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1 IRISA, Université de Rennes, Rennes, France.

Email: {simon.hengeveld,antonio.mucherino}@irisa.fr

2 BUTO, Vrije Universiteit Brussel, Brussel, Belgium.

Email: Frank.Plastria@vub.be

3 Dept. of Comp. Science and A.I., Universidad de Granada, Granada, Spain.

Email: dpelta@decsai.ugr.es

Abstract. The Point-Of-Interest (POI) relocation problem is a challenge encoun-

tered during the construction of personalized maps for given groups of users. This

kind of maps was already studied and is known in the scientific literature under

the name of “adaptive maps”. In this work, we formulate this problem as a sub-

class of the widely studied Distance Geometry Problem (DGP), where some extra

constraints are included for taking into account the local orientation of the POIs

in the map. These very same constraints allow us to linearize the problem, and

hence to propose a novel linear program for the POI relocation problem. Our ini-

tial computational experiments indicate that our approach is promising for further

investigations.

1 Introduction

Geographical maps are widely used in our everyday life. In a symbolic fashion, they

are designed to depict the main relationships among the various objects represented

therein. A classical example is given by city touristic maps, where the main points of

touristic attraction are put in evidence in the map, and the connections between them are

emphasized, for a potential tourist to easily navigate from one of such points to another.

We refer to such Points-Of-Interest with the acronym POIs.

In classical geographical maps, the distances between POIs are generally propor-

tional to their actual relative Euclidean distances. In some particular cases, such as in

the touristic maps mentioned above, this general rule may be slightly relaxed in order

to give more emphasis, for example, to a very important POI. The Euclidean distance,

however, remains satisfied in most of the cases, for the final user to more easily interpret

the map, and navigate through it.

The maps we are interested in are special maps where the Euclidean distance does

not predominate. These maps are meant to give to the user a sense of proximity in

some particular conditions impacting the user’s mobility conditions. Take for example

a person in wheelchair approaching a cathedral from a classical route (the route one can

derive from a standard map) and discovering that a few small steps need to be climbed

in order to have access to the square where the cathedral stands. While many other
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people with no mobility restrictions are likely to not even notice the presence of those

steps, each step represents instead an important barrier for a wheelchair. This user in

wheelchair would have much preferred to have an alternative map where the best route

in this particular condition (to seat on a wheelchair) is depicted as the shortest one. We

refer to this kind of maps as adaptive maps.

The very first reference to this kind of maps seems to have appeared in 1983 in [9].

The idea was then much later employed in [8] for example for the conception of metro

maps. More recently, that original idea was extended to the concept of adaptive maps

in [11] and [12]. These works indicate that three main steps can be identified for the

construction of an adaptive map from a classical geographic map: (i) the identification

of the POIs and of the main criteria for defining POI proximity; (ii) the relocation

of the POIs on the basis of the defined proximity criteria; and (iii) the modification

(basically the distortion) of the original map so that the new POI locations are taken

into consideration in the final representation of the adaptive map.

We particularly focus our attention in this paper on the step (ii) for the construction

of an adaptive map. In the following, this step will be referred to as the “POI relocation

problem”. Since we position ourselves immediately after the step (i) above, we can

suppose that a set of POIs is already given, and that a position in the two-dimensional

Euclidean space (from the original map) is already associated to each POI. In addition,

we can suppose that proximity information is associated to pairs of POIs, where such a

proximity is appreciated by using a method that does not simply evaluate the classical

Euclidean norm between the original locations.

The aim of this work is two-fold. Firstly, we will propose a formulation of the POI

relocation problem as a distance geometry problem (see Section 2). The interest in such

a formulation is given by the large body of work in distance geometry that can as a

consequence be exploited in the context of adaptive maps. Secondly, we will focus on

some recent research on linearization in distance geometry and we will propose a novel

linear program that is particularly tailored to the POI relocation problem (Section 3).

Finally, computational experiments will be presented in Section 4, and Section 5 will

conclude the paper.

2 Distance Geometry for adaptive maps

Given a simple weighted undirected graph G = (V,E,d) and a positive integer K, the

Distance Geometry Problem (DGP) [6] asks whether a realization X : V → R
K exists

such that, every time an edge connects two vertices u and v ∈ V (i.e. {u,v} ∈ E), the

Euclidean distance between X(u) and X(v) corresponds to the given weight d(u,v).
The DGP belongs to the NP-hard class of problems [10], and several methods and

algorithms have been proposed in recent years for its solution [7].

In the context of adaptive maps, we can naturally fix the dimension K to 2. The ver-

tex set V represents the set of selected POIs, while the proximity information is encoded

by the edge set E and the corresponding weights d. Since we suppose that an original

map containing these POIs is already available, we can notice that a possible realization

Xp for our graph G is already available. However, this realization represents the orig-

inal map, where the distances between POIs reflect the traditional Euclidean distance.
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The main interest in the POI relocation problem is to find an alternative location for all

these POIs, on the basis of the proximity measure encoded by the edge set E , and of the

weight function d.

We can remark that, while the proximity measure is not meant to be Euclidean, its

representation in the new realization X is going to be Euclidean. This raises a main

issue concerning the compatibility of the proximity measure with the properties of the

Euclidean norm. One example is given by the triangular inequality, which needs to

be satisfied in Euclidean space, but may not be satisfied by the employed proximity

measure. As a consequence, a realization X where all weights d are exactly satisfied is

unlikely to exist, and hence the constraints on the distances d(u,v) need to be relaxed.

In other words, the DGP is in this case not considered as a decision problem, but rather

as an optimization problem where the deviations from the given weights is minimized

[3].

We can additionally remark that the realization related to the original map (the real-

ization we referred to with the symbol Xp) allows us to include some useful additional

information to our problem instances. This is explained in the paragraph below: before

we do this, we warn the reader that, in order to consider this extra information, it is

necessary to enrich our graph representation with an orientation for each of its edges.

In other words, our graphs G are directed graphs.

Suppose an important POI in the map we wish to adapt is originally placed at its

North pole. Since the DGP is only based on distance information, there is no way to

predict in advance whether the given distances will force this POI to move to completely

different places in the map, and be positioned for example at the South pole, whereas

the other POIs basically remain in the same locations. It is evident that this kind of result

would be extremely confusing for the final user. Therefore, we include in our model the

information about the local orientations of the POIs, and we enforce, in the resulting

adaptive maps, that these orientations are preserved.

The local orientations are included as follows. From the original map, we can define

two orthogonal axes, x̂ indicating the North-South direction, as well as ŷ indicating the

West-East direction, that we can use to define specific Cartesian systems. For the generic

edge (u,v) ∈ E , we can in fact define a Cartesian system centered in a given position

Xp(u) for u and having as axes x̂ and ŷ, so that it can be easily verified in which of the

four standard quadrants (NW,NE,SW,SE) of this Cartesian system the position Xp(v)
of the second POI is contained. Then, we can simply partition the edge set E in four

subsets, to which we assign the same names of the Cartesian quadrants: NW, NE, SW

and SE. The fact that (u,v) ∈ NW indicates, for example, that the positions for v need

to be in North-West quadrant of the Cartesian system defined above and centered in the

available position for u. Since our graph contains directed edges, it is necessary to pay

attention to the fact that the information about the orientations remains symmetric for

each possible realization, i.e. (u,v) ∈ NW always needs to imply that (v,u) ∈ SE.

Since we focus on instances in dimension 2, a pair (x,y) ∈ R
2 will indicate in the

following the location of a POI through its x and y components in the Euclidean 2-

dimensional space. For example, for the POI v ∈ V , we will write X(v) = (xv,yv). On

the basis of the comments above, we propose the following definition of POI relocation

problem in dimension 2.
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Definition 2.1. Given a simple weighted directed graph G = (V,E,d) and an initial

realization Xp of G, where

– V is a set of POIs,

– E represents the presence of proximity information and it is partitioned in the four

subsets NW, NE, SW and SE in order to encode the local orientations in Xp,

– the weight function d provides the numerical values for the proximity measures,

find a realization X : V → R
2 that is solution to the following optimization problem:

min
X

∑
(u,v)∈E

(

√

(xv − xu)2 +(yv − yu)2 − d(u,v)

)2

s.t. :















∀(u,v) ∈ NW, xu ≥ xv and yu ≤ yv,

∀(u,v) ∈ NE, xu ≤ xv and yu ≤ yv,

∀(u,v) ∈ SW, xu ≥ xv and yu ≥ yv,

∀(u,v) ∈ SE, xu ≤ xv and yu ≥ yv.

(1)

Notice the use of the Euclidean norm in dimension 2, and that the function we minimize

corresponds to the standard stress function already used in the context of the DGP [5],

but other penalty functions may also be used. Since the partition of E into NW, NE, SW

and SE reflects the relative realworld positions of the POI, these realworld coordinates

give a feasible solution to the constraints in (1), which are thereby shown not to be

contradictory.

The POI relocation problem can therefore be seen as a particular DGP subclass of

instances, where the additional constraints on the relative orientations are enforced. In

general, adding constraints to a known problem is likely to increase its complexity. In

our case, instead, these new orientation constraints will allow us to formulate the POI

relocation problem as a linear program consisting of only real variables. This implies

that the DGP subclass consisting of our reformulated POI relocation problem (see next

section) is a polynomial case. Moreover, the reduction of the problem to a pure linear

problem implies that extremely rapid, well-tested and robust solvers can be used for its

solution.

3 A linear program for POI relocation

Let G = (V,E,d) be our simple weighted and directed graph representing an instance of

the POI relocation problem. In this section, we propose a “purely” linear programming

model for this important problem in the context of adaptive maps.

The optimization problem in Def. 2.1 is based on the Euclidean norm, where the

square of the difference between desired and computed distances is summed up to give

a global estimate of the error on the distances. In order to avoid the nonlinear terms,

we replace the Euclidean norm with the L1 norm and replace the squared differences by

their absolute value.

We point out that we are not the first ones to consider combining these two substi-

tutions: they were already considered for example in [4] (this article moreover, as well
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 1553 2783 3614 4240 5674 6972 6064 7408 5387

P2 1553 0 1674 3867 2975 5936 7234 6326 6807 4693

P3 2783 1674 0 3427 2118 5098 6396 5409 5950 3837

P4 3614 3867 3427 0 2471 2571 4609 3745 5222 3292

P5 4240 2975 2118 2471 0 3600 4684 3172 3840 1727

P6 5674 5936 5098 2571 3600 0 2569 3076 5083 3416

P7 6972 7234 6396 4609 4684 2569 0 2692 4966 3903

P8 6064 6326 5409 3745 3172 3076 2692 0 2415 1698

P9 7408 6807 5950 5222 3840 5083 4966 2415 0 2303

P10 5387 4693 3837 3292 1727 3416 3903 1698 2303 0

Table 1. The walking distances between 10 pairs of POIs, that we use in our computational

experiment. Reproduced from [12].

as [2], also exploited similar substitutions with the L∞ norm), at the price, however, of

adding binary variables and nonlinear constraints, with the consequent loss of polyno-

miality. It is precisely the additional wish to conserve the relative orientations of the

POIs that allows us to use continuous variables only.

Our linear model is a minimization problem:

min ∑
(u,v)∈E

zuv, (2)

where

zuv = | |xv − xu|+ |yv− yv|− d(u,v) | , (3)

where the symbol | · | simply represents the absolute value of a real number. The infor-

mation about the relative orientation for every edge (u,v)∈ E (see equ. (1)) allows us to

compute zuv by performing only sums of coordinates and distances (or of their opposite

values):














































∀(u,v) ∈ NW, zuv ≥ yv − yu + xu − xv − d(u,v),
∀(u,v) ∈ NW, zuv ≥ d(u,v)− yv+ yu − xu + xv,

∀(u,v) ∈ NE, zuv ≥ yv − yu + xv − xu − d(u,v),
∀(u,v) ∈ NE, zuv ≥ d(u,v)− yv+ yu − xv+ xu,

∀(u,v) ∈ SW, zuv ≥ yu − yv + xu − xv − d(u,v),
∀(u,v) ∈ SW, zuv ≥ d(u,v)− yu + yv − xu + xv,

∀(u,v) ∈ SE, zuv ≥ yu − yv + xv − xu − d(u,v),
∀(u,v) ∈ SE, zuv ≥ d(u,v)− yu + yv − xv+ xu.

(4)

Notice that equ. (3) is therefore only satisfied at optimality. Some computational exper-

iments on our linear model (2)-(1)-(4) are presented in the next section.

We remark that, in our formalism, the graph G allows us to have weights d(u,v)
that are different from the weights d(v,u), for some (u,v) ∈ E , because G is a directed

graph. However, in this work, we will suppose for simplicity that the distance informa-

tion, even if not Euclidean, is still symmetric, and we will perform our computational

experiments for this specific case.
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Fig. 1. Some information related to the 10-point instance in [12]. At the upper triangle, a visual

representation of the local orientations of the POIs in the original realization, which our linear

model is supposed to preserve in the found solution. At the lower triangle, a heatmap where the

colors encode the difference in values between the Euclidean distances (in the original realization

Xp) and the given proximity distances. The lower the difference, the smaller the value attributed

to the corresponding square in the heatmap; all difference values are normalized between 0 and 1.

4 Computational experiments

We present an initial experiment where we use the 10-point POI relocation instance

available from [12], reproduced in our Table 1. The graph G is defined so that the

vertex set V corresponds to this set of POIs, and its edge set E makes it fully connected.

The weight function d associated to the graph maps the edge set to a set of proximity

measures where the walking distance between each pair of POIs is estimated. Notice

that the walking distance is much likely to differ from the Euclidean distance, while

paths along streets resemble more L1 norm distances. In order to present the data in

a visual way, we show in Fig. 1 a colored map depicting the POI distance variations

(when comparing the original Euclidean distances and the given proximity distances)

in the instance, as well as the local orientations of the POIs.

The IBM’s CPLEX solver [1] was used to solve the POI relocation problem for

this 10-point instance. The result was obtained in 0.072 seconds on a MacOS (ventura),

32GB RAM, and with CPU Apple M1 Max (10 cores). In order to superimpose the ob-

tained coordinates with the original map, we first center both point sets at the origin by

subtracting the centroid from each point. Then, we scale the both point sets so that their

distances are within the same range. The obtained result, which has objective function

value equal to 10273, is shown in Fig. 2.
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P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Fig. 2. The solution found by our linear model to the POI relocation problem related to data in

Table 1. The points P∗ indicate the original locations of the POI in the initial map. In black, the

new positions for the POIs.

In order to validate our result, we focus our attention on the “red” edges (appearing

in darker gray if in black-and-white) between P6 and P8 in Fig. 1. The distance between

these two POIs is supposed to get larger in the adaptive map, and we can notice that this

actually happens in our solution (see Fig. 2). We can remark, however, that the locations

of some other POIs are subject to even larger modifications, apparently contradicting

our input data (because these POIs are mostly related to “green” edges, see for example

P9). But a more attentive look at our adaptive map can reveal that these POIs were

subject to a change in order to maintain their relative distances to other POIs which were

involved in some “red” edges. In the particular case mentioned above, P8 is subject to a

substantial relocation because of the edge between itself and P6. As a consequence, P9

is pushed down in the South direction, because otherwise its relative distance from P8
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would not be satisfied anymore (Fig. 1 shows that the distance between these two POIs

remains approximately the same).

Let us now consider the point P3. Two of the edges related to P7 are “red”, indi-

cating a quite important variation on the corresponding relative distances. However, the

location of P3 does not seem to have changed much in our adaptive map. This behavior

is most likely due to the introduced orientation constraints. In fact, P7 belongs to the

SE quadrant of P10, and the little movement it is allowed to take seems to be the conse-

quence of the fact that P10 moved a little in the South direction. Any other movement

for P7 in the allowed quadrant would have most likely caused larger distance penalties

with its closest neighbors. In general, we can observe that all local orientations are well

respected, as imposed by the constraints in equ. (1) in Def. 2.1, that we use in our linear

model.

5 Conclusions

We proposed a new solution method for the POI relocation problem, which is a prob-

lem encountered during the construction phase of an adaptive map. We showed that

the POI relocation problem represents a particular class of DGP instances, where new

constraints on the relative orientations between the POIs can be included. These new

constraints allowed us to linearize the POI relocation problem, and thus to propose a

linear program to find solutions for it where only real variables are involved.

We presented some initial experiments which show that this new approach is promis-

ing. We did not compare against other approaches for distance geometry or adaptive

maps because we believe the comparison would have been unfair because we use the

orientation constraints, which were, to the best of our knowledge, never used in previous

studies.

Future works will be focusing on possible variants of the proposed linear model, to

the possibility to use rotated versions of the L1 norm, and to a large range of experiments

aiming at finding the key points for improving our approach.

Acknowledgments

The authors thank the organizers of the 2021 Thematic Program on Geometric Con-

straint Systems, Framework Rigidity, and Distance Geometry (Fields Institute, Toronto,

Canada) because they gave us the opportunity to participate to the Symposium on Sen-

sor Network Localization and Dynamical Distance Geometry, where we set the basis of

our collaboration.

AM and SH wish to thank the ANR French funding agency for support (MULTI-

BIOSTRUCT project ANR-19-CE45-0019). DP acknowledges support from projects

PID2020-112754GB-I0, MCIN/AEI /10.13039/501100011033 and FEDER/Junta de

Andalucı́a-Consejerı́a de Transformación Económica, Industria, Conocimiento y Uni-
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