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Abstract

Object detection is an important task becoming in-
creasingly common in numerous applications for em-
bedded systems. The traditional state-of-the-art deep
neural networks (DNNs) tend to be incompatible with
the limitations of many of those systems: their large
size and high computational cost make them hard to
deploy on hardware with limited resources. Spiking
Neural Networks (SNNs) have been attracting atten-
tion in recent years because of their potential as energy-
efficient alternatives when implemented on specialized
hardware, and their smooth integration with energy-
efficient event cameras. In this paper, we present a
lightweight SNN architecture for efficient object detec-
tion in embedded systems using event camera data. We
show that by applying visual attention mechanisms, we
can ignore most of the noise from the input and thus
reduce the number of neurons and activations since ad-
ditional noise-filtering layers are not needed. Our pro-
posed SNN is 24 times smaller than a previous similar
method for our input resolution and maintains similar
overall detection performances, while being more robust
to noise. We finally demonstrate the energy efficiency
of our network during runtime with an implementation
on SpiNNaker chip, showing the applicability of our ap-
proach.

1 Introduction

Since their introduction, event cameras have gained
popularity thanks to the way these bio-inspired devices
process visual information [7]. Rather than capturing
entire frames of images at fixed intervals, event cam-
eras produce asynchronous events: time-stamped pixel-
level and independent brightness changes. Overall, the
unique characteristics of the captured event-based data
such as a high temporal solution, robustness to motion
blur, asynchronous operation and low-power consump-

tion are especially valuable for embedded computer vi-
sion tasks [16].

The asynchronous, binary nature of the data pro-
duced by those cameras also makes them a perfect fit
for spiking neural networks (SNNs). For the same rea-
sons event cameras saw increased interest in the past
few years, neuromorphic computing with SNNs is be-
coming an attractive energy-efficient, low-latency op-
tion to process information. Those networks operate
using time-based processing, similarly to how biolog-
ical neurons communicate through spikes, and have
been applied to a variety of different visual tasks such
as image classification [5], gesture recognition [2], and
more recently object recognition [3]. Communication
through spikes also makes the output of neurons undif-
ferentiable: derivative of the neurons cannot be com-
puted, and regular gradient descent is thus impossible
to train SNNs. Various methods for error backpropa-
gation in SNNs have been proposed [15] [13], but these
tend to suffer from slow convergence and inherit limita-
tions similar to those found in conventional ANNs, such
as the unidirectional flow of information through net-
work layers. Another axis of research for SNN aims at
using bio-inspired unsupervised learning mechanisms,
such as STDP[10]. Networks produced by those meth-
ods are typically smaller in size, and are not subject
to the same limitation as regular artificial neural net-
works.

Unlike traditional approaches that require pre-
training the neural network, the methodology pre-
sented in this paper does not involve a separate training
phase. Instead, synaptic weights are dynamically ad-
justed during inference, in a manner similar to what
is described by Gruel et al. [9]. These authors intro-
duced various attentional mechanisms, enabling their
network to focus solely on specific areas of the input.
By preprocessing their data with this attentional net-
work, they were able to maintain high classifier accu-
racy despite a drastically reduced number of events in



their samples, indicating the network’s ability to select
crucial information. Originally proposed as a way to
preprocess event data in order to only select crucial in-
formation, these attentional mechanisms have not yet
been explored within the realm of object detection.

In our implementation, visual attention allows our
network to focus on specific parts of the data coming
from an event camera. This allows to ignore a lot of
noise, which removes the need for an additional refrac-
tory layer, as described by Acharya et al. [1] in a similar
use-case. Regular hardware architectures aren’t well
suited for the simulation of SNNs due to their inabil-
ity to compute sparsely and asynchronously. Instead,
different neuromorphic systems [11] should be used to
better exploit SNNs’s potential. We show actual time
and energy consumption measurements with an imple-
mentation on a SpiNNaker neuromorphic chip [12] to
prove the applicability of our approach.

2 Material and method

We implemented our network using the PyNN
framework [4]. Fig. 2 shows the global architecture
of our network.

2.1 Dataset description

Compared to a previous similar work [1] that used
data recorded at a single traffic junction, we used mul-
tiple recordings in both interior and exterior scenes.
Objects captured are pedestrians, using a Prophesee
Gen 3 of resolution 640 × 480. Whereas some inte-
rior and simple exterior recordings involve relatively
low amounts of noise, other exterior recordings in front
of busy supermarkets feature large quantities of noise
over the whole sensor.

The events produced by the camera are tuples in the
form ei = (xi, yi, pi, ti), where xi and yi are the spatial
coordinates of the event on the sensor, pi is the polarity
change with pi = {0, 1}, and ti the time of the event
in µs. From this event representation, an implemen-
tation of Firenet [14] was used to generate grayscale
video frames that were then annotated by hand with
the bounding boxes of each pedestrian. Fig. 1 shows
some examples from our dataset.

2.2 Event data processing

Before sending the events to our network, we first
apply spatial funnelling in order to downscale the video
resolution by a factor of 8. As presented in [8], spatial
funnelling is a simple and fast downscaling method,
where the spatial coordinates of incoming events are
divided by a factor in order to make them fit into a
smaller window of a target size. The polarities of the
downscaled events are then merged and directly used as
input spikes for our network, which results in a down-
scaled input window of size 80× 60.

2.3 Input layer

The input spikes are then fed to a convolution that
further downscales the input. The convolution uses a
kernel of size S×S with a stride of S to create patches
without overlap over the input window. In our experi-
ments, we chose S = 5, resulting in 16× 12 individual
patches. These patches of input spikes are sent to the
next layer, with each patch connected to one neuron
via excitatory synapses, in a manner similar to the ROI
layer described by Gruel et al. [9]. It should be men-
tioned that no Leaky-Integrate-and-Fire (LIF) neurons
have to be simulated on SpiNNaker here: we are merely
making a convolution over the input window which is
simply a spike source without membrane dynamics.

2.4 ROI layer

Our regions of interest (ROI) layer is composed of
simple LIF neurons, whose membrane potential evolves
following the differential equation Eq 1:

τm
dV

dt
= −(V − Vrest) +RI (1)

with V the membrane potential of the neuron, Vreset

its resting potential, I the neuron’s input, R the mem-
brane resistance, and τm the membrane time constant
governing the speed at which potential will leak. Ta-
ble. 1 shows the neuron parameters used.

Each neuron is connected to a single square patch
from the input, thus having a S × S receptive field
over the input window. Both lateral excitation and in-
hibition mechanisms are used respectively in order to
create smoother areas of activation and to force the
layer activity on specific parts of the input. Each neu-
ron is connected to its neighbourhood via excitatory
synapses as described by Acharya et al. [1], in addition
to being connected to all other neurons via exponential
inhibitory connections as described by Gruel et al. [9]
and by Eq 2:

winhib = min(
ed

w × h
,wmax) (2)

where the weight of the inhibitory connection winhib is
modulated by the Euclidean distance d between neu-
rons on the layer. From Eq. 2, we can see that the
farther apart two neurons are on the RoI layer, the
stronger their inhibition towards each other. These in-
hibitory lateral connections limit the amount of activ-
ity in this layer: the more neurons get activated, the
harder it will become for other neurons to fire. Dy-
namic adaptive weights are also used to further advan-
tage parts of the input window with a lot of activity.

Type τm Vthreshold Vreset Vrest τrefraction
LIF 2.5ms -25mV -100mV -65mV 4.0ms

Table 1. RoI neurons parameters.



Figure 1. Examples from our dataset. Yellow squares indicate pedestrians bounding boxes.

The weights of synapses that have recently fired are in-
creased, whereas the weights of synapses that are not
used are decreased. Active areas will then trigger more
lateral inhibition, and thus out-compete parts of the
input with less consistent activity, such as noise. Ad-
ditional noise-filtering layers such as the one described
by Acharya et al [1] are then not needed.

This final layer features an extremely low neuron
count (192 neurons for our input resolution) as it
comes after two distinct downscaling phases (spatial
funnelling and convolution).

2.5 Clustering

To detect objects on screen and create their bound-
ing boxes, we aggregate the spikes of the final ROI
layer over a fixed period of time. Since each neuron in
the ROI layer corresponds to a patch of size S × S on
the input, we can map their activation to the detection
of objects over different parts of the input window.
Patches whose corresponding neurons spiked enough
times are considered to contain an object. Adjacent
activated patches are finally grouped together to form
bounding boxes.

3 Performance comparison

For comparison, we will focus on two other different
approaches: Hynna’s detection system [16] that simply
applies a connected component labelling algorithm over
the input events, and is meant for object detection in
a similar use-case; and another SNN called RPN-SNN
that follows the work of Acharya et al. [1]. This lat-
ter network is closer to our approach, but does not use
the presented visual attention mechanisms, and instead
features an additional refractory layer of the same size
as the input window to filter out the noise. For the
presented approaches, we measured precision and re-
call based on Intersection over Union (IoU) between
predicted and ground-truth bounding boxes. One pre-
dicted bounding box can match one or several ground-
truth bounding boxes as long as the IoU is over an ar-
bitrary threshold. Tab. 2 presents overall precision and
recall of all approaches over the entire dataset. While
this table alone suggests that our approach performs

similarly to the one described by Acharya et al. [1],
these results do not differentiate performances in low
and high noise conditions. To better evaluate if the at-
tention mechanisms we presented are able to efficiently
filter out noise, we evaluated each video of our dataset
separately and measured the noise ratio of each video
with the formula of Eq 3.

Noise ratio =

∑
Events outside GT bounding boxes∑

Events
(3)

The closer to 1 the noise ratio is, the moise is present
on the video. Figure 3 presents performances relative
to this ratio of noise. We can observe in Figure 3 that
RPN-SNN [1] performs best in relatively low-noise con-
ditions: a ratio in [0, 0.4] yields better results than our
approach. For higher noise values however, our net-
works greatly surpass RPN-SNN both in terms of pre-
cision and recall.

4 Network analysis and implementation on
neuromorphic hardware

Tab. 3 presents a size comparison between our net-
work and the RPN-SNN from Acharya et al. [1], and
the mean spike count for both networks for 150ms seg-
ments of videos with an 80×60 input window (640×480
input downscaled by a factor 8). We can see our net-
work uses 26 times fewer neurons and approximately
4.3 times more synapses while producing almost 10
times less spikes. This trade-off is explained by the
fact that we do not use an additional refractory layer
to filter-out noise, and instead rely on visual attention
mechanisms to ignore it, which requires fewer neurons
and more synapses. A lower number of neurons and
spike count, as shown in Tab. 3, should theoretically
lead to lower energy needs : neurons needs to have

Method Precision Recall F1
Hynna’s detection [16] 0.252 0.896 0.393

RPN-SNN [1] 0.513 0.752 0.610
Ours 0.550 0.739 0.631

Table 2. Recall, accuracy, and F1 score of com-
pared methods over the whole dataset.



Figure 2. Network architecture.

Figure 3. Mean precision-recall comparison in different noise ratio intervals.

Model Neurons Synapses Mean spikes
RPN-SNN [1] 4992 10972 7092.6

Ours 192 47644 750.5

Table 3. Size and mean spike counts comparison
for an 640× 480 input downscaled to 80× 60.

their potential constantly updated whereas synapses
are only used sparsely during the propagation of a
spike. To validate this assumption, we will now present
measurements directly taken on a neuromorphic hard-
ware implementation of the presented networks.

We chose to implement our model on SpiNNaker [6]
to better assess the cost of our approach. The very
small size of our network largely allowed it to fit on
the small 4-chip SpiNN-3 board which can simulate up
to 18K neurons. Tab. 4 presents energy consumption
measurements for the different processes of simulation
for a 150ms video segment that have been slowed down
by a factor 10 as the SpiNN-3 could not keep-up with
the flow of events.

Process Our network RPN-SNN[1]
Chips during runtime
(continuous cost)

22.3J 22.7J

Loading+mapping model
(one-time cost)

49.01J 36.76J

Table 4. Energy used by the SpiNNaker imple-
mentation. The video have been slowed 10 folds
to allow the SpiNN-3 to process every event.

It should be stressed that the values from Tab. 4

are only meant to provide approximate energy mea-
surements for the sake of comparison. Still, from this
last table we can see that though our higher number of
synapses increases the cost of building and loading the
model, our lower neuron count leads to a lower energy
consumption by the chips during runtime.

5 Conclusion

This paper presented a neuromorphic architecture
for object detection for embedded systems that lever-
ages bio-inspired visual attention mechanisms in order
to ignore the noise from the input. Using these mech-
anisms allowed our model to largely surpass the per-
formances of the detection system of Hynna [16], and
showed to be more robust to noise than a previous sim-
ilar SNN model [1], despite the smaller size of our net-
work. We also presented preliminary measurements on
neuromorphic hardware to better assess the cost of our
approach and its applicability potential. Our contri-
bution is thus two-fold: we both propose a low-energy
neuromorphic detection system with actual hardware
cost assessment, and further demonstrate how newly
theorized bio-inspired visual attention mechanisms can
be used to improve other approaches.
Given the small size of our network, one extension of
this work would be to integrate it into a larger ob-
ject detection and classification architecture. A small
end-to-end neuromorphic solution for this task could
be beneficial to numerous embedded applications.
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[4] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow,
E. Muller, D. Pecevski, L. Perrinet, and P. Yger. Pynn:
a common interface for neuronal network simulators.
Frontiers in neuroinformatics, page 11, 2009.

[5] P. U. Diehl and M. Cook. Unsupervised learning of
digit recognition using spike-timing-dependent plastic-
ity. Frontiers in computational neuroscience, 9:99, 2015.

[6] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside,
E. Painkras, S. Temple, and A. D. Brown. Overview of
the spinnaker system architecture. IEEE transactions
on computers, 62(12):2454–2467, 2012.

[7] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi,
B. Taba, A. Censi, S. Leutenegger, A. J. Davison,
J. Conradt, K. Daniilidis, and D. Scaramuzza. Event-
based vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(1):154–180, 2022.

[8] A. Gruel, J. Martinet, T. Serrano-Gotarredona, and
B. Linares-Barranco. Event data downscaling for em-
bedded computer vision. In 17th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISAPP),

2022.
[9] A. Gruel, A. Vitale, J. Martinet, and M. Magno. Neu-

romorphic event-based spatio-temporal attention us-
ing adaptive mechanisms. In 2022 IEEE 4th Inter-
national Conference on Artificial Intelligence Circuits
and Systems (AICAS), pages 379–382. IEEE, 2022.

[10] S. Huang, C. Rozas, M. Trevino, J. Contreras, S. Yang,
L. Song, T. Yoshioka, H.-K. Lee, and A. Kirkwood.
Associative hebbian synaptic plasticity in primate vi-
sual cortex. Journal of Neuroscience, 34(22):7575–
7579, 2014.

[11] D. Ivanov, A. Chezhegov, M. Kiselev, A. Grunin, and
D. Larionov. Neuromorphic artificial intelligence sys-
tems. Frontiers in Neuroscience, 16:1513, 2022.

[12] C. Mayr, S. Hoeppner, and S. Furber. Spinnaker 2: A
10 million core processor system for brain simulation
and machine learning. arXiv preprint arXiv:1911.02385,
2019.

[13] E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate
gradient learning in spiking neural networks: Bringing
the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine,
36(6):51–63, 2019.

[14] C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. Ma-
hony, and D. Scaramuzza. Fast image reconstruction
with an event camera. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 156–163, 2020.

[15] S. B. Shrestha and G. Orchard. Slayer: Spike layer
error reassignment in time. Advances in neural infor-
mation processing systems, 31, 2018.

[16] D. Singla, S. Chatterjee, L. Ramapantulu, A. Ussa,
B. Ramesh, and A. Basu. Hynna: Improved perfor-
mance for neuromorphic vision sensor based surveil-
lance using hybrid neural network architecture. In
2020 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–5. IEEE, 2020.


