

Evaluation of in-situ TSS removal efficiency of a decentralized stormwater treatment system by means of continuous measurements

Sandoval S., Spahni B., Favre F.

INTRODUCTION

Sewer system

Flow rate Q [m³/s]

Total Suspended Solids *TSS* load [Kg]

To the outlet...

Retention basins, WWTP, urban rivers (CSO)....

Pollution source control?

INTRODUCTION

Sedimentation pipe (SEDIPIPE)

Sedimentation path

INTRODUCTION

System installed in-situ

Laboratory conditions

Total Suspended Solids removal efficiency over a extended period (one year)?

Study case: city of Lausanne, Switzerland

- Total impervious surface : 4000 m² (including roofs and private areas)
- Separate system
- **18000** vehicles/day (heavy vehicles 3.5% to 4%)

In situ monitoring of the system

Online sensors:

- Water depth (radar sensors) → Flow Rate
- **Turbidimeters** → Total Suspended Solids
- **1 min** time step recorded data

Automated sampler:

- **24 bottles** peristatic sampler
- **Volume-based** sampling strategy

one year (June 2021 to August 2022) \rightarrow 169 events

Turbidity signals → **Total Suspended Solids time series**

Filtering turbidity time series [NTU]

169 events

Calibration function : TSS = f(Turb)

TSS concentration time series [mg/L]

Turbidity signals → **Total Suspended Solids time series**

TSS concentration time

series [mg/L]

Global Removal Efficiency: $\eta_{global} = 1 - \frac{\sum TSS \ Load_{inlet}(t) \cdot \Delta t}{\sum TSS \ Load_{oulet}(t) \cdot \Delta t}$

Event-based analyses

TSS load_{inlet} [g/min]

TSS load_{outlet} [g/min]

Flow Rate [L/s]

Event-Based Removal Efficiency: $\eta_{ev} = 1 - \frac{\sum TSS\ Load_{inlet}(Ev) \cdot \Delta t}{\sum TSS\ Load_{oulet}(Ev) \cdot \Delta t}$

RESULTS AND DISCUSSION

Global analyses

η_{global} laboratory = 75 %

Global removal efficiency remarkably lower *in-situ* (23 %) → manufacturer's guide (75 %)

RESULTS AND DISCUSSION

Event-based analyses

Event based removal efficiencies η_{ev} -> no correlation with ADWP, rainfall intensity, duration or total volumes

Higer variability for smaller events -> Possible local resuspension

CONCLUSIONS AND PERSPECTIVES

- **Significant differences** between **Removal Efficiency** estimated *in-situ*, compared to manufacturer's guide (lab. conditions)
- Higher variability of event-based removal efficiencies for smaller rainfall events, including negative values → suggesting local resuspension for smaller events
- No further link between the event-based removal efficiencies with rainfall characteristics
- Potential of online monitoring of TSS to verify the in-situ performance and better understand decentralized stormwater treatment systems.

THANK YOU!