k"1, 2 (16) 
p " p L p R "Sp, p " p L p R "!Sp
M M M M u c u c " p c p c # q c q c ( 17 
)
where 

M M M M " S 0 0 S K K K K S 0 0 S 2 
p L p R " R LL R LR R RL R RR d L d R # q L q R (18) 
where

R" R LL R LR R RL R RR "M !M M \ M M M M M " 1 4 
II I! I M M M M II I! I and q L q R "! 1 2 M M \ (q #q )# 1 2 (q !q )! R LL R LR d L
here I is the unit matrix and R is the contact stiffness matrix. It is easy to show that R is symmetric positive definite.

System of non-differentiable equations

Let m be the number of the pairs of candidate contact points. Writing the functions h and h in equations ( 6) and ( 8) at all candidate contact points in vector form,

H (d, p)"(h (d, p), h (d, p) ,...,h K ( d K ,p K ))2 "min +d L , p L , (19) 
H (d, p)"(h (d, p), h (d, p) ,...,h K ( d K ,p K ))2 "d R #min +0, max +0, (p L !d L ),#p R !d R , #max +0, !max +0, (p L !d L ),#p R !d R ,
where operators 'min' and 'max' denote the componentwise minimum and maximum of the two related component values, respectively, and,

d"(d L , d R )2"(d L ,...,d K L ,d R ,...,d K R ) 2 p " (p L ,p R ) 2 " (p L ,...,p K L ,p R ,...,p K R ) 2 d G " ( d G L ,d G R ), pG"(pG L , pG R
) are the relative contact displacement and contact force at the ith pair of candidate contact points.

Then the considered contact problem can be formulated as the system of non-differentiable equations as follows:

H (d, p)"0 H (d, p)"0 (20) 
in which the relative contact displacement vector d is taken as primary unknowns by substituting equation [START_REF] Pang | Newton's method for B-differentiable equations[END_REF] into equation [START_REF] Pang | NE /SQP: a robust algorithm for the nonlinear complementarity problem[END_REF]. We can easily see that equation ( 20) is a well-determined system of 2m non-differentiable equations with 2m variables.

THREE-DIMENSIONAL PROBLEM

Similar to the two-dimensional problem, the condensed equilibrium equation for the threedimensional problem can be given as

p L p ? p @ " R LL R L? R L@ R ?L R ?? R ?@ R @L R @? R @@ d L d ? d @ # q L q ? q @ (21)
where +n, a, b, is the local system at the candidate contact point, R is the condensed contact stiffness, and q is constant coming from the external loads and the initial gap.

In the present method, the only difference between two-and three-dimensional problems lie in the friction condition. The three-dimensional Coulomb friction law can be stated as

if p L "0 then (p ? , p @ )"0 (separation) if p L '0 then if (p ? #p @ ( p L then (d ? , d @ )"0 (stick) if (p ? #p @ " p L then (d ? , d @ )"! (p ? , p @ ), *0 (slip) (22) 
Denote by the slip angle between tangential relative displacement (d ? , d @ )2 and the a-direction. Let,

(d ? , d @ )2"d R (cos , sin )2 (23) (p ? , p @ )2"p R (cos , sin )2 where d R , p R 3( !R, #R).
Taking the slip angle and d R or p R as primary unknowns, then the friction condition [START_REF] Dennis | Numerical Methods for ºnconstrained Optimization and Nonlinear Equations[END_REF] can be equivalently expressed as

if p L "0 then p R "0 if p L '0 then if " p R "( p L then d R "0 if p R " p L then d R )0 if p R "! p L then d R *0 (24) 
We can see that condition (24) is completely same as friction condition [START_REF] Oden | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF] in the two-dimensional case and hence can be treated directly by the same method. Therefore, it is enough to treat equation (23). Indeed, equations ( 21) and ( 23) can be expressed equivalently as

p L p R "T ( )2 RT ( ) d L d R # q L cos q ? #sin q @ (25) H (d, ), ) [!sin cos ] R R T ( ) d L d R # q ? q @ "0 (26) in which R" [R L ] K ; K [R R ] K ; K , T ( )" I0 0 cos 0 sin K ; K cos " \ cos G \ K ; K , sin " \ cos G \ K ; K
and I is the m;m unit matrix By substituting equation ( 25) into equation ( 20) and adding equation (26), the system of non-differentiable equations for three-dimensional problem can be obtained:

(NEQ) H (d, )"0 H (d, )"0 H (d, )"0
The (NEQ) is a well-determined system of 3m non-differentiable equations with 3m variables.

Obviously, the two-dimensional problem is the special case of three-dimensional problem with slip angles G"0, i"1 ,2 ,...,m . The orthotropic Coulomb friction law considered in References 14 and 15 can be stated as

if p L "0 then (p ? , p @ )2"0 if p L '0 then if p ? ? # p @ @ (p L then d ? d @ "0 if p ? ? # p @ @ (p L then ? d ? @ d @ "! p ? ? , p @ @ 2 , *0 (27) 
where ? and @ are friction coefficients corresponding to direction a and b, respectively. The isotropic friction law as condition ( 22) is the special case with " ? " @ . In the case of ? O @ , similarly to equation (23), let

(d ? , d @ )2"d R ( \ ? cos , \ @ sin )2 (28) (p ? , p @ )2"p R ( ? cos , @ sin )2
then the orthotropic law (27) can also be induced as condition (24) with former isotropic friction coefficient "1. Equations ( 21) and ( 28) can be expressed equivalently as

p L p R "T ( )2 RT ( ) d L d R # q L \ ? cos q ? # \ @ sin q @ (29) H (d, ) , ) [! @ sin ? cos ] R R T ( ) d L d R # q ? q @ "0 (30) in which T ( )" I0 0 \ ? cos 0 \ @ sin K ; K
Comparing equations ( 29) and (30) with equations ( 25) and ( 26), we can see that, in the present formulation, there is no difference in mathematical structure between the orthotropic and isotropic friction laws and hence the two laws can be treated by the same method.

SYSTEM OF CONTINUOUSLY DIFFERENTIABLE EQUATIONS

For two general non-differentiable real function f (u, v) and g (u, v) given by

f (u, v)"min +u, v, (31) g (u, v)"max +u, v,
define two smooth functions f (u, v) and g (u, v) as follows:

f (u, v)" min (u, v) v! 1 4 (u!v! ) if " u!v "* if " u!v "( (32a) 
g (u, v)" min (u, v) v# 1 4 (u!v# ) if " u!v "* if " u!v "( (32b) 
where '0 is the smoothing factor being a small positive number.

Proposition 1. For an arbitrary given '0, the function f (u, v) and g (u, v) defined as in equation (32) are continuously differentiable every where, whose derivatives are ¸ipshitizian continuous and

lim P0> f (u, v)"f (u, v) lim P0> g (u, v)"g (u, v) Moreover, f (u, v)"f (u, v), g (u, v)"g (u, v)i f " u ! v " * 0 ( f ( u , v ) ! f ( u , v ) ) /4, 0(g (u, v)!g(u, v)) /4 if "u!v"( Proof:
We first consider the functions (t)"max +0, t, and (t) defined as

(t)" (t)i f " t " * 1 4 ( t # ) if " t "( It is easily verified that the function (t) is differentiable. The derivative C (t) is given by (t)" 0i f t )! 1 2 (t# )i f " t " ) 1i f t * is Lipshitizian continuous. Futhermore, (t)" (t)i f " t " * 0 ) 1 4 ( t ! ) " ( t ) ! ( t ) ) 4 if " t ")
and hence lim P0> (t)" (t). Noting that

f (u, v)"v! (v!u) g (u, v)"v# (u!v) and f (u, v)"v! (v!u) g (u, v)"v# (u!v)
the results can be obtained immediately.

There exists the way to construct higher-order smooth functions to approximate the nondifferentiable functions f and g given in equation (31),

fI (u, v)"! ln exp ! u #exp ! v (33) gJ (u, v)" ln exp u #exp v
and the following result can be proved easily.

Proposition 1: For an arbitrary given '0, the functions fI (u, v) and gJ (u, v) defined as in equation (33) are twice continuously differentiable every where and

! ln 2) f (u, v)!fI (u, v))0 0)g (u, v)!gJ (u, v)) ln 2
For simplicity, only the smooth functions defined as in equation ( 32) is discussed in this paper.

Applying to equation (32), we can define the differentiable functions with respect to the geometric compatibility condition (6) and friction condition (8) at the ith candidate contact point as follows:

hG C (dG, pG )" min +dG L , pG L , if " pG L !dG L "* dG L ! 1 4 (pG L !dG L ! ) if " pG L !dG L "( (34) 
hG C (dG, pG)"dG R #uG C (dG pG)#vG C (dG, pG) (35) 
where

uG C (dG, pG )" min +0, uG (dG, pG), if " uG (dG, pG) "* ! 1 4 [uG (dG, pG)! ] if " uG (dG, pG) " ( vG C (dG, pG )" max +0, vG (dG, pG), if " vG (dG, pG) "* 1 4 [vG (dG, pG)# ] if " vG (dG, pG) " ( (36) 
uG (dG, pG)" [ pG L !hG C (dG, pG)]#pG R !dG R vG (dG, pG)"! [ pG L !hG C (dG, pG)]#pG R !dG R in which the equation min +pG L , dG L ,"pG L !max +0, pG L !dG L , is used.
Then the non-differentiable contact conditions (20) can be approximated by the following differentiable ones, respectively:

H C (d, p)"0 (37) H C (d, p)"0
where

H C (d, p)"(h C (d, p), h C (d, p) ,...,h K C (dK, pK))2 (38) H C (d, p)"(h C (d, p), h C (d, p) ,...,h K C (dK, pK))2
Subsituting equation (25) into equation (37) and adding equation (26), the system of differentiable equations formulation (EQ ) approximating the (NEQ) is obtained:

(EQ ) H (d, ), H C (d, ) H (d, ) H (d, )
"0

By using Proposition 1, the following result can be obtained immediately. ) is the solution to (NEQ).

From the discussion at the end of Section 2.3, we know that the condition I (d , p )" is satisfied for a small smoothing factor '0 in alomost all practical circumstances and hence the solution to the (NEQ) can be obtained by solving the (EQ ) directly. Even for the case of I (d , )O, the accurate-enough solution of the (NEQ) can also be obtained by taking '0as sufficiently small and the real contact status can be determined by (d , ). Hence, the exact solution of the (NEQ) can also be easily found by moving to solve the differentiable equations determined by the real contact status.

DAMPED NEWTON METHOD AND CONVERGENCE

In the damped Newton method, (EQ ) will be approximated by the following system of linear equations:

H (d, ) d #H (d, )"0 (41)
and the present iterative solution (d, ) will be revised as

(d , )"(d# d, # ) (42) 
where H (d, ) is the Jacobian matrix of mapping H and (d, ) and 3(0, 1] is the step factor which will be determined by a line search procedure.

To see the concrete structure of the Newton equation (41), beside the index sets , and , we introduce other index sets as follows:

\(d, )"+i: pG L !dG L )! , i"1, 2, . . . , m, (43a) >(d, )"+i: pG L !dG L * , i"1 ,2 ,...,m , \ ( d , ) " + m # i :uG( d G ,p G ) )! , i"1 ,2 ,...,m , > ( d , ) " + m # i :uG( d G ,p G ) * ,i " 1 ,2 ,...,m , (43b) \ (d, )"+m#i: vG (dG, pG))! , i"1, 2, . . . , m, > (d, )"+m#i: vG (dG, pG)* , i"1 ,2 ,...,m , ( d , ) " + 2 m # i :"d G R " # "p G R " O 0, i"1, 2, . . . , m, (43c) 
where the functions uG (dG, pG) and vG (dG, pG) are defined as in equation ( 36) and contact force pG is evaluated by (d, ) according to equation (25). Then from the definition of the functions hG C and hG C as in equations ( 34)-(36), we have

hG C " e G , i 3 > a G pG L #(1!a G ) e G , i 3 pG L , i 3 
\ (44) hG C " e K>G , m#i 3 > 5 \ b G [ (pG L !hG C )#pG R ]#(1!b G ) e K>G , m#i 3 5 \ (pG L !hG C )#pG R , m#i 3 \ 5 \ c G [! (pG L !hG C )#pG R ]#(1!c G ) e K>G , m#i 3 > 5 ! (pG L !hG C )#pG R , m#i 3 > 5 > (b G !c G )[ (pG L !hG C )#(b G !c G ) pG R ]#(1!b G !c G ) e K>G , m#i3 5 ( 45 
)
where e G is the ith 3m-dimensional unit vector, and

0(a G "! 1 2 ( pG L !dG L ! )(1, i 3 
0(b G "! 1 2 (uG! )(1, i 3 (46) 0(c G " 1 2 (vG# )(1, i 3 
Note that all the variable marks of '(d, )' are omitted here. Differentiating equations ( 25) and (26), we obtain

p L p R H " T ( )2 RT ( ) T ( )2R2 R !sin cos D [d R ]# 0 D [H ] [!sin cos ] R R T ( )[ ! sin cos ] R RR !sin cos D [d R ]!D [p R ] (47) 
where

D [d R ]"diag (d R , d R ,...,d K R ) D[p R ] " diag (p R , p R ,...,p K R ) D[ H ] " diag (h , h ,...,h K )
are diagonal matrices and where the index set I is defined as in equation (40). For any index sets , : +1 ,2 ,...,3 m , , denotely ?@ H C (d, ) the submatrix whose entries lie in the rows of H (d, ) indexed by and the columns indexed by . For the 3m-dimensional vector q, denote q ? the vector with entries of q indexed by . Then form equations ( 44)-(47), the Newton equation ( 41) can be expressed equivalently as

R K ; K " [R L ] K ; K [R R ] K ; K , R R "[[R RL ] K ; K [R RR ] K ; K ] Define (d, )" \ (d, ) 6 \ (d, )6 > (d, )6I(d, )6 (d, ) (48) 
d @ "![H (d, )] @ (49) ?? H C (d, ) d ? " ?@ H C (d, )[H C (d, )] @ ![H C (d, )] ? (50) 
in which " (d, ) and " (d, ). Hence, instead of 3m dimensional equations (41), only the m B "" (d I , I

)" dimensional linear equations as in equation ( 50) need be solved at each iteration of the damped Newton method.

For introducing a line search procedure determining the step factor , we define a merit function g C for the (EQ C ) as follows:

g C (d, )" H C (d, )2 H C (d, ), (51) 
it will also be taken as the convergence criterion according to the following minimum principle:

Proposition 3. ¹he unconstrained non-linear programming problem:

min g C (d, )
must have a finite solution (d C , C

). If the matrix ??

H C (d C , C ) is non-singular then g C (d C , C
)"0 and hence the (d C , C

) solve the (EQ C ).

The proof of Proposition 3 is direct and omitted.

Based on previous discussions, we can state the damped Newton method for solving the (EQ C ) as follows:

Initialization: Choose an initial vector (d , ) (usually, if no other information, one can choose d "0, G"arctg (qG @ /qG ? ), i"1, 2, . . . , m). Let 3 (0, 1), 3 (0, ) are given parameters (usually, "0)5, "0)1). Set the termination accuracy *'0 and k"0.

Step

1:I fg C ( d I , I 
) ) *then stop. Otherwise, according to equations (43) and (48) determine the index sets:

" (d I , I ), " (d I , I ) Set d I I @ "![H C (d I , I )] @ (52a) 
and solve the following system of linear equations with respect to d I I ?

: ?? H C (d I , I ) d I I ? " ?@ H C (d I , I )[H C (d I , I )] @ ![H C (d I , I )] ? (52b) 
Step 2: Let I " l I , where l I is the smallest non-negative integer for which the following condition holds:

g C (d I , I )!g C (d I # J d I , I # J I )*2 J g C (d I , I ) (53) Set d I> "d I # I d I , I> " I # I I , k"k#1 and return to Step 1.
For the above process some notations are given as follows:

Remark 1. In practice, due to the distinction of mechanical dimensions, the value scales of the relative contact displacement vector d and the contact force vector p are entirely different. In numerical calculations, the real contact stiffness matrix R will be replaced by r\ ) R for harmonizing the value scales of the vector d and p, in which the scales factor r'0 can usually be taken as r"max 1)i)3m r GG , where r GG is the ith diagonal element of matrix R. This is equivalent to the relative contact displacement vector multiplied by r and hence the solution should be restored as r\ ) d.

Remark 2.

Step 2 in the method is the well-known Armijo line search step. In theory, this step plays an important role in guaranteeing global convergence. The damped factor I must be determined in a finite number of trials due to the descent direction ( d

I , I ) for the merit function g C at (d I , I
). It can be proved that in the later iterations, condition (53) must be satisfied with l"0 and hence I "1. Remark 3. At the beginning of Step 1, if set

(dG R ) I " !(dG R ) I if (pG R ) I !(dG R ) I '0 (dG R ) I otherwise (54) G I " G I # if (pG R ) I !(dG R ) I '0 G I otherwise then the index set > (d I , I
) will be kept as empty at each iteration and this simplifies the implementation of the method. Indeed, from expressions (25) and (26), we can easily see that

pJ G R ,pG R ( d , )" !pG R (d, )i f G " G " G # ,d I G R "!dG R pG R (d, )i f G " G , d I G R " d G R h I G R , h G ( d , ) " ! h G ( d , )i f G " G # ,d I G R "!dG R hG (d, )i f G " G , d I G R " d G R p J G L , p G L ( d , ) " p G L ( d , ) , p G L h G C (d , )"hG C (d, )
where d , denote the terms on left-hand side of equation (54) for distinction. Hence, pG which explains that the setting in equation ( 54) is permissible in the method.

R !dG R '0 implies pJ G R !dI G R '0. Therefore, vG (dI G, pJ G)"! [ pG L !hG C (dG pG)]!( pG R !dG R )(
Remark 4. The present method involves the two-dimensional method as a special case with the slip angle vector "0.

By using Proposition 3 and noting the continuous differentiability of the mapping H C , the following convergence result can be proved according to the well known theory of damped Newton method,

Proposition 4. If ?? H C (d,
) is non-singular on the level set

+(d, )2 : g C (d, ))g C (d , ),
then for *"0 the sequence +(d I , I ), produced by the algorithm is globally convergent to the solution of the (EQ C ), and also locally quadratically convergent. As a result, the algorithm is terminated in a finite number of steps for *'0.

The quadratic convergence rate in Proposition 4 results from the Lipshitzian continuity of the Jacobian matrix H C (d, ) which is given in Proposition 2. In two-dimensional case, since the mapping H C is linear near the solution d*, the method will also terminate in the finite number of steps for *"0 when I (d*, p*)".

From positive definitness of the condensed contact stiffness matrix R, it can be proved that the Jacobian submatrix ?? H C (d, ) is also positive definite every where for a small friction coefficient and hence the method is convergent. Generally, from expressions (44)-(46) and noting Remark 3, it can be seen that the non-singularity of the ?? H C (d, ) is equivalent to that of the following Jacoban submatrix:

?? G" ??

p L (d, ) p L (d, )#p R (d, ) H (d, )
where " (d, ). In view of the positive definitness of the contact stiffness matrix R with full entries, we can see that the matrix ??

G is also non-singular for almost each friction coefficient , i.e. except for some rate examples. For instance, we cannot remove the following case in theory:

[ pG L (d, )#pG R (d, )] ? "0, i 3 (d, )
However, it almost never occurs in practice. Hence, the convergence condition in Proposition 4 is quite weak and seems satisfied for any friction coefficients in practice. ) are assumed positive and negative slip along the direction I , respectively. Hence, the dimension m B "" (d I , I

)" of the system of linear equations ( 52) can be understood as

m B "2m #m #" (d I , I )"#"I(d I , I )" (55) +2m #m #m
where m and m denote the number of pairs assumed as separation and slip status at kth iteration, respectively. From equation ( 55) we can see that if the candidate contact surface is chosen to be more close to the real contact surface, the less separation status candidate contact points are contained and hence the smaller size of linear equations are solved in the method. Therefore, the present contact stiffness based damped Newton method, which with primary unknowns of relative contact displacement vector d, is advantageous for the case of the real contact surface is easy to estimate beforehand. In the opposite case, the contact flexible method, which with primary unknowns of contact force vector p, will be advantageous. This method can be derived in a similar way based on the following condensed governing equation: where index sets are defined as in equation ( 43) but with primary unknowns of contact force vector p and slip angle vector . It can be seen that the pairs of candidate contact points indexed by > (p I , I ) and \ (p I , I ) are assumed as stick status. Therefore, the m N can be seen as

d L d ? d @ "F p L p ? p @ # g L g ? g @
m N +2m #m #m (56) "3m!2m !m and, hence, m B #m N +4m
When the real contact surface is difficult to estimate beforehand, the larger candidate contact region has to be chosen and hence contains more separation status candidate contact points. In such case, from equation (56) we can see that the smaller size of linear equations will be solved in the contact flexible method.

From the above discussion, it can be seen that the present damped Newton method is quite similar to some traditional trial-and-error iterative method. However, due to the smoothing treatment of the non-differentiality and the introduction of the line search procedure, the convergence of the present method is guaranteed. It is interesting that the present method also explains the theoretical reason how the traditional trial-and-error iterative method do not guarantee convergence.

NUMERICAL EXAMPLES AND DISCUSSIONS

The numerical examples which can objectively test the practical performance of algorithms are important. For contact problems, the authors think that good examples should possess both enough complicated contact status and a large enough number of candidate points so as to reflect both the degree of non-linearity and the size of problems. Considering the scarcity of such examples in the literature and difficulty of comparisons under exactly the same conditions, a simple way to generate random examples of the contact problems is introduced in this section.

After discretization and condensation, a contact problem is completely determined by condensed contact stiffness matrix R (which is symmetric and positive definite) and the constant q,i n which the material property and geometric shape of the contact bodies, the external loads and the initial gap are all contained. On the other hand, any symmetric positive definite matrix B can be uniquely expressed as B"A2A where A is a non-singular matrix. Hence, for the three-dimensional contact problems, we can imitate the contact stiffness matrix R as

R"A2A

where 3m;3m matrix A is randomly generated with uniformly distributed entries in the interval (!10, 10), m is the number of pairs of candidate contact points. The constant term q can be imitated as q"(q L , q ? , q @ )2 3RK, q L , q ? , q @ 3 RK in which the vectors q ? and q @ are randomly generated with uniformly distributed components in the interval (!1000, 1000) and the q L is from the interval (0, 1500). The q L from the interval (!1500, 1500) is also used in this section to reflect the case of large separation status region. The two-dimensional problem can be imitated similarly. With such random method, we can rapidly generate enough many various contact problems for testing. Two such typical examples are shown in Appendix II to illustrate the imitating effect. From these examples we can also see that such random examples quite suitably reflect the real frictional contact phenomenon.

The proposed damped Newton method is implemented in FORTRAN with single precision on a microcomputer with CPU clock of 66 MHz and the Gauss direct elimination method is adopted for solution of the Newton equation (52). The scale factor r for harmonizing the value scale of the relative displacement vector d and contact force vector p is taken as in Remark 1. Thus the value scales of both vectors d and p are about 10. Compared with it, the smoothing factor is taken to be "10\ such that the solution (d C , C ) of the (EQ C ) is exact enough to the original problem. The terminating accuracy is taken to be *"3m ) max 1)i)m pG L ) , it compels the solution to possess 4-place significant digits generally. The line search parameters are taken to be "0)5, "0)1 and the starting vector d "0, G"arctg (qG @ /qG ? ), i"1, 2, . . . , m. For comparing, the linear complementarity method\ is also implemented for the above random examples with Lemke's algorithm and both the octagonal and 16-face polyhedron friction laws were adopted.

In the case of the q L from the interval (0, 1500), ten sets of examples from m"10 to m"97 with ten random sampling examples for each set were run. The friction coefficients were all taken to be ( ")0)5. The results are shown in Table I. The input and output time was not counted in CPU time. Due to the limit of storage capacity of the used microcomputer, the maximum size of solved problems is m"97 for damped Newton method and m"30, m"20 for linear complementarity method with octagonal and 16-face polyhedral friction laws, respectively. For all examples contained in Table I, the damped Newton method was terminated with actual merit function value g C (d I , I ) between 1)376E!7 and 2)102E!3. However, the g C -value of the solution obtained by linear complementarity method is quite large. Indeed, it was also inspected that the error of linear complementarity method is shown in not only the value of contact stress but also the contact status. As one can seen from Table I, the damped Newton method takes very few iterations to converge and has a quite slow increase in both the number of iterations and CPU time as the number of contact points grow. Compared with the linear complementarity method, not only the efficiency is substantively enhanced but also the size of the solved problem is greatly enlarged in the damped Newton method.

Table II contains the results for a typical problem containing m"50 pairs of candidate contact points with different friction coefficients. From Table II it can be seen that as friction coefficient value increases, the stick region becomes larger whereas the slip and separation regions in the candidate contact region become smaller. Hence, the number of iterations and the CPU time decrease gradually. No failure has been encountered for large friction coefficients in solutions.

Table III tally with the quadratic rate of convergence to the Newton-type method. From the value of step factor I shown as in Table III, we also see the role of line search procedure for guaranteeing global convergence.

Table IV contains the results of two sets of examples with large separation region. In these sets of examples the vector q L was generated from the interval (!1500, 1500), friction coefficients were taken to be "0)5 and ten examples in each set were run. From Table IV, we see that more iterations and CPU time are taken to converge for this class of problems compared with that in Table I, due to the large size of Newton equation that has to be solved in the stiffness-based damped Newton method. However, it is still much more efficient than the linear complementarity method. As seen from discussions is Section 4, if using the flexibility based damped Newton method to this class of problems, much less CPU time will be consumed.

The results of two-dimensional problems with small and large separation region are shown in Tables V and VI respectively. In which, the normal constant q L was generated from intervals (0, 1000) and (!1000, 1000) and the others are generated as in the three-dimensional case. In all the cases contained in Tables V and VI, the damped Newton method was terminated with merit function value g C (d I , I )"0. From Tables V and VI, we can see that even for two-dimensional problems, the damped Newton method is also much more efficient than the linear complementarity method. Particularly, if the flexibility based damped Newton method is used for the two-dimensional problems with large separation region, much more less CPU time will be consumed due to the quite small dimension of Newton equation solved. However, in the flexibility based linear complementarity method, the double additional variables of the stiffness based method have to be introduced for forming the linear complementarity formulation. It seems for this cause, most of the linear complementarity method is limited in the stiffness method only.

Under the condition (57), it can be proved that the friction condition [START_REF] Oden | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF] 

(d R , p R ),p R !pr %. (p R !G\ d R )"0 (58) Taking G"1 we have pr . ( p R !d R )" p R !d R ,i f " p R ! d R " ( p L ! p L ,i f p R ! d R (! p L p L ,i f p R ! d R ' p L (59) 
Substituting equations ( 57) and (59) into equation (58), we obtain

h (d, p)" d R if " p R !d R "( max +0, p L !d L , max +0, p L !d L ,#p R if p R !d R (! max +0, p L !d L , ! max +0, p L !d L ,#p R if p R !d R ' max +0, p L !d L , "d R #min +0, max +0, p L !d L ,#p R !d R , #max +0,! max +0, p L !d L ,#p R !d R , where p"( p L , p R )2, d"(d L , d R )2.
It is just the expression as in equation ( 8) in Section 2.3. 

APPENDIX II

  (d, )"+1, 2, . . . , 3m,! (d, )

  where F is the condensed contact flexible matrix and g is constant.' In such flexible method, the dimension m N of the system of linear equation at kth iteration is just given by

(

  the numbers of separation, stick and slip status pairs of candidate contact points.

  Friction condition: By adopting Coulomb law, the friction condition can be stated as

		h	(d L	, p L ), ) min +d L , p L ,"0	(6)
	(3)	where the operator 'min' denotes the minimum between two values of d L p L )d L then h (d L , p L )"p L , hence equation (6) means that p L "0 and d *0. Conversely, if and p , i.e. if L L p L *d L then equation (6) means that p L *0 and d "0. L

  ¹he functions uG (dG, pG) and vG (dG pG) are defined as in equation (36) and contact force pG is evaluated by (d, ) according to equation (25).Corollary 1. ¸et (d , ) be the solution of the (EQ ). If I (d , )" then the (d , ) is the solution to the (NEQ). Otherwise,(d , )is the approximate solution to the (NEQ) satisfying condition (39) and lim

	where the index set I (d, ) is defined as	
		I	(d, )" (d, ) 6	(d, )6	(d, )
			(d, )"+i: "pG L !dG L (d, )"+m#i: " uG (dG pG) "( , i"1, 2, . . . , m, "( , i"1, 2, . . . , m,	(40)
			(d, )"+m#i: " vG (dG pG) "( , i"1 ,2 ,...,m ,
	in which hG and hG C	are components of functions H and H C , respectively.

Proposition 2. For an arbitrary given '0, the function H (d, ) is continuously differentiable every where and whose derivative H (d, ) is ¸ipshitizian continuous. Moreover, lim P0> H (d, )"H (d, ) and hG C (d, )"hG (d, )i f i , I ( d , ) (39) " hG (d, )!hG C (d, ) ") /4 if i,I (d, ) P0> (d C , C )"(d*, *), where (d*, C

Table I .

 I Results for imitated three-dimensional contact problems

	Linear complementarity method
	Damped Newton method

Table III

 III 

					Table II. Results for problem with different coefficients
							m"50
						CPU time
					Iterations	(min : s.)	m	m	m
				0)11 2	1 : 2 3 ) 43	8	0	42
				0)2	11	1:10)46	8	1	41
				0)31 0	1 : 0 2 ) 39	8	2	40
				0)41 0	5 8 ) 49	7	3	40
				0)51 0	5 6 ) 46	7	7	36
				0)69	4 6 ) 74	5	9	36
				0)76	2 6 ) 30	5	12	33
				0)86	2 3 ) 23	5	17	28
				0)95	1 6 ) 86	3	21	26
				1)05	1 5 ) 37	2	22	26
				1)15	1 4 ) 00	2	25	23
				1)25	1 2 ) 90	2	28	20
					. Decrease rate of g C -value at last few iterations, m"50
	k			4567891 0
	g C I	( d I	, I	)1 ) 9319E#51 ) 1475E#54 ) 1475E#49 ) 1001E#22 ) 5485E!11 ) 0935E!91 ) 7591E!23 0)50 ) 25 1)01 ) 01 ) 01 ) 01 ) 0

Table IV .

 IV illustrates a typical decrease of the value of the merit function g Results for imitated three-dimensional contact problems with large separation region, "0)5

								Linear complementarity method
						Damped Newton method	(octagonal law)	(16-face polyhedral law
							CPU time		CPU time	CPU time
	mm	m	m	Iterations	(min : s)	Iterations		(min : s)	Iterations	(min : s)
		max. 13	4	14	18	16)09	152		44)48	229	5:22)74
	20	ave.	10)41 ) 18 ) 51 1 ) 78 ) 936	118)03 4 ) 883	228)84 : 0 8 ) 21
		min.	6	0	5	7	4)44	74		22)46	134	2:27)80
		max. 29	6	30	15	2:09)34			
	50	ave.	23)23 ) 92 2 ) 91 2 ) 91 : 5 4 ) 076			
		min.	18	1	17	9	1:08)43			
	C iterations. The example was run with double precision, terminating accuracy, *"10\ and (d I ) at the last few , I
	smoothing factor "10\. The rapid decrease of the value of g C	(d I	, I ) at the last few iterations

Table V .

 V Results for imitated two-dimensional contact problem, "0)5

					Damped Newton method	Linear complementarity method
	mm B	" 2 m	#m	Iterations CPU time (s) Size	Iterations CPU time (s) Size
		max.	13		5	0)08	14	0)14
	10	ave.	8)93 ) 40 ) 043	20	10)10 ) 098	30
		min.	4		2	0)02	5	0)051
		max.	22		6	0)33	26	0)91
	20	ave.	18)74 ) 20 ) 225	40	21)90 ) 821	60
		min.	18		3	0)14	19	0)66
		max.	33		6	1)37	40	3)02
	30	ave.	27)74 ) 60 ) 576	60	31)32 ) 362	90
		min.	23		3	0)44	27	2)03
		max.	40		6	2)33	43	5)71
	40	ave.	36)75 ) 01 ) 473	80	39)75 ) 276	120
		min.	32		4	1)02	35	4)64
		max.	54		6	3)98	61	12)63
	50	ave.	46)14 ) 92 ) 716	100	52)11 0 ) 813	150
		min.	35		4	1)26	38	7)92
		max.	66		6	7)36	89	26)42
	60	ave.	55)95 ) 14 ) 606	120	67)72 2 ) 564	180
		min.	38		4	1)92	59	17)55
		max.	72		6	10)77
	70	ave.	63)84 ) 56 ) 114	140	210
		min.	58		4	4)20
		max.	82		6	12)52
	80	ave.	70)44 ) 98 ) 915	160	240
		min.	61		4	5)60
		max.	86		7	22)82
	90	ave.	81)04 ) 81 4 ) 554	180	270
		min.	72		4	9)92
		max.	98		6	23)39
	100	ave.	89)15 ) 41 8 ) 992	200	300
		min.	81		4	11)89

Table VI .

 VI Results for imitated two-dimensional contact problems with large separation region, "0)5

					Damped Newton method	Linear complementarity method
	mm B	" 2 m	#m	Iterations CPU time (s) Size	Iterations CPU time (s) Size
		max.	18		6	0)19	23	0)19
	10	ave.	13)63 ) 80 ) 930	20	17)80 ) 166	30
		min)	10		2	0)03	12	0)11
		max.	32		7	0)85	38	1)26
	20	ave.	26)84 ) 30 ) 554	40	32)41 ) 066	60
		min.	17		2	0)11	20	0)69
		max.	44		7	3)38	57	4)12
	30	ave.	37)85 ) 31 ) 868	60	45)63 ) 316	90
		min.	32		4	1)21	36	2)64
		max.	62		8	7)08	88	11)20
	40	ave.	52)15 ) 54 ) 398	80	66)58 ) 494	120
		min.	58		4	2)30	55	7)30
		max.	71		9	14)01	86	17)19
	50	ave.	85)06 ) 18 ) 923	100	76)61 5 ) 312	150
		min.	58		5	5)33	67	13)40

  in Section 2.3 is just equivalent to the following variational inequality problem VI (P, d

	+p R	: " p R	") p L	, : R such that			R	): to find p* R	3 P"
				d* R	) (p R !p* R )*0 for all p R	3 P
	According the Proposition 3, the VI (P, d R	) is equivalent to the equation
				h			

Table VII .

 VII Results for a typical simulate three-dimensional contact problems with the q are the numbers of separation, stick and slip status pairs of candidate contact points Table VIII. Results for a typical simulate three-dimensional contact problems involving large separation status contact points with the q L generated from the interval (!1500, 1500), m"30

					Table VII. (Continued) Table VIII. (Continued)
	ip L ip L		p R p R			d L	d L	d R	d R	Contact status Contact status
	18	25	552)490 0)000		!276)245 0)000		140)296 135)499 3)08701 0)00000	0)85060 4)36236	Slip Separation
	19	26	0)000 0)000		0)000 0)000 !147)900 1)53262 135)820 0)22343	0)55384 0)86202	Separation Separation
	20	27	1984)069 0)000		!992)034 0)000		133)384 2)721 0)61473 0)00000	0)23340 4)11730	Slip Separation
	21	28	1316)028 0)000		!658)014 0)000	188)688 !11)059 0)52585 0)00000	0)79151 2)04627	Slip Separation
	22	29	1571)637 0)000		!303)437 0)000 !220)614 1.73309 !95)094 0)00000	0)00000 1)48691	Stick Separation
	23	30	1315)721 1371)387	!657)860 !685)694	!59)408 !43)279 0)00000 0)00000	0)41425 0)34544	Slip	Slip
	24 25 26		905)772 0)000 608)609 "0)5,	!452)887 0)000 !304)305 m "19, m		99)991 132)854 42)300 "3, m	0)00000 0)58014 0)00000 "8,	g C	0)07618 1)36174 0)25578 (d C , C )"8)8276;10\ Slip Separation Slip
	27		315)811		!157)906		13)365		0)00000	0)35432	Slip
	28		1106)857		!553)429		!18)987		0)00000	0)14268	Slip
	29		73)171		!36)586		!171)035		0)00000	0)48145	Slip
	30		442)105		!221)053		23)365		0)00000	0)17169	Slip
			"0)5,	m	"7*m	"4,	m	"19,	g E	(d C , C	)"1)5997;10\
	*m	, m	and m						
		ip L		p R			d L		d R	Contact status
		10 ) 000		0)000 !133)429 2)00499	3)31371	Separation
		2	653)836	!326)917		141)542 0)00000	0)52561	Slip
		3 40 ) 000 1244)253	!439)007 ated from the interval (0, 1500), m"30 218)308 0)00000 0)00000 0)000 151)045 4)31293 1)24167	Stick Separation	L	gener-
		50 ) 000		0)000	!46)870 1)68515	1)22477	Separation
	ip L 60 ) 000 7 562)608	p R 0)000 !281)303 !105)299 0)00000 d L 106)310 1)37128	1)74765 1)80724	d R	Contact status Separation Slip
	19 8 ) 546 8 1773)335	!49)273 !886)667		!134)442 50)635 0)00000 0)00000	0)88591 0)10463	Slip	Slip
	2	588)333 90 ) 000		!294)167 0)000		167)302 200)941 2)16003 0)00000	0)26690 2)62630	Slip Separation
	3	10	1477)126 0)000		!661)576 0)000		243)317 104)304 1)07396 0)00000	0)00000 2)67281	Stick Separation
	40 ) 000 11 0)000		0)000 0)000		147)335 21)689 1)89143 0)28131	0)26228 2)07811	Separation Separation
	50 ) 000 12 0)000		0)000 0)000 !130)483 0)59855 !39)023 0)10580	0)26849 3)91997	Separation Separation
	6	13	721)684 0)000		!360)842 0)000 !114)645 2)82428 132)512 0)00000	0)05735 5)19066	Slip Separation
	7	14	442)472 902)985	!221)236 !396)847 !160)393 0)00000 !131)972 0)00000	0)89243 0)00000	Stick	Slip
	8	15	1426)904 0)000		!451)784 0)000	101)328 !77)659 1)57107 0)00000	0)00000 1)47842	Stick Separation
	90 ) 000 16 0)000		0)000 0)000	210)688 !82)782 1)42356 0)09127	0)82240 2)88334	Separation Separation
	10	17	486)021 0)000		!243)010 0)000		38)495 111)288 1)74930 0)00000	0)83617 0)90786	Slip Separation
	11	18	548)948 1046)466	!274)474 !523)232		64)061 138)535 0)00000 0)00000	0)39499 1)41979	Slip	Slip
	12	19	0)000 0)000		0)000 0)000		!137)825 53)679 2)01063 0)05988	0)63762 1)47806	Separation Separation
	13	20	407)889 2337)341 !1168)670 !203)944		!94)998 137)032 0)00000 0)00000	1)37477 1)96686	Slip	Slip
	14	21	909)555 292)257	!167)986 !146)129		28)872 203)960 0)00000 0)00000	0)00000 3)30499	Slip	Stick
	15	22	932)196 3132)542	!466)098 !447)133 !141)549 0)00000 28)326 0)00000	0)19104 0)00000	Stick	Slip
	16	23	6)774 0)000		!3)387 0)000	!35)909 !41)658 0)42331 0)00000	0)56387 3)07702	Slip Separation
	17	24	0)000 1176)291	0)000 !588)145		54)869 156)892 0)00000 0)01212	0)41580 0)20426	Separation Slip

CONCLUSIONS

The smoothing Newton method has been directly implemented as an exact method for both twoand three-dimensional contact problems with Coulomb friction law. The global convergence of the method is guaranteed in theory. Note of the additional variables and linear approximations on friction law has been introduced and the solution exactly satisfies the contact conditions in both two-and three-dimensional cases. Only 3m variables are involved and hence little storage is required in the method, where m is the number of pairs of candidate contact points. Therefore, the difficulty of large size in multi-body contact problems has been alleviated. The rapid convergence feature of the method is shown by a set of randomly generated numerical examples.

Unlike the distinct treatment of two-and three-dimensional problems in most of previous literature, the present method deals with the two cases of the problems quite naturally and uniformly. It also presents a useful framework for frictional contact problems to utilizing various minimization-based solution technique. In this sense, the present method remains the obvious leeway to be further improved and is worthy of further study. APPENDIX I Definition 1. Let X be a non-empty subset of n-dimensional Euclidean space RL and let F be a mapping from RL into itself. The variational inequality problem, denoted by VI (X, F), is to find a vector x*3 X such that F (x*)2 ( y!x*)*0 for all y3X Definition 2. Let X be a non-empty, closed and convex subset of RL and let G be any n;n symmetric positive-definite matrix. Then the projection under the G-norm of a point y 3RL onto the set X, denoted as pr % 6 (y), is defined as the solution (which must exist and be unique) to the following mathematical problem:

Using this definition, the vairational inequality problem VI (X, F) can be reformulated as a classical fixed-point problem: Proposition 3. ¸et X be a non-empty closed convex subset of RL and G be any n;n symmetric positive-definite matrix. ¹he x* solves the problem VI (X, F) if and ony if x* is a fixed point of the mapping : RLPRLPRL defined by

i.e. if an only if x* solves the equation H (x)"0 where H (x)"x!(x)"x!pr % 6 (x!G\F(x))

We can easily see that the geometric compatibility condition (6) in Section 2.3 is equivalent to