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ABSTRACT

Context. Access to knowledge of the point spread function (PSF) of adaptive optics(AO)-assisted observations is still a major limitation
when processing AO data. This limitation is particularly important when image analysis requires the use of deconvolution methods. As
the PSF is a complex and time-varying function, reference PSFs acquired on calibration stars before or after the scientific observation
can be too different from the actual PSF of the observation to be used for deconvolution, and lead to artefacts in the final image.
Aims. We improved the existing PSF-estimation method based on the so-called marginal approach by enhancing the object prior in
order to make it more robust and suitable for observations of resolved extended objects.
Methods. Our process is based on a two-step blind deconvolution approach from the literature. The first step consists of PSF estimation
from the science image. For this, we made use of an analytical PSF model, whose parameters are estimated based on a marginal
algorithm. This PSF was then used for deconvolution. In this study, we first investigated the requirements in terms of PSF parameter
knowledge to obtain an accurate and yet resilient deconvolution process using simulations. We show that current marginal algorithms
do not provide the required level of accuracy, especially in the presence of small objects. Therefore, we modified the marginal algorithm
by providing a new model for object description, leading to an improved estimation of the required PSF parameters.
Results. Our method fulfills the deconvolution requirement with realistic system configurations and different classes of Solar System
objects in simulations. Finally, we validate our method by performing blind deconvolution with SPHERE/ZIMPOL observations of the
Kleopatra asteroid.

Key words. techniques: high angular resolution – techniques: image processing – methods: data analysis –
minor planets, asteroids: general

1. Introduction

One of the main challenges for ground-based astronomical
observations at visible wavelengths is to mitigate the effects
of atmospheric turbulence. Without any special treatment, the
angular resolution of the biggest telescopes on Earth is naturally
limited to an equivalent 10–20 cm telescope in the visible due to
atmospheric turbulence, leading to a resolution no smaller than
0.5–1 arcsecond on the astronomical targets (Fried 1966). Devel-
opment in adaptive optics (AO) has improved the image quality
by offering corrections to the perturbations of the atmosphere,
partially restoring the angular resolution close to the diffraction
limit of the biggest telescopes (e.g. Davies & Kasper 2012). Nev-
ertheless, these AO corrections are only partial (Conan et al.
1994), and the final point spread function (PSF) can have a
complex shape.

For instance, if the AO system were to perfectly correct all
the aberrations within the range of its deformable mirror, the
PSF would be the combination of the airy function near the opti-
cal axis and the remains of the extended seeing-limited wings
for focal positions above the correction range. In reality, the
AO system is not perfect, and suffers from measurement noise,
temporal or aliasing errors, among others. These errors impact
the PSF shape within the correction range and strongly depend

on wavelength, field position, and time. Consequently, the low
spatial frequencies (global shape) of the observed scene are con-
served but the high spatial frequencies (the smallest details or
sharp edges) are strongly attenuated or even lost, resulting in
blurring of the images (Fusco et al. 2000). Precise image pro-
cessing is therefore mandatory to retrieve these fine details in
the observed objects, and deconvolution is a process designed to
restore the high spatial frequencies to or near to their original
level (Starck et al. 2002).

Deconvolution requires knowledge of the PSF, and the qual-
ity of the deconvolved image directly depends on the accuracy
of its PSF model (Jolissaint et al. 2008; Davies & Kasper 2012).
For example, Fétick et al. (2019a) and Marchis et al. (2021) used
observations of asteroids from the European Southern Obser-
vatory (ESO) Large Program (ID 199.C- 0074, PI P. Vernazza,
Vernazza et al. 2021) to show that the classical method of get-
ting reference PSFs by observing calibration stars before or after
the science observations leads to unacceptable errors in more
than 50% of the cases. Among those cases, the deconvolution
products resulted in strong artefacts at the asteroids’ edges, high-
lighted by the presence of a bright corona. This situation is
clearly the consequence of inaccurate reference stars, differing
from the actual PSF. Given that the strength and spatial struc-
ture of the atmospheric turbulence are constantly evolving, a PSF
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calibrator acquired with the same instrument setting before or
after the science exposure can be completely uncorrelated to the
actual PSF.

To overcome this issue, Fétick et al. (2020) introduced an
approach whereby (i) the PSF is calculated using a simplified
analytical model relying on a handful of parameters and (ii) these
PSF parameters are estimated directly from the object thanks
to a parametric marginal method. Once the PSF is estimated, it
can then be used by standard deconvolution methods like Wiener
filtering and Richardson–Lucy deconvolution (Richardson 1972;
Lucy 1974), where the PSF is fixed.

In this paper, we aim to develop a more robust method for
PSF estimation and deconvolution for astronomical images. In
Sect. 2.2, we first investigate the extent to which we need to know
the PSF parameters for proper deconvolution under different
signal-to-noise ratios (S/Ns). Then, based on these requirements,
we explore the performance of the PSF-parameter estimation
directly from the image under different configurations in Sect. 3.
In particular, we extend the work of Fétick et al. (2020) by
considering different object shapes and AO-correction levels.
We highlight the limitation of the previous method when deal-
ing with elliptical objects, and we propose a generalisation of
the process in Sect. 3.2. Finally, we illustrate the process with
simulations and science observations from VLT-SPHERE in
Sect. 4.

2. Requirement for deconvolution

2.1. Deconvolution method

During the deconvolution process, we introduced regularisation
terms to prevent a drastic increase in noise. l1 and l2 regulari-
sation are common in image processing. The l1 (total variation)
regularisation scales with the gradient of the object, which pre-
serves the edge or the high-frequency contents but is insensitive
to low-amplitude noise or features compared to the l2 (Wiener
like) approach. The l2 penalises the criterion by scaling quadrat-
ically with the object’s gradient, and tends to over-smooth the
edges or sharp features, as opposed to the l1. We used MISTRAL
(Mugnier et al. 2004) because it uses the l2–l1 norm. This norm
is adapted to restore objects with both smooth features and sharp
edges. The criterion of the deconvolution is defined as

Jmistral(o,h; δ, κ) = ||
i − o ⊛ h
σn

||2 + δ2
∑
i, j

|
∇oi, j

δκ
|− ln

(
1 + |
∇oi, j

δκ
|

)
,

(1)

where δ is the threshold between l2-like and l1-like behaviour, κ
is a scaling factor of the object’s gradient, σn is the noise, and ∇
is the isotropic gradient operator defined as,

∇oi, j =

√
(oi+1, j − oi, j)2 − (oi, j+1 − oi, j)2. (2)

The parameter δ acts as a threshold, where the criterion switches
between a quadratic and the linear behaviour depending whether
the gradient of the object is larger or smaller than δ. Therefore,
the combination of l2–l1 deconvolution is beneficial for high-
angular-resolution objects with sharp edges because it cancels
the penalties for the large gradients and ensures a good smooth-
ing for the small gradients. We chose (κ = 1, δ= 1.5) based on
visual inspections of the deconvolution with the true PSF and
applied the same value for our tolerance study.

2.2. Deconvolution sensitivity

The sensitivity of the PSF parameters in deconvolution is often
overlooked because there is no generic metric to describe the
quality of the end product. Without access to the ground truth,
it is difficult to derive a quantitative statement for the sensitivity
of the results to the level of our knowledge of the PSF. While
having a precise statement to evaluate the quality of the decon-
volved object is almost impossible, here we aim to investigate the
sensitivity of the process with respect to the input PSF parame-
ters. This is achieved based on observation simulation, and the
use of an analytical AO-PSF model. The advantage of the para-
metric PSF lies in the flexibility of its parameters, which can be
adjusted to better estimate and quantify the impact of the PSF
parameters on the final deconvolution accuracy.

Fétick et al. (2019a) provides the first quantitative estimate
of the impact of our level of knowledge of the PSF and the
physical meaning of the parameters for deconvolution of ground-
based AO observation of an asteroid surface. The PSF model in
Fétick et al. (2019a) was relatively simple, as they created syn-
thetic PSFs using a Moffat profile. In particular, their PSF model
does not include any physical parameters or the extended see-
ing halo. Nevertheless, these authors show that for PSFs with
equivalent, large full width at half maximum (FWHM, or too
low a Strehl ratio SR), the deconvolution induces the corona
artefacts. In other words, overestimating the FWHM or under-
estimating the SR eventually leads to deconvolution artefacts.
Conversely, for small FWHMs, or large SRs, the resulting images
appear underdeconvolved, with the extreme situation being one
in which a dirac-PSF is used and there is no deconvolution at
all. Therefore, inaccurate or insufficient knowledge of the PSF
impacts the deconvolution accuracy with different effects on the
final image depending on the under- or overestimation of the PSF
performance.

In this work, we pursue the analysis of Fétick et al. (2019a),
with a more representative and accurate AO PSF model called
PSFAO19 (Fétick et al. 2019b). We reiterate the analytical
expression of the PSF, h, defined as

Wϕ( f ) =
[
σ2MA( fx, fy) +C

]
f< fAO

+
[
0.023r−5/3

0 f −11/3
]

f> fAO
, (3)

h( f ) = F −1{h̃T eBϕ(0)eF
−1{Wϕ( f )}}, (4)

where MA is a Moffat-like function with fixed parameters, Bϕ
is the phase auto-correlation function, and Wϕ( f ) is the phase
power spectrum density (PSD), which is characterised by phys-
ical parameters: the fried parameter (r0) and phase residual
variance (σ2). Beyond the AO cut-off frequency fAO, the PSD
is simply defined by a power law (Kolmogorov spectrum), the
amplitude of which is set by the fried parameter (r0). The AO
cut-off frequency can also be related to the number of actuators
used by the AO deformable mirror (DM). Indeed, the AO DM
corrects over a limited frequency range. We therefore introduce
a cutoff frequency of the DM such that

fAO =
1

2dDM
, (5)

where dDM is the inter-actuator pitch projected into the pupil,
often called the DM pitch, and is defined as

dDM =
D

Nact
, (6)
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Fig. 1. PSF profiles from PSFAO19 for different parameter choices. Top:
PSFs for three different values of Nact. Bottom: PSF profiles with 40 by
40 actuators when the parameters r0 and σ2 are changed.

where D is the telescope primary mirror diameter and Nact is
the linear number of actuators projected onto the telescope pri-
mary mirror. Figure 1 shows different PSF profiles, as expected
for an AO system installed on an 8m telescope working at visible
wavelengths, when Nact changes from 20 to 40 actuators across
the pupil (top figure), and when r0 or σ2 change for a given
Nact.

We then took this PSF model with the parameters from
Table 1 to simulate science observations. We simulated observa-
tions of one of the moons of Jupiter, Ganymede, with a reference
PSF generated by PSFAO19 model and a high-resolution object
taken from NASA (2021), and eventually binned down to fit
the angular size expected from the ground, and the equivalent
angular resolution for an 8m telescope working at visible wave-
lengths. Finally, we performed l2–l1 deconvolution (Fusco et al.
2003; Mugnier et al. 2004) with 225 different PSFs – varying
r0 and σ2 with respect to the true PSF parameters – in order to
carry out the deconvolution tolerance study.

We use the rms error (RMSE) to evaluate the performance of
the deconvolution with respect to PSF parameters. The RMSE is

Table 1. System configuration for our PSF model.

Parameter Value Unit

Primary mirror diameter (D) 8 m
Secondary mirror diameter (D′) 1.12 m
Plate scale (res) 4.7 mas
Number of actuator (Nact) 40 × 40
DM pitch (dDM) 20 cm

Fried parameter (r0) 13.5 cm
Phrase variance (σ2) 1.3 rad2

Notes. Fixed telescope parameters (top) and the reference PSF parame-
ters (bottom).

defined as

RMSEi =

√
1
n

∑
(ōi − ōref)2, (7)

where n is the number of pixels, ōi is the deconvolved object with
225 PSFs, and ōref is the deconvolved object with respect to the
reference PSF.

Table 1 sets the reference PSF parameters for the simula-
tions, with r0 = 13.5 cm and σ2 = 1.3 rad2. We choose these PSF
parameters as they are representative of the typical turbulence
statistics and performance of the SPHERE extreme AO system
(SAXO). Figure 2 shows the RMSE maps when the PSF param-
eters (r0,σ2) used for deconvolution are changing. Each RMSE
on the map is the sum over the pixel of Eq. (7). As expected,
the RMSE between the real object and the deconvolved image is
minimal when the exact same PSF is used for deconvolution.
When the PSF parameters are changing, the deconvolution is
degraded and the RMSE increases. We considered two cases of
S/N, with a high S/N (=100) case (Fig. 2 left) and a low S/N
(=10) case (Fig. 2 right), where the S/N is defined per pixel over
the object. From Fig. 2, it is interesting to note that (1) the slope
of the RMSE as a function of r0 is steeper than σ2 regardless of
whether there is over- or underestimation of the parameters, and
(2) the RMSE is asymmetric with respect to the PSF parameters.
Overestimating r0 and underestimating σ2 will always result in
a better deconvolution than the opposite scenario. Our results
agree with the findings of Fétick et al. (2020), as increasing r0
or reducing σ2 corresponds to a better-quality PSF. This leads to
underdeconvolution, whereas overdeconvolution results in strong
artefacts, which increases the RMSE dramatically.

In order to quantify the effects described above, Fig. 2 (bot-
tom right) shows the normalised RMSE values for different PSFs
selected over the 225 sample, for which we also computed their
SR. The conclusion remains as before; if the PSF is barely
known, it is always more desirable to overestimate the PSF qual-
ity before using it for deconvolution. Figure 2 (bottom row) also
shows that using the SR as a unique metric for quantifying the
PSF quality is insufficient for deconvolution, as one can have
many PSFs with the same SR but very different RMSE out-
come. In other words, the PSF accuracy cannot be constrained
with the SR-estimation accuracy alone, as the morphology of
the PSF core (in our case constrained by σ2) also impacts the
deconvolution. On the other hand, using the proposed analytical
PSF model with constraints on σ2 and r0 seems appropriate for
obtaining constraints on the required PSF accuracy for decon-
volution. Finally, it is important to highlight that the overall
tendency of the deconvolution sensitivity is independent of the
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Fig. 2. Deconvolution sensitivity with two different S/Ns. Top left: Deconvolution RMSE with high S/N = 100. Top right: deconvolution RMSE
with low S/N = 10. The colour intensity represents the strength of the RMSE. Redder colour in the RMSE map corresponds to lower RMSE values.
The square represents the true PSF parameter and the diamond symbols represent the visual results displayed in Fig. 3. Bottom left: Strehl ratio
error with the PSF parameters in the deconvolution RMSE map. Bottom right: Strehl ratio error versus normalised RMSE in the deconvolution
RMSE map with a high S/N.

S/N; therefore this latter conclusion is to be applied during the
PSF estimation procedure, as presented below.

The final step in assessing deconvolution quality is a visual
inspection, as normally there is no ground truth to compare
with science observations. We inspect the impacts of over- and
underestimating the PSF parameters on the deconvolution in
Fig. 3 and their respective RMSE are labelled by diamonds in
Fig. 2. Again with overestimated PSF parameters, we obtain bet-
ter visual results in the deconvolved objects. The RMSE map
(Fig. 2) and its visualisation (3) demonstrate that, in general, in
order to achieve a good deconvolution, the estimated PSF param-
eters may fall in the ranges −15% < r0 < 30% and −30% <
σ2 < 15%. Though these results do not define or set the generic
requirement for deconvolution sensitivity, they provide quantita-
tive guidelines as to the accuracy required on PSF parameters in
order to achieve good-quality deconvolution.

3. Direct PSF estimation from science observation

One of the traditional methods for blind deconvolution is joint-
estimation (Markham & Conchello 1999; Mugnier et al. 2004),
whereby simultaneous estimations of the PSF and the object
of the image are performed. The difficulty with this method
comes from the fact that we have twice as many unknowns
(object and PSF) as data points, which is a very poor statistical
contrast (Blanco & Mugnier 2011), and this can end up in cou-
pling between the PSF and the object. Another approach, called
marginal estimator Blanco & Mugnier (2011), is to separate the
object o from the problem by integrating over the probability
of the object distribution. This estimator is consistent and non-
biased (Lehmann & Casella 2006) when there are more data

or the S/N increases. Fétick et al. (2020) reduces the statistical
contrast by PSF parmeterisation,

P(γ|i) =
∫

P(i|o, γ)P(γ)P(o)do, (8)

where γ are the PSF parameters. To compute the marginalisation
integral, we assume a Gaussian prior probability for the object
and assume that the total noise is white (homogeneous overall),
stationary, and follows Gaussian statistics.

AO images are dominated by photon noise and read-out
noise. Mugnier et al. (2004) showed that the Poisson distribution
may be approximated by Gaussian noise when the flux is typ-
ically > 10 photons/pixel. The read-out noise is Gaussian, and
dominates the image when the S/N is low, and so in the end,
one can state that the noise is Gaussian over a wide range of
S/N. The stationary distribution is a strong assumption, as when
photon noise dominates (for high-S/N cases), the spatial distri-
bution of the noise will follow the object intensity. However,
these assumptions are mandatory in order to write a simple ana-
lytical expression in the Fourier domain for minimisation, and
we demonstrate in Sect. 3.1 that they do not introduce bias in
the results. Along with the Gaussian statistics of the object, the
probability function is

P(i|γ) ∝
1

√
det Ri

exp−
1
2 (i−im)tRi

−1(i−im), (9)

where Ri is the image covariance matrix and im is the convolution
of estimated PSF and the mean object. With the assumption of
the Gaussian stationary noise, the image covariance matrix is

Ri = HγRoHγ t +
〈
σn

2
〉

Id, (10)
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Fig. 3. Simulated images produced from deconvolutions of the objects shown schematically in Fig. 2. The simulated image before deconvolution
is shown in the top right corner of each panel of nine images. Left: deconvolved objects marked by the diamond symbols in the top left of Fig. 2
with high S/N (=100), right: deconvolved objects marked by the diamond symbols in the top right of Fig. 2 with low S/N (=10).

where < σ2
n > is the average noise variance of the pixels, Id is the

identity matrix, and Hγ is the convolution operator. The marginal
criterion J can be written in the Fourier domain by taking the
logarithm of P(γ|i) (Blanco & Mugnier 2011),

Jmarg(γ; S obj, < σ
2
n >) =

1
2

∑
ln

(
S obj|h̃γ|2+ < σ2

n >
)

(11)

+
1
2

∑ |ĩ − h̃õm|
2

S obj|h̃|2+ < σ2
n >
− ln(γ),

where S obj is the spatial power spectrum density (PSD) of
the object and ln γ represents the prior information on the
PSF parameters (if there is any). This method requires prior
information on the object PSD, which can be provided via an
axis-symmetric model (Conan et al. 1998),

S obj =
k

1 + ( f /ρ0)p , (12)

where k is the object PSD value at f = 0 (which is close to
the square of the flux of the image), ρ0 is a parameter related
to the size of the object, and p is the index of the power law.
This object PSD model is called ‘PSD Conan’ in the remain-
der of the paper. The validity of this approach was demonstrated
by Fétick et al. (2020), who showed that a fully unsupervised
algorithm (estimation of both the PSF and the PSD parame-
ters of the object) could provide reasonable-quality PSFs for
deconvolution of large objects (e.g. asteroid Vesta). The authors
also show that the PSF estimation can be improved with mostly
unsupervised approaches, where p is fixed, and all the remain-
ing parameters are ‘free’ during the minimisation. We estimate
the parameters by minimising Eq. (11) with the variable metric
method (VMLM-B) descent algorithm developed by Thiebaut
(2002). The PSF model and object PSD model with their respec-
tive analytical gradients are provided to the algorithm for the
minimisation process.

Fig. 4. Simulated observations of our study. Left: Simulated obser-
vation of Ganymede. Right: Simulated observation of the asteroid
Vesta. These observations are shown with arrays of equal size, namely
300×300 pixels.

3.1. Limitation of the current method on PSF retrieval

Based on the case study of Vesta, we began including cases with
less information for PSF estimation (i.e. smaller objects) and
with higher-order AO corrections. Figure 4 shows two different
objects of interest, Ganymede when it is almost 100% illumi-
nated (case 1), and Vesta (case 2) with a larger angular size than
Ganymede on the image. We use these two examples to explore
the effect of different angular size on the performance of the
method proposed by Fétick et al. (2020). We generated these
cases with both Poisson (photon) noise and Gaussian (read-out)
noise as expected in real data; this is different from the Gaussian
noise assumption for the criterion Eq. (11). By doing so, we
test whether the Gaussian noise assumption is valid within this
marginal framework to estimate the PSF parameters. The tele-
scope and the PSF configuration of the simulations are provided
in Table 1. Before directly applying the object PSD model with
the marginal estimator, we tested the robustness of the estimator
by introducing the true object and noise into the model in Fig. 5.
The supervised criterion map (or supervised map) means that all
parameters are fixed, and we compute the value of the criteria
for different PSF parameter values, and different pairs of r0 and

A72, page 5 of 10



A&A 673, A72 (2023)

0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
r0

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2

Minimum
True PSF parameter

10 6

10 5

10 4

10 3

10 2

10 1

Fig. 5. Supervised criterion map of Ganymede with 40×40 actuators,
which is the worst case from Fig. 6. We compute the map with ||F(ob j)||2
and noise from the simulation.

σ2. Figure 5 shows that the shape of the marginal criterion is not
convex, but it seems to exhibit only one minimum. A gradient-
descent algorithm is therefore suitable for solving this criterion
as long as it is fine-tuned to converge precisely in the sharp val-
ley. In the case of Fig. 5, we substitute the object PSD model
with the modulus of the Fourier transform of the object squared,
S obj = ||F(ob j)||2. In this ideal case, the minimum of the criteria
map indeed corresponds to the actual PSF parameters. In other
words, if we had perfect knowledge of the object PSD charac-
teristics, we would be able to perfectly estimate the PSF from
the image. Therefore, it is crucial to provide the estimator with
an accurate object description to retrieve the PSF parameters
for deconvolution. This example also shows that the assump-
tions made in terms of the noise statistics (Gaussian) and spatial
distribution (stationary noise) are not biasing the criterion, and
validates these required simplifications.

The next step is to reproduce the same analysis in Fétick et al.
(2020), computing the supervised maps for all objects in Fig. 4
but using the axis-symmetric object PSD model from Eq. (12).
The object PSD parameters being fitted empirically with the
data.

The supervised maps computed for Ganymede (case 1) and
Vesta (case 2) are shown in Fig. 6. Compared with Fig. 5, the
estimated PSF parameters (minimum of the supervised map)
can significantly differ from the actual PSF parameters. In the
case of Vesta (first row of Fig. 6), we see that when the number
of actuators increases, the estimated parameters slowly diverges
away from the true solution. In this case, the situation is not
dramatic, as the worst r0 estimated would still fall within the
required sensitivity for deconvolution as defined in Sect. 2.2. We
then look at case 1 (Ganymede), which represents a more chal-
lenging configuration, with less illuminated pixels (and therefore
less information) across the object than for Vesta. Results are
shown in the second row of Fig. 6. We clearly see that the PSF-
parameter estimation fails, as the minimum of the criteria map
notably deviates from the actual PSF parameters. At the low-
est number of actuators (20 × 20), σ2 is overestimated by 13%,
which would still be acceptable for deconvolution purposes.
However, when the AO-correction level is improved (Nact with a
higher actuator density), the PSF-parameter estimation strongly
diverges from the simulated input PSF-parameters. For both
cases, it is important to remember that if one uses the real object
PSD representation (and not the axis-symmetric approximation),
then the PSF-parameter estimation is accurate, as demonstrated
in Fig. 5. This is clear evidence that the source of error lies in

the object PSD description, and that the axis-symmetric model
assumption used in Fétick et al. (2020) does not provide a proper
object representation for these cases.

We interpret our finding that the order of correction impacts
the PSF-parameter estimation as follows: the higher the correc-
tion, the higher the spatial frequencies corrected, and therefore
the higher the energy within the AO-corrected area (less energy
is ‘lost’ in the halo). With the higher correction, the mismatch
between the object PSD model and the object PSD is amplified,
as more energy is translated into the object instead of the residual
wavefront. A straight-line power law may no longer be sufficient
to describe the features in the spatial frequencies domain. Simi-
larly, when the angular size of the object is too small, only a few
pixels are available from the image to estimate the PSF, and the
process becomes very sensitive to the assumption made on the
object PSD.

In conclusion, even though Fétick et al. (2020) further
reduced the dimensionality of the problem from 2N2+ to N2

+ the number of PSF parameters + the number of object PSD
model parameters by introducing the analytical PSF model into
the estimator, our study shows that with the current setup of the
marginal estimator and the object PSD model (axis-symmetric),
the PSF parameters cannot be estimated when (1) the object (or
its angular size) is too small and (2) the order of AO correction is
too high. Understanding these limitations, one may improve the
object PSD model to ensure a better description for the marginal
estimator.

3.2. Improved PSD model for the object

In Sect. 3.1, we show that the description of the object PSD pre-
vents the marginal estimator from providing a more realistic PSF
evaluation, as the estimated minimum diverges from the simu-
lated parameters. The estimator converges towards the true PSF
parameters when the ground truth of the object and the noise
are provided, as opposed to the case of Ganymede in Fig. 6 with
40 × 40 actuators. A superior object PSD model should increase
the adaptability of the estimator, for instance, allowing higher-
order AO correction and fewer pixels across the object.

Figure 7 shows the PSD circular average for Ganymede.
From Fig. 7, one can already see that the axis-symmetric object
PSD model fails to describe the ring-like characteristics, as
well as some of low-spatial-frequency behaviour, which might
explain the breakdown of the marginal estimator in Fig. 6. There-
fore, we propose the introduction of an elliptical function to
describe the object PSD, defined as

ρ2 = (a2 sin2 θ + (r × a)2 cos2 θ) f 2
x

+ 2((ra)2 − a2) sin θ cos θ fx fy
+ (a2 cos2 θ + (r × a)2 sin2 θ) f 2

y ,

(13)

where r is ratio between semi-major and semi-minor axes, a
is the semi-major axis, and r × a is the semi-minor axis. We
choose an elliptical model as it is more general than a simple
disk, and will better represent observations of extended sources
in the Solar System. The final elliptical object PSD model can
eventually be described by

S obj(ρ) = k × |
J1(2πρ)

2πρ
|2, (14)

where k is the object PSD value at f = 0, ρ is the spa-
tial frequency, J1 is the Bessel function of the first kind, and
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Fig. 6. Supervised criterion map using the axis-symmetric and elliptical object PSD model. Top: Vesta with the Conan model (S/N = 100) [20
by 20, 30 by 30, 40 by 40]. Middle: Ganymede with the Conan model (S/N = 100) [20 by 20, 30 by 30, 40 by 40]. Bottom: Ganymede with the
elliptical model (S/N = 100) [20 by 20, 30 by 30, 40 by 40].
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Fig. 7. Circular average of the normalised intensity versus spatial fre-
quency of ||F(ob j)||2 (red solid line), the elliptical object model by
Eq. (15) (blue dotted-dash line), and the Conan model (green dashed
line).

S obj(a, r, θ, µ) is the object PSD model in the frequency domain.
We adopt the same convention for k as Blanco & Mugnier (2011),
and define µ = ⟨σ2

n⟩/k. In practice, we find it necessary to add a
Gaussian filter to the object PSD, and so the elliptical object PSD
model is

S obj(ρ) = k × |
J1(2πρ)

2πρ
|2 ⊛ G, (15)

where G is a Gaussian function. The need for the Gaussian filter
comes from the sharpness of the airy-like pattern. Sharp rings
lead to some pixel values close to zero, driving the marginal cri-
terion in an aberrant fashion. We find that a fixed Gaussian filter

is adequate for all objects, and so this term remains constant. The
Gaussian filter G we use is

G =
1

2πσ2 e−(x2+y2)/(2σ2), (16)

where x and y are the coordinate of the array, and σ is the stan-
dard deviation of the distribution, the value of which is fixed to
2 for the filter.

With this particular formalism, and unlike the model in
Conan et al. (1998), the physical information for the object is
compressed into the variables, with a (semi-major axis) and r
(ratio between semi-major and semi-minor axes) being directly
related to the size of the object. Here, θ relates to the orienta-
tion of the object PSD and µ is associated with the noise level of
the image. Considering that this model is analytical, minimising
the model parameters with their analytical gradients is beneficial
to our multi-variable PSF estimation. The object PSD parame-
ters are a secondary product of the marginal criterion because
the goal is to retrieve the PSF parameters to build a PSF for
deconvolution.

Figure 7 shows how this elliptical model improves the rep-
resentation of the PSD features. The object PSD parameters
are derived by fitting ||F(ob j)||2 with the elliptical model from
Eq. (15). The next step is to validate the performance of this
PSD model for PSF-parameter estimation with simulations.

4. Applications: Simulation and on-sky data

4.1. Simulation: Fully supervised case

We first test the marginal estimator with the elliptical PSD model
by reproducing the analysis of Fig. 6 for the most problematic
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case of Ganymede (small object) with the highest AO correction
(bottom-right plot of Fig. 6). Compared with the bottom-right
plot of Fig. 6, introducing the elliptical PSD model into the
marginal estimator leads to a significant improvement, as shown
in Fig. 6. The minimum of the criteria is now within less than
10% of the actual PSF parameters. Again, this result confirms
that the assumptions made in the noise model do not introduce
bias into the estimation process.

For the case of Ganymede, the relevant parameters are found
to be as follows:

r0 = 14.2 cm
σ2 = 1.46 rad2

µ = 9.037 × 10−9

a = 34.0 pix
r = 0.867
θ = −1.48 rad.

(17)

When the object parameters (µ, a, r, θ) are well calibrated,
our elliptical model provides a stronger constraint towards the
estimation of (r0, σ2), and therefore allows a degenerate regime
to be avoided, as opposed to the axis-symmetric object PSD
model shown in the bottom-right plot of Fig. 6.

4.2. Simulation: Fully unsupervised case

Without knowing the identity of a target object, one can per-
form the marginal estimator along with object parameters. This
is what we refer to as ‘fully unsupervised’, when the optimi-
sation process is carried out on all free parameters, estimating
both the object PSD parameters and the PSF at the same time.
Fétick et al. (2020) showed that such an approach does not pro-
vide satisfactory results, mostly because the criterion is flat and
because of the couplings between parameters. We reproduced the
experiment performed by these latter authors using the elliptical
PSD model, but the same limitations are faced, especially with a
strong coupling between r0 and µ.

In the Fourier domain, the PSD of the image is S obj × |h̃|2 + n,
and both r0 and µ determine the intensity of the image PSD. The
estimator therefore has difficulty in separating the contribution
of the PSF from the object. This means a stronger constraint
is required either on the PSF parameter (r0) or on the object
parameter (µ). In particular, we note that, if we can provide ini-
tial guesses that are sufficiently close to the true value (–5% to
+5%), then the minimisation can converge towards a good solu-
tion. The fully unsupervised case therefore does not appear to be
a robust PSF-estimation method.

4.3. Simulation: mostly unsupervised case

For actual observations, we do have access to some information
for the object from the observation itself. For instance, our object
PSD model allows us to obtain relevant guesses for S obj via
(a, r, θ, µ) directly from the Fourier domain of the image, which
was not possible from the axis-symmetric object PSD model.
Indeed, these parameters are linked to the physical parameters,
which directly come from the size and orientation of the object in
the image. Furthermore, µ can be estimated directly from the cir-
cular average of the image PSD by calculating the ratio between
the maximum and the minimum of this circular average. There-
fore, the PSF parameter estimation can be carried out with µ
fixed to the guess obtained from the science image, and allowing
(a, r, θ) free to vary, starting from educated guesses. Applying
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Fig. 8. Mostly unsupervised criterion map of Ganymede 40× 40 using
the elliptical PSD model in Eq. (15).

such a method, Fig. 8 shows the resulting criteria maps for the
same case as shown in Fig. 6, with the reference r0 = 13.0 cm and
σ2 = 1.3 rad2. The relevant parameters are found to be,



r0 = 14.9 cm
σ2 = 1.47 rad2

µ = 9.03 × 10−9

a = 34 pix
r = 0.866
θ = −1.48 rad.

(18)

In conclusion here, fixing µ significantly improves the PSF esti-
mation because it removes its coupling with r0. With the initial
guesses of the object parameters obtained from the observation,
we are able to retrieve a solution close to the fully super-
vised case (known object information). This approach provides
a robust way of estimating the PSF parameters from the images,
even in specific configurations of small and elongated objects.
The final step is to validate the approach with real data, as shown
in the following section.

4.4. On-sky: Fully or mostly unsupervised

Here, we make use of actual observations to test and vali-
date the newly proposed algorithm. To test whether or not our
marginal estimator with the elliptical object PSD model pro-
vides robust estimates of the PSF parameters, we select a test
case, namely the observation of the asteroid Kleopatra from 14
July 2017, because its elliptical shape provides an appropriate
challenge to our estimator. The asteroid Kleopatra was observed
as part of the ESO Large Program (ID 199.C- 0074, PI P. Ver-
nazza – Vernazza et al. 2021), targeting Main Belt asteroids to
study their albedo, shape, excavation volume, and surface. This
ESO Larger Program used the Zurich IMaging POLarimeter
(ZIMPOL) instrument with the NR filter of the central wave-
length λ= 645.9 nm. ZIMPOL is mounted on Spectro Polarimet-
ric High-contrast Ex-oplanet REsearcher (SPHERE) of the Very
Large Telescope (VLT) observatory. It is equipped with SAXO, a
high-order AO system. The images were previously deconvolved
by Marchis et al. (2021). In this case, we have no prior informa-
tion on the object, and we apply the strategy defined in Sect. 4.3:
fix µ and extract first guesses for (a, r, θ) directly from the image.
We then perform PSF estimation and use this to deconvolve
the image.
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Fig. 9. Observation and the deconvolutions with different PSFs. (a)
Observation. (b) Deconvolution performed using the PSF estimated
using a previous model Conan et al. (1998). (c) Deconvolution using
the estimation with the elliptical model. (d) Deconvolution using the
calibration star observed after the observation. (e) Deconvolution by
Marchis et al. (2021) using a Moffat PSF profile. These images are plot-
ted with the same intensity scale.
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Fig. 10. Intensity of the image and the deconvolutions. Slice of the
asteroid Kleopatra for the image (black line), previous work related
to Marchis et al. (2021) (green dotted line), a deconvolution using the
marginal estimator with the axis-symmetric model Conan et al. (1998)
(blue dotted line), and a deconvolution using the marginal estimator
with elliptical model (red solid line).

For this observation, the PSF parameters found are

r0 = 12.1 cm
σ2 = 4.17 rad2

µ = 2.42 × 10−9

a = 29 pix
r = 0.55
θ = −0.92 rad.

(19)

We compare the result of our algorithm to other deconvo-
lution strategies in Fig. 9, that is, with: (a) the observation,
(b) a deconvolution performed using the PSF estimated with
the previous model Conan et al. (1998), (c) a deconvolution
using the estimation with the elliptical model, (d) a deconvo-
lution using the calibration star observed after the observation,
and (e) the deconvolution by Marchis et al. (2021), who used
a Moffat PSF profile. Regarding the deconvolution, we use a
l1 − l2 deconvolution scheme Fusco et al. (2003) while keeping
all hyperparameters consistent for all the different deconvolved
objects. Figure 10 shows the intensity along the longest axis
of the image, the deconvolution of the axis-symmetric model,
the deconvolution of the elliptical model, and the deconvolu-
tion of the previous work. The estimation made by the elliptical
model successfully retrieves the morphology of the asteroid
while avoiding overdeconvolution. Finally, Fig. 11 shows the
PSF and the OTF profile of the estimated PSF with the ellip-
tical model (red solid line), a reference PSF (black dotted

100 101 102
Pixel

10 5

10 4

10 3

PS
F

Elliptical
Reference
Conan

100 101 102

Spatial Frequency [pix 1]
10 5

10 4

10 3

10 2

10 1

100

OT
F

Elliptical
Reference
Conan

Fig. 11. PSFs and OTF profiles used for deconvolution. Top: cut of
the PSFs and the reference PSF. The PSF estimated with by Conan
et al. (1998) is shown with a blue dashed line, the PSF estimated with
the elliptical model is shown with a red solid line, and the reference
PSF obtained after the observation is shown as a black dotted line.
Bottom: cut of the OTFs and the reference OTF. The OTF estimated
by Conan et al. (1998) is shown as a blue dashed line, the OTF esti-
mated with the elliptical model is shown as a red solid line, and
the reference OTF obtained after the observation is shown as a black
dotted line.

line) observed after the asteroid observation, and the estimated
PSF with the axis-symmetric model. We can retrieve the over-
all PSF shape with the elliptical model when comparing with
the reference PSF, assuming it provides a good proxy for the
PSF.

5. Conclusion and perspectives

This paper addresses the deployment of advanced data-
processing techniques in the framework of AO-assisted observa-
tions of extended targets and Solar System objects in particular.
AO correction is not perfect, especially at visible wavelengths,
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and image post-processing is mandatory to retrieve the finer
details in the observed objects. Deconvolution is the image post-
processing step to reduce the residual blurring effect on the
image, but it requires an accurate description of the actual AO-
PSF. In the first part of this paper, we make use of an analytical
AO-PSF model to investigate the sensitivity of the deconvolu-
tion process to the accuracy of the available knowledge of the
PSF. We defined boundaries on the PSF-parameter values in
order to achieve a deconvolution without inducing strong arte-
facts. Our results show that if the estimated PSF parameters fall
in the ranges of –15% < r0 < 30% and –30% < σ2 < 15%,
then we can achieve deconvolutions without introducing many
artefacts and distortions. The boundaries are not symmetrically
distributed, and we find that it is always better to overestimate
the PSF quality in order to reduce the error in the deconvolu-
tion, which agrees with the findings of Fétick et al. (2020). We
also conclude that the SR alone is not a good metric for the PSF
description for deconvolution.

We then explored algorithms allowing to extract the PSF
directly from the science images. Such methods, known as
marginal blind-deconvolution, have previously been shown to be
efficient, especially for Solar System-like observations (Fétick
et al. 2020). In Sect. 3.1, we illustrate the limitations of such a
method for specific cases, and in particular for objects of small
angular size. We then improved the object description by intro-
ducing a new elliptical object PSD model in Sect. 3.2 and we
present the results of our tests of this elliptical model in Sect. 4,
which use the problematic cases from Sect. 3.1. After testing
with simulations, we validated our model with on-sky data from
VLT-ZIMPOL. With the elliptical object PSD model, we suc-
cessfully retrieve the PSF from the image and improve the shape
and flux retrieval on the observations.

Other than improving the PSF estimation with the challeng-
ing cases for the previous model, more importantly, our model
allows us to obtain relevant guesses directly from the Fourier
domain of the image. The object parameters required are linked
to physical parameters, that can be estimated from the size and
orientation of the object in the image. As such, the process is
more robust as it starts from educated guesses.

In future work, a first path to improve the PSF estimation
would be to use external data available from AO telemetry in
order to introduce priors on the PSF parameters. AO telemetry
data provide insights into observing conditions and AO perfor-
mance, from which we can obtain estimations of r0 and/or σ2.
These priors may be used to improve the minimisation process
even further, and eventually the robustness of the PSF estimation.
Another path would be to extend the method to 3D data cubes,
for instance from Integral Field Spectrograph observations.

Assuming that the structure of an object does not change sig-
nificantly with wavelength, a single set of object PSDs could be
used for all wavelengths, which would further improve the esti-
mation algorithm. Furthermore, one could also take advantage of
the known PSF scaling with wavelengths, reducing the number
of unknowns with respect to the data even further, which would
constrain the output PSF. Finally, further work is needed to adapt
our method to different classes of extended objects; for example,
galaxies with different topologies. Extending the blind decon-
volution method to handle a more diverse class of objects will
either need additional inputs from the astronomical model, or
machine learning methods could perhaps be used to build more
complex models. Access to the Python package of this work is
possible upon request.
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