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Slim Hachicha⋆1, Célia Le∗1, Valentine Wargnier-Dauchelle1, and Michaël
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Abstract. Although a giant step forward has been made in medical
images analysis thanks to deep learning, good results still require a lot
of tedious and costly annotations. For image registration, unsupervised
methods usually consider the training of a network using classical regis-
tration dissimilarity metrics. In this paper, we focus on the case of affine
registration and show that this approach is not robust when the trans-
form to estimate is large. We propose an unsupervised method for the
training of an affine image registration network without using dissimilar-
ity metrics and show that we are able to robustly register images even
when the field of view is significantly different in the image.

Keywords: image registration · unsupervised

1 Introduction

Image registration consists in finding a geometrical transformation to reposition
an image, the moving image, in the spatial coordinate system of another image,
the fixed image [5]. It has many applications such as longitudinal studies, studies
on lung or cardiac motion or spatial normalization. In classical registration, an
optimization problem is solved to minimize the dissimilarity between the fixed
image and the moving image warped with the estimated transform [13]. The
dissimilarity metric can be either geometrical or based on raw image intensities
such as mutual information (MI) [9] to avoid the potentially unreliable and/or
tedious geometric features extraction step. Typical problem of these optimization
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based methods is the lack of robustness to artifacts, to bad initialization or to
the presence of abnormality as well as their long computation time.

Deep learning registration methods have also been investigated to cope with
these limitations. Supervised methods [8, 11, 10] are indeed robust and efficient
but require the ground truth transformation to be known for images in the train-
ing set. As ground truth transforms are often impossible to obtain, the training is
done with either (potentially unrealistic) synthetic transforms, estimated trans-
forms from (potentially unreliable) third party registration and sometimes using
additional annotations (that can be tedious to get). In [7, 1, 14], the deep regis-
tration framework is unsupervised: classical registration dissimilarity losses such
as MI are used to train the network. Most limits of classical registration are
re-introduced. These issues are also present when the dissimilarity loss is learnt
as in [2]. Most deep registration methods also use, as input tensor, the moving
and fixed image concatenated in different channels. This approach is problematic
as, for large displacements, first fine scale convolution layers of the network will
attempt to create features from unrelated parts of the pair of images. This defect
can be alleviated by using each image as an independent input of two networks
as in [4]: a network estimates the position of some keypoints for each image. An
affine transform is then fitted to make the positions of the keypoints match. The
network is first trained using supervised training with synthetic affine transforms
but then trained on real pairs of images with dissimilarity losses.

As far as we know, only in [12] is addressed the problem of unsupervised
registration without image dissimilarity losses: the fixed and moving image are
encoded with a separate encoder, a correlation matrix between local features
is computed providing a rough displacement likelihood map for each cell and
a robust fit finally outputs the estimated affine transformation matrix. Only a
cycle consistency loss is used for the training. However, the computation of this
correlation matrix and the subsequent fit can be computationally demanding, it
cannot scale to deformable registration for example. Furthermore, as the corre-
lation is computed with the features of the moving image before warping, these
features need to be affine invariant: affine equivariant features would be more
discriminative for registration.

In this paper, we propose a deep unsupervised registration method. The
network only takes the moving image as input and directly outputs the affine
transform to register it to a reference template. Pairwise registration can then be
easily obtained by composition. For training, only unregistered images without
any label are required and dissimilarity losses are not used. Our method is robust
to the presence of strong artefacts or abnormalities and is robust to extreme
rotations, translations, scaling or shearing. The main contributions are: 1/ an
unsupervised image registration method to train a network that directly outputs
the affine transform of an image to an atlas 2/ a two steps training procedure to
enlarge the range of affine matrices that can be estimated to the most extreme
cases, 3/ a numerical evaluation showing the robustness of our approach even in
the presence of large crops or occlusions.
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Fig. 1: Unsupervised registration equivariance and reference loss

2 Method

2.1 Unsupervised Registration to a Reference Template without
Dissimilarity Losses

Our goal is to train a neural network R whose input is an image I and the
output is the transformation A such that I ◦ A is in the reference coordinate
system. In other words, I ◦ R(I) is in the reference coordinate system. It is
assumed that only a single image Iref is in the reference coordinate system :
R(Iref) = Id, all other images are neither registered nor labeled in any way.
Pairwise registration is a straightforward consequence of template registration:
once R is trained, the transform between a fixed image Ifix and a moving image
Imov is R(Imov) ◦ [R(Ifix)]

−1
.

Equivariance as an unsupervised registration loss As the network R
registers all input images to the reference coordinate system, it should be affine
equivariant. Indeed, for any input image I and transform B, the network should
reposition I ◦ B in the reference coordinate system: (I ◦ B) ◦ R(I ◦ B) should
always be registered. As (I ◦B) ◦R(I ◦B) = I ◦ (B ◦R(I ◦B)) = I ◦R(I), this
means that for any image I and transform B, we should have:

B ◦R(I ◦B) = R(I). (1)

This is a very strong structural prior of the task to solve, that is traditionally
not enforced when learning registration networks. To enforce this property, for
each image I of the training dataset, we draw a random affine transform B, and
use the following equivariance loss:

Lequiv = ∥B ◦R(I ◦B)−R(I)∥2 (2)

where the norm can by any matrix norm. Note that this is similar to the cycle
consistency loss used in [12] for pairwise registration where their affine matrix is
fitted from a correlation matrix.

The loss in eq. 2 itself is not sufficient to train the network. First, at no point
so far, the reference coordinate system was specified: at an extreme limit, equiv-
ariance could be enforced for each image independently. Second, an identically
null network R will satisfy eq. 1: some sort of regularization is required.
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Regularization loss The regularization aims at discarding unrealistic affine
transforms from the output of the neural network while retaining potentially
large possible transforms. This loss Lreg is composed of two terms:

Lsize = relu

(
1

K
− σ

)
+ relu(σ −K) (3)

where σ are the singular values of the affine matrix predicted by the network
and K is a scale hyperparameter and

Lanis = ∥log(σmin)− log(σmax)∥2 (4)

where σmin and σmax are respectively the minimal and maximal singular value.
The first term penalizes extreme size variations, the second term aims to avoid
a too strong anisotropy. Translation or rotation are not penalized.

Reference loss We consider the unique reference image of the training dataset
Iref : R(Iref) = Id. For any affine transform B, eq. 1 becomes B ◦R(Iref ◦B) = Id.
Our reference loss is then (with any matrix norm):

Lref = ∥B ◦R(I ◦B)− Id∥2, (5)

where B is an affine transform randomly drawn during training.

One point is noticeable in our framework: at no point we need to compare
pairs of images during the training. The reference image is fed through the
network independently of all other images of the training dataset. No comparison
is done between the warped image and the reference with a dissimilarity loss.
No fit, that may potentially fail in some cases, need to be done between some
sort of features of the moving and fixed images.

2.2 Increasing the Registration Range

Difference of field of view between the fixed and the moving images is a common
registration failure reason. In order to increase the range of transformations
our network is able to register, we propose a two-step training procedure. The
network is first trained using our unsupervised framework on an unregistered
training images that required moderate transformations to be registered. Once
convergence is reached, this network is used to replace all the training images in
the reference space. As all images are now registered, the network can then be
trained using the loss Lref with large affine parameters range on all the images
of the training dataset. In the following, this training procedure will be referred
as ”two steps” method in opposition to the ”one step” method without the
supervised training with self registered images.
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D0 Dtrans Dshear Dscale D1

Translation ±10 pixels ±54 pixels ±10 pixels ±10 pixels ±54 pixels

Rotation ± π ± π ± π ± π ± π

Shearing ±10% ±10% ±50% ±10% ±50%

Scaling ±10% ±10% ±10% ±50% ±50%

Table 1: Affine transformation parameters range

3 Experiments

3.1 Material & Methods

Image Data The development of the algorithms was made using T2 brain im-
ages of the HCP database (www.humanconnectome.org/study/hcp-young-adult)
that we split into 500 training subjects, 100 validation subjects, and 500 testing
subjects. HCP images are provided registered together, we resample them to the
2mm T1 MNI atlas that we used as the Iref image. To simplify and shorten the
development, the middle axial slice was extracted, resulting in a dataset of 2D
109x91 registered brain MRIs but nothing in the method limits its application
to 3D images.

Evaluation protocol To mimic an unregistered dataset, a random affine trans-
formation is applied to each image before it goes into the network. The said
transformation is considered unknown during the training phase but known for
the evaluation reporting. It also allows to control the transformation range for
the unsupervised training phase described in 2.2. That transformation can be
defined as the combination of four operations : translation, rotation, shearing
and scaling. Several sets of hyperparameters ranges are considered in the ex-
periments and are presented in table 1. Note that the ”easy” parameter range
D0 includes a full range of rotation.

During the testing phase, we apply to the registered images Itest a random
affine transformation T ′ with a given parameters range of table 1. As the ideal
affine registration is the inverse of the random transform used to unregister the
images, the following metrics are used for a transform T given by the network:

Materr = ∥T ◦ T ′ − Id∥2 and θ = arccos
tr(T ◦ T ′)

2
. (6)

Robustness of the method is measured with θt defined as the percentage of
images with a rotation error θ greater than t.

Implementation details The code is written in Pytorch/Monai. In our exper-
iments, the network is implemented using the Monai class Regressor with six
residual convolutional layers with respectively 8,16,32,64,128 and 256 channels.
The convolution kernel sizes are 3x3 with the stride set to 1 for the first layer
and set to 2 for the other layers. A PRELU is used after each convolutional layer.
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Loss Materr θ90 θ45
Lequiv 1.68± 0.14 50.49 100.00

Lequiv +Lsize +Lanis 2.18± 0.12 35.36 100.00

Lequiv +Lsize +Lanis +MI 2.56± 0.12 99.84 100.00

Lequiv +Lref 1.66± 0.13 33.39 100.00

Lequiv +Lref +Lsize 0.45 ± 0.29 0.00 0.00

Lequiv +Lref +Lsize +Lanis 0.45 ± 0.27 0.00 0.00

Lequiv +Lref +Lsize +Lanis +MI 0.39 ± 0.26 0.00 0.00

MI 3.63± 1.08 50.55 100.00

FSL flirt - MI 2.58± 1.21 49.22 98.08

supervized - Lref 0.32 ± 0.22 0.00 0.00

Table 2: Ablation study on the losses of our unsupervised one step method and
comparison to state of the art on the D0 parameters range.

The output consists in the six coefficients of the affine transformation matrix.
Note that the training is not sensitive to the hyperparameters K of Lreg: a value
of K = 4 is sufficient to train the network and a scale change of 4 is already a
huge global scale change between two subjects. Two matrix norms are evaluated
for Lref : the Froboenius norm (Frob) and the norm ∥A∥ =

∑
i∥Axi∥ where xi

are uniformely sampled in the image (denoted as Grid). A 3x3 grid is used here.

3.2 Results & Discussion

Ablation study using D0 for the one step method An ablation study
was carried out to assess the importance of each loss in our one step method.
Evaluation metrics for different setups are presented in table 2 using D0 as the
affine parameters range for train and test. One can see that the combination of
our three losses Lref , Lreg and Lequiv is essential for our method to be robust.
If one of these losses is missing, the rotation error θ45 will be higher than 93%
and the use of MI does not help. When our three losses are used, θ45 drops
to zero. One can also notice the very low value of Materr and that adding MI
to our three losses does help here for the D0 range of affine parameters. As a
upper bound on the performance that can be achieved, a comparison was made
with a model (supervized - Lref trained with the Lref loss used for all images
(all registered) in the training dataset . Robustness error is null for this model.
One can notice that Materr is the lowest for this model but our unsupervised
model achieves a Materr error that is not too high compared to this upper bound
model. Our results have also been compared to an unsupervised model trained
only with the MI loss between the warped image and Iref and to FSL - flirt [6].
As D0 includes the full range of possible rotations, these two methods have a
large rotation error. Indeed, due to the symmetry in brain images, the MI loss is
not able to correctly handle large rotation. Despite this symmetry obstacle, our
unsupervised method correctly register images with a full range of rotation.
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Range
Materr θ90 θ45Lref Lequiv

D0 D0 0.41± 0.27 0.00 0.00

Dshear Dshear 1.29± 0.68 0.00 0.00

Dtrans Dtrans 2.96± 1.70 49.51 84.70

Dscale Dscale 3.27± 0.58 83.39 83.39

D1 D0 20.33± 17.11 7.89 44.08

D0 D1 11.71± 6.06 46.71 86.68

D1 D1 12.08± 5.70 41.78 81.10

Table 3: Influence of the affine parameter range of the B matrix on our method

Method Materr θ90 θ45
One step 12.08± 5.70 41.78 81.10

Two steps - MI 10.28± 5.59 38.98 56.09

Two steps - Frob. 1.88 ± 0.90 0.49 8.55

Two steps - Grid 3.69± 3.54 0.00 1.32

Two step - Frob - w. occ 4.55± 4.68 3.78 18.91

Two step - Grid - w. occ 3.79 ± 3.67 0.00 1.64

Table 4: Large affine transform registration: comparison with D1 parameter
range of our unsupervised one step method and our two steps method with
differents losses in the second step, with and without occlusions.

Robustsness to large affine parameters ranges To evaluate the ability of
our unsupervised method to register images with large affine transforms, our
model with our three losses (without MI) was trained with several affine pa-
rameter ranges for Lref and Lequiv. Results are presented in table 3. As already
noticed, despite D0 includes the full range of possible rotations, our method is
able to correctly find the correct transform with no rotation error and a low
Materr. Our method is also robust to large shear although Materr is higher in
this case. One can also note that our method is more robust to an increase in
range for the Lref loss than for the Lequiv loss. This last point could be expected
as Lref is a supervised loss (but with only a single image). As a conclusion, al-
though it is remarkable that a regular training of the network with Lequiv, Lref

and Lreg enables to obtain a robust template registration for large shear and
rotation, it is not sufficient for general large affine transform and the training
procedure of section 2.2 should be used.

Large transform registration with the two steps training In table 4, a
comparison of our one step and our two steps method is presented. The D0 pa-
rameter range was used for the first step, D1 was used for the second step and
the evaluation. For the second step, the Lref loss was implemented using either
the Frob. or the Grid norm. A two steps method with MI in the second step was
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Fig. 2: Large affine transform registration: comparison with D1 parameter range
of our unsupervised one step method and our two steps method with differents
losses in the second step. Results with / without occlusions.

also evaluated. Large occlusions were also added during train and test to test
the robustness to abnormalities.

One can see that both ”one step” and ”two steps with MI” are unable to
correctly register the images for the D1 range of affine parameters. In contrast,
the robustness error drops considerably for our two steps approaches with both
Frob. or Grid matrix norm. Note that although Materr is lower for Frob, both
θ45 and θ90 are lower with Grid. Superiority of Grid for the training is confirmed
by visual inspection: one can clearly see in fig. 2, that ”two steps - Grid” is the
only method that correctly realign the images in the reference coordinate system
despite the large initial misalignment, even for the extreme case where a large
part of the image is cropped. Note that the superiority of Grid over Frob was also
reported in [3] for homography estimation. Finally, one can see using both the
quantitative metrics and the visual inspection, that the two steps procedure with
the Grid norm is able to correctly register images when both large abnormalities
are present on the image and the affine transform is very large.
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4 Conclusion

In this paper, we proposed an unsupervised image registration method to train
a network that directly outputs the affine transform of an image to an atlas. Our
method does not rely on dissimilarity metrics but on three losses that enforce
prior on the registration tasks: equivariance, invertibility of the output and the
positioning of a unique given template. This simple method is able to robustly
register when full range of rotation and large shear are present. For large trans-
lation, large scale change, a two steps training procedure is used to enlarge the
range of affine matrixes that can be estimated to the most extreme cases. Nu-
merical evaluation shows the robustness of our approach even in the presence of
large crops or occlusions. In a future work, we plan to extend our approach to
the deformable registration case.
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