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Similarity solutions in elastohydrodynamic bouncing

We investigate theoretically and numerically the impact of an elastic sphere on a rigid wall in a viscous fluid. Our focus is on the dynamics of the contact, employing the soft lubrication model in which the sphere is separated from the wall by a thin liquid film. In the limit of large sphere inertia, the sphere bounces and the dynamics is close to the Hertz theory. Remarkably, the film thickness separating the sphere from the wall exhibits non-trivial self-similar properties that vary during the spreading and retraction phases. Leveraging these self-similar properties, we establish the energy budget and predict the coefficient of restitution for the sphere. The general framework derived here opens many perspectives to study the lubrication film in impact problems.

I. INTRODUCTION

The impact or collision of a spherical object on a surface is a problem that has been of great interest for decades. Typical examples can be found at various length scales ranging from asteroid impact [1], drop impact [2], ball sports [3], collision in granular media [START_REF] Andreotti | Granular media: between fluid and solid[END_REF] or suspensions, or more commonly children playing with rubber bouncing balls. Of particular interest is the restitution coefficient, defined as the ratio between the bouncing speed V ∞ and the impact speed V 0 . An elastic collision corresponds to the case of a bouncing speed equal to the impact speed, without any loss of energy. In real impact, various effects of the solid tend to decrease the restitution coefficient at large velocity [START_REF] Johnson | Contact mechanics[END_REF] such as viscoelasticity [START_REF] Falcon | [END_REF]7], plastic deformations [8,9], or sphere vibrations [10][11][12]. On top of these, viscous dissipation is predominant when the impact occurs in liquid environments, for instance in particle-laden flows [13], which has a large variety of industrial and natural applications. Most numerical models of such flows use a point-particle approximation or immersed boundary and do not resolve the flow in the lubrication layer upon collision. Instead, empirical collision laws are implemented when particles start overlapping [14,15]. In this article, we aim at describing particle collisions, focusing on the canonical problem of a soft elastic sphere impacting a rigid surface in a viscous liquid.

Several experimental studies have been devoted to the individual rebound of a particle on a surface, either immersed in a liquid [16,17], or with a thin oil layer lubricating the surfaces [18][19][20]. Head-on and oblique particle-particle collisions have also been investigated and follow a similar phenomenology [21,22]. The restitution coefficient increases with increasing velocity, as the contact time decreases and the viscous friction dissipates less energy (see Fig. 1(b)). Remarkably, for a large variety of sphere sizes, material properties and fluid viscosities, the restitution coefficients collapse when plotted versus the Stokes number St = mV 0 /(6πηR 2 ), where m, V 0 , η and R are the sphere mass, impact velocity, viscosity and sphere radius. The Stokes number needs to exceed a critical number, which is of order of 10, for bouncing to occur. Then, the restitution coefficient increases and reaches asympotically unity when the Stokes number is ∼ 1000. An empirical expression V ∞ /V 0 = exp(-35/St) has been shown to describe fairly well the experimental data over the entire range [23], and is motivated by an analogy with a damped spring-mass model.

The bouncing dynamics is mainly modeled in two ways. First, reduced linear damped mass-spring models have been introduced [23]. The non-linearities of the contact elasticity [24] and gravitational effects [START_REF] Falcon | [END_REF] have also been taken into account. The second kind of models described the morphology of the lubrication layer upon contact. Davis et al. were the first ones to derive an elastohydrodynamic lubrication model, which describes the intricate coupling between the thin liquid film and elastic deformations, when particles move near soft interfaces [25]. The lubrication forces prevent the direct contact between the sphere and the rigid surface, such that a thin liquid film always separates the two surfaces. These models allow for a prediction of the critical bouncing Stokes number, that typically takes the form ln(H/δ), where H is the initial separation distance and δ is a cut-off length. The cut-off length is an elastohydrodynamic length for smooth surfaces, or the typical roughness for rough surfaces [19,26]. Piezoviscous and compressible effects, which play an important role in lubricants, have also been discussed [27][28][29]. We also point out that the elastohydodynamic coupling gives rise to a very rich phenomenology for particle sliding and rotating near soft interfaces [30].

The morphology of the lubrication layer during the contact has rarely been addressed [31]. The central film thickness has been identified to scale as St -1/2 in the Ref. [29], suggesting the presence of self-similar solutions. We present [17], in the numerical simulations and predicted by the asymptotic theory of (29).

in this article a detailed numerical and asymptotic analysis of the elastohydrodynamic bouncing. The structure of the lubrication layer during the impact dynamics is derived through self-similar solutions. Furthermore, the energy budget allows to find an asymptotic expression of the restitution coefficient at large Stokes number.

II. SOFT LUBRICATION MODEL

A. Formulation

We briefly recall here the soft lubrication model, already employed to model the bouncing of sphere of radius R and mass m on a rigid planar surface [25,29,32]. The center of mass vertical position of the sphere, shifted by one radius, is denoted D(t) (see Fig. 1 (a)). We suppose that the sphere is submerged in a viscous fluid of viscosity η. Using Newton second's law, the sphere dynamical equation is m V = F , where F is the hydrodynamic force acting on the particle, and V = Ḋ its vertical velocity. We focus here on the bouncing, such that the sphere is close enough to the surface to use the lubrication approximation. Therefore, the flow in the liquid gap is a parabolic Poiseuille flow and the liquid film thickness h(r, t) follows the thin-film equation

∂h ∂t = 1 12ηr ∂ ∂r rh 3 ∂p ∂r , (1) 
where p is the pressure field. In this limit, the hydrodynamic drag mainly comes from the thin-film region and follows as F = ∞ 0 p 2πrdr. Similarly, close enough to the apex, the underformed spherical particle can be modeled with a parabolic approximation such that the liquid gap can be written as

h(r, t) = D(t) + r 2 2R -w(r, t), (2) 
where w(r, t) represents the elastic deformations (see Fig. 1 (a)). The latter are modeled by using the linear elasticity theory and are related to the pressure field with a convolution integral involving the elastic Green's function.

Integrating the convolution integral in the azimuthal direction leads to the integral relation [25] w

(r, t) = - 4 πE * ∞ 0 M(r, x)p(x, t) dx, M(r, x) = x r + x K 4rx (r + x) 2 , (3) 
where

E * = E/(1 -ν 2 )
is the plane strain elastic modulus with E and ν the Young's modulus and Poisson ratio respectively. The function K is the complete elliptic integral of the first kind. We introduce the typical sphere elastic deformation length D 0 during the contact,

D 0 = mV 2 0 E * √ R 2/5 , (4) 
obtained by balancing the kinetic energy mV 2 0 with the Hertz elastic energy E * √ RD 5/2 0 (see below). Equations ( 1)-( 3) are made dimensionless, by using the scales of the Hertz theory, respectively D 0 ,

√ RD 0 , D 0 /V 0 , p 0 = 2E * D 0 /R/π
and F 0 = p 0 RD 0 as vertical/radial length, time, pressure and force scales, as detailed in Appendix A. We then solved numerically the resulting equations using the finite-difference scheme proposed in Ref. [33], as discussed in Appendix B. As an initial condition, we suppose that the sphere position is at an altitude D 0 with a downward velocity V 0 . A single dimensionless number characterizes the bouncing dynamics, which is the Stokes number

St = mV 0 6πηR 2 , (5) 
and quantifies the amount of viscous dissipation. Interestingly, the Stokes number is independent of the elastic properties of the sphere, which are accounted for in the dimensionalization. The Stokes number can be interpreted as the ratio between the viscous dissipation time scale mD 0 /(6πηR 2 ) to the bouncing time scale D 0 /V 0 . For small Stokes number, or dissipation time smaller than the bouncing time, the sphere does not bounce and the entire initial kinetic energy is dissipated before contact. The critical Stokes number for bouncing to occur depends slightly on the initial altitude and is typically of the order of 10 [25] (see Fig. 1 (b)). In this article, we rather focus on the intermediate to large Stokes number regime, when the sphere bounces with a non-zero speed.

In the following sections, we will find various asymptotic similarity solutions for the film thickness, each with a specific scale different from the typical deformation D 0 (see ( 4)). For the sake of clarity, we will use dimensional variables in what follows to avoid the multiplication of notations. We shall notice that in the infinite Stokes limit, the elastohydrodynamic model converges toward the elastic collision, where the bouncing velocity is equal to the impact velocity, as discussed in the next subsection.

III. IMPACT DYNAMICS

A. Dry limit, St → ∞: Hertz theory

In the absence of any surrounding fluid, or for St → ∞, an exact solution of the elastic bouncing dynamics has been introduced previously [START_REF] Johnson | Contact mechanics[END_REF]34]. The force acting on the sphere is zero as long as the sphere is out of contact, i.e. D > 0. During the contact phase, the force follows the Hertz theory 4E * R 1/2 δ 3/2 /3, where we introduce δ = -D as the (positive) indentation. Injecting this expression in the sphere dynamical equation, the indentation follows the ordinary differential equation

m δ = - 4E * 3 R 1/2 δ 3/2 , for δ > 0, (6) 
which corresponds to a nonlinear mass-spring equation, where the spring stiffness increases with the indentation as √ δ. An exact solution of (6) can be expressed in the form of an implicit equation

δ/D0 0 dx 1 -16 15 x 5/2 = 2 F 1 2 5 , 1 2 ; 7 5 
; 16(δ/D 0 ) 5/2 15 δ D 0 = V 0 t D 0 , (7) 
where 2 F 1 is the Hypergeometric function. We notice that the equivalent dynamical law for a linear spring model is arcsin(δ/D 0 ) = V 0 t/D 0 , solution of (7) if one replaces 16/15x 5/2 by x 2 in the integral. The shape of ( 7) is fairly similar to the usual sinusoidal law for harmonic oscillators. Furthermore, the Hertz theory predicts that the pressure and film thickness profiles are piecewise-defined functions that read

h Hz (r, t) = 0, r < a(t), -δ(t) + r 2 2R + 1 πR (2a 2 (t) -r 2 ) arcsin a(t) r + a(t) r 2 -a 2 (t) , r > a(t), (8a) 
p Hz (r, t) = 2E * πR a 2 (t) -r 2 , r < a(t), 0, r > a(t), (8b) 
where a(t) = δ(t)R is the contact radius. The limiting behavior of the fields in the vicinity of the contact radius is given by

h Hz (r → a + ) = 8 √ 2 √ a 3πR (r -a) 3/2 , p Hz (r → a -) = 2E * πR √ 2a (a -r) 1/2 . ( 9 
)
All these results will turn out relevant as "outer solutions" for the impact dynamics at finite Stokes number. The inset in the panel (d) displays a zoom on the viscous adhesion phase, where both the horizontal and the vertical axis are rescaled with St -2/5 and St -3/5 respectively. We also point out that the origin of time has been shifted in the inset by t3 where the force vanishes.

B. Finite Stokes number

The bouncing dynamics at finite Stokes number is illustrated in Fig. 2 (a) (see also Supp. Video 1 [35]) for St = 100, corresponding to the numerical integration of Eqs. ( 1)-(3). We identify five different stages during the bouncing, namely the approach, spreading, retraction, adhesion and bouncing phases. These are illustrated in Figure 2(a), where we also introduce times t i , for i ∈ [1,[START_REF] Johnson | Contact mechanics[END_REF], that separate the phases. Initially, the sphere approaches the surface and the elastic deformation remains small, i.e., of order St -1 . After the time to contact t 1 = D 0 /V 0 , where the sphere would have touched the surface in the absence of surrounding fluid, the elastic deformation gradually increases as if the sphere spreads on the surface. The sphere reaches its maximal deformation at time t = t 2 and its vertical velocity then changes sign, such that the contact radius now retracts. The time t = t 3 corresponds to the instant where the hydrodynamic force vanishes, and is followed by a phase where a negative force is exerted on the sphere such that the sphere effectively adheres to the surface. Finally, at t 4 , the sphere takes off and enters the bouncing phase, where the elastic deformations are small. The fifth time t 5 is defined as the time at which the sphere reaches back its original altitude and bouncing velocity V ∞ = V (t 5 ).

The Figures 2(b)-(d) quantify the global bouncing dynamics via the sphere vertical position, velocity and hydrodynamic force. The specific times t i , for i ∈ [1,[START_REF] Johnson | Contact mechanics[END_REF], are indicated with circles. The sphere dynamics is fairly close to the Hertz theory of (7) (see black dashed lines in Fig. 2 (b)-(d)). The larger the Stokes number, the closer is the dynamics to (7), as the viscous effects are less pronounced. Nevertheless, an important difference is that the velocity after the bounce is smaller than the impact velocity, i.e. V ∞ /V 0 < 1, due to the presence of dissipation. Figure 1 (b) displays V ∞ versus the Stokes number and it compares fairly well with the experimental results of Gondret et al. [17] obtained for a variety of spheres of different materials/sizes and in various liquids.

A remarkable feature occurs at the end of the contact, where the hydrodynamic force becomes negative, indicating some effective adhesion. Indeed, the sphere appears to briefly "stick" to the surface (see adhesion phase in Fig. 2 (a)). We stress that there is no surface adhesion here, and the negative force arises from the viscous liquid, specifically due to the viscous resistance during the filling of the liquid gap [36]. The latter becomes less pronounced at large Stokes number, highlighting the viscous nature of the force. Interestingly, an empirical collapse of the adhesion force is obtained when rescaling the force by St -3/5 and time by St -2/5 (see inset in Fig. 2 (d)), suggesting some universality of the viscous adhesion [36]. The rescaling leads to dimensional force and time scales ηRV 0 [ηV 0 /(RE * )] R/V 0 [ηV 0 /(RE * )] 2/5 respectively, which are mass-free. A precise description of the flow and the elastohydrodynamic coupling in the adhesion phase is left for future work.

To understand the viscous dissipation during bouncing, we extend the Hertz theory and analyze the lubrication film thickness during the contact. We first focus on the spreading phase of the dynamics in section IV, and the retraction phase will be discussed in Section V. The main assumption is that the Stokes number is large, so that the dynamics is close to Hertz theory. An underlying hypotheses is that the impact speed is not too large, such that the typical sphere deformation D 0 is small compared to the sphere radius.

IV. SPREADING PHASE

The film thickness and pressure profiles are shown in Fig. 3(a) and (c) respectively for three different times during the spreading phase for the case of St=1000. The numerical pressure profiles agree very well with the solution of the Hertz theory (8) within the contact region r < a. Hertz theory neglects the lubrication pressure. However, the pressure gradient dp/dr is singular at the edge of the contact radius r = a (see (9)), so that at finite velocity, the film thickness must be small in order to balance Hertz and lubrication pressures. This gives rise to small zone near the contact radius, smoothing out the pressure gradient, as shown in Fig. 3(c). Moreover, the liquid film profile presents a dimple shape, similar to drop impact [37], or the profiles obtained during the thin-film drainage between droplets or bubbles [38,39]. We separate the theoretical analysis of the film into two zones: namely the edge of the contact called "neck region" and the central region called "dimple region".

A. Neck region: soft lubrication inlet analogy

The impact dynamics of a soft sphere exhibit resemblances with the problem of an elastic sphere sliding near a wall under an applied load [29]. Indeed, using as a reference frame r → ra(t), where a(t) is the contact radius of the Hertz theory, we can map the impact dynamics in the neck to the sliding of a soft sphere near a rigid wall, with a time-dependent velocity u = ȧ and under a load 4E * a 3 /(3R). In Refs. [40][41][42], it has been shown that the steady soft sliding has self similar solutions near the edge of the contact radius, that can be demonstrated rigorously using asymptotic matching methods. Here, we first recall the typical scales in the region using the scaling arguments [43].

To do so, we introduce h n , n and p n as the typical film thickness, lateral length and pressure scales respectively in the neck region (see schematic in Fig. 3). First, the fluid momentum balance, i.e. Stokes equation η∇ 2 u = ∇p, in the horizontal direction yields to ηu/h 2 n = p n / n in the lubrication limit. Then, following the linear elasticity theory, the pressure is proportional to the typical strain which reads p n = E * h n / n . Finally, the similarity solution has to match the singular behavior of the Hertz theory near the contact radius (see (9)). This imposes the geometric condition h n = a 1/2 3/2 n /R. Combining the aforementioned expressions, one finds

h n = a 2 R λ 3/5 , n = aλ 2/5 , p n = E * a R λ 1/5 , λ = ηuR 3 E * a 4 . (10) 
The dimensionless group λ is the relevant elastohydrodynamic dimensionless number, which needs to be small to enforce the hierarchy of scales h n n a R of the asymptotic expansion. Following this approach, we introduce a self-similarity ansatz of the form

h(r, t) = h n H(ξ), p(r, t) = p n P(ξ), ξ = r -a n . (11) 
Injecting ( 11) into (1), and using λ 1, one gets

ḣn n h n ȧ H - ˙ n ȧ ξH -H = 1 12 H 3 P , (12) 
where the term in braket in the left hand side of ( 12) reflects the unsteadyness of the problem, given that both the velocity and load are time dependent. In the early times after contact, i.e. when tt 1 is small, the vertical velocity is roughly constant V ≈ -V 0 , such that the contact radius dynamics is governed by a(t) ≈ RV 0 (tt 1 ) and u(t) ≈ RV 0 /[4(tt 1 )]. Hence, the elastohydrodynamic parameter, which scales as λ ∝ (u/a 4 ) ∝ (tt 1 ) -5/2 , diverges as t → t 1 . The steady similarity solution develops after a transient regime, once λ 1. The typical scale of the transient time can be estimated as the one when λ = 1, leading to (tt 1 ) ∼ (D 0 /V 0 )St -2/5 , which is much smaller than the bouncing time scale D 0 /V 0 in the large St limit. Hence, after this very brief transient state, the unsteady terms of ( 12) are negligible and we can integrate to obtain

P = 12 H 0 -H H 3 , (13) 
where H 0 is an integration constant. In the limit where the length of the neck is smaller than the contact radius, i.e. n a, the elastic kernel M of (3) reduces to the dimensionless line force Green's function M(r, r ) ∝ -1 2 ln | ξξ | [START_REF] Johnson | Contact mechanics[END_REF]. Taking (twice) the derivative of (2), and combining with the line force elastic kernel, we find

H (ξ) = - 2 π R P (ξ ) ξ -ξ dξ , (14) 
where we assume 2 n /(h n R) 1, which follows from (10). The similarity solution has to match the asymptotic behavior of the Hertz theory near the contact radius (see (9)). Writing the matching condition, we find

H(ξ → ∞) = 8 √ 2 2π ξ 3/2 , P(ξ → -∞) = 2 √ 2 π (-ξ) 1/2 . ( 15 
)
The equations ( 13)-( 15) are equivalent to the ones of the steady EHD sliding in the inlet zone of Snoeijer et al. [40], up to a trivial prefactor rescaling. As shown in Fig. 3 (b) and (d), the rescaled profiles with the similarity variables of (11) indeed collapse for different times. Furthermore, the similarity solution derived in [40] is in perfect agreement with the profile, demonstrating that the structure of the advancing neck in the bouncing problem maps perfectly to the inlet of the soft slider, in a quasi-steady fashion. The analysis above shows how at a fixed Stokes number, the spreading phase can be understood in time, by the analogy with a sliding contact problem. It is also of interest to investigate the scaling of the neck thickness upon varying the Stokes number -in particular since we expect the neck to vanish in the limit St → ∞. In figure 4(a), we thus plot profiles at different St, at a fixed time (t = 1.5D 0 /V 0 ) during the spreading phase. As expected, the larger the Stokes number, the thinner is the lubrication film and the closer it gets to the Hertz theory. The neck film thickness and lateral scales (see (10)) can be rewritten to make explicit the Stokes number, as

h n D 0 = (6πSt) -3/5 uD 0 V 0 √ RD 0 3/5 a √ RD 0 -2/5 , n √ RD 0 = (6πSt) -2/5 uD 0 V 0 √ RD 0 2/5 a √ RD 0 -3/5 , (16) 
Hence, we find that the Stokes number scaling of the film thickness and lateral scale of the neck during the spreading phase are St -3/5 and St -2/5 respectively. Rescaling the profiles of Fig. 4(a) with the corresponding Stokes number scaling, a collapse of film thickness profiles is indeed observed in Fig. 4(b) close to the neck region. Furthermore, the inset shows the film thickness at the radial position of the Hertz contact radius which is in perfect agreement with St -3/5 over the full St number range explored numerically.

B. Central region: dimple height model

Toward the dimple region, the neck similarity solutions deviates from the steady EHD inlet (see Fig. 3 (b)), that has a uniform thickness. Instead, in the bouncing problem, the film thickness has some spatial variations in the central region, taking the form of a dimple. Indeed, the central region is not described by the same scaling laws as the neck region, and a different analysis must be adopted. Specifically, the typical radial scale in the central region is the contact radius a. The pressure fields is well described by the Hertz profile (8b) (see Fig. 3(c)), whose scale is p d = E * a/R, where the subscript d stands for dimple. Denoting h d the thickness scale in the dimple, the typical flux of liquid expelled in the central region is uh d , where we recall u = ȧ. Balancing this flux with a lubrication flux h 3 d p d /(ηa), we find that the dimple height scales as

h d = R ηu E * R 1/2 , (17) 
which is indeed different from the scaling of the neck. Based on this scaling for h d , we introduce a different similarity Ansatz of the form

h = √ 6πh d H( R), R = r a , (18) 
where the prefactor √ 6π is added for convenience. We further approximate the pressure field with the Hertz solution, that takes the self-similar form We inject the similiarity forms of ( 18) and ( 19) the lubrication equation ( 1), which gives ḣd a

p p Hz = 2 π p d P ( R), with P = 1 -R2 , (19) 
h d ȧ H -R H = 1 R R H3 P . (20) 
In the limit t → t 1 , corresponding to the early-times, the unsteady prefactor reduces to a constant ḣd a/(h d ȧ) = äa/(2 ȧ2 ) -1/2, where we recall a = √ δR and use δ ≈ V 0 t. We focus on this specific case in what follows, for the sake of simplicity. By performing a second-order expansion in R at small radius of (20), one can show that the solution that satisfies the symmetry condition H (0) = 0 must verify

H( R) = 1 2 - R2 2 + O( R4 ), (21) 
which allows to extract the central dimple thickness that reads in dimensional variables

h 0 = h(r = 0, t) = R 3πηu 2E * R , (22) 
where we recall u(t) = ȧ(t). The dimple height in the numerical simulations is quantitatively described by (22) in the early times of the contact dynamics, as observed in Fig. 5(a). Some deviations of the numerical dimple height with (22) are found in the late times of the spreading phase, as the predicted dimple height vanishes. This corresponds to the instant when the contact radius velocity goes to zero (see green dot in Fig. 5(a)). Indeed, the early-times approximation is violated as the unsteady parameter ḣd a/(h d ȧ) of ( 20) is no longer constant and diverges when ȧ → 0. Instead, the dimple height slowly decreases in time until the end of the adhesion phase (right before the purple dot in Fig. 5(a)). Additionally, Fig. 5(b) shows the radial variation of the film thickness at three different times during the spreading phase (same as in Fig. 3) rescaled by the dimple length scale (17). A fairly good collapse is observed in the central region. The numerical solution of the dimple similarity equation ( 20) is also displayed in dashed line and agrees with the profiles during the bouncing in the central region. We notice that the numerical solution of ( 20) does not have solutions beyond a certain radius ∼ 0.7a near the contact radius. Lastly, we comment on the dependence of the dimple height on the Stokes number. Equation ( 22) can be rewritten to highlight the Stokes number as ) during the retraction phase, using the same notations as in Fig. 3. In (b)-(d), the profiles are rescaled by the typical length and pressure scales in the neck during the retraction phase, corresponding to Eq. ( 24). In contrast to the spreading phase, there is no universal behavior, although the collapse in fairly good.

h 0 D 0 = 1 2 (6πSt) -1/2 uD 0 V 0 √ RD 0 1/2 . ( 23 

V. RETRACTION PHASE

We now turn to the retraction phase of the bouncing dynamics, when the sphere vertical velocity is positive. Figure 6(a) displays the film thickness and pressure profiles at various times during the retraction phase. The neck appears to be translated with minor changes of its vertical or lateral scales, which differs qualitatively from the spreading phase (see Fig. 3(a)). The central region is fairly flat, as if the dimple has disappeared and the central thickness decreases very slowly in time. As in section IV, we separate the discussion into the central and the neck region, and start with the central region in the following subsection.

A. Central region: absence of dimple

The analysis of the central region in the retraction phase is more subtle than in section IV B. The Hertz pressure field in the central region coupled with the lubrication approximation imposes a flux of liquid expelled from the central region, as the pressure is maximal in the center. Oppositely, the receding contact radius generate incoming flux of liquid. Hence, the scaling argument used in the spreading phase is not valid anymore (see section IV B), as the two fluxes cannot be balanced. Instead, we numerically observe a very flat region, without any dimple shape in the retraction phase. Interestingly, the central film thickness time evolution for several Stokes numbers collapses when rescaled by St -1/2 in the entire contact dynamics, which includes the retraction phase (see the inset of Fig. 5(a)), as already discussed in Ref. [29]. Quantitatively, the decrease in central thickness height from the start to the end of the retraction phase is of the order of 25%. A quantitative description of the central region beyond the early-times spreading regime is still missing and left for future work.

B. Neck region: soft lubrication outlet analogy

Given the striking agreement between the neck region in the spreading phase with the soft slider inlet, we use the same approach to the retraction phase. The contact radius is now receding, such that the analogy must involve the outlet region of the soft slider. We stress that the central region of the soft slider has an uniform film thickness H 0 h n that is universal and selected by the inlet profile, where H 0 = 2.478... is a numerical prefactor [40]. For the soft slider, the very same scaling arguments of Section IV A still apply in the outlet and a similarity solution can be found with the same scales as (10). For the impact, however, the situation is different: rescaling the numerical profiles in the neck with the scales (10) does not collapse the data during the retraction phase (not shown).
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The fundamental difference between the inlet and outlet solution of the soft slider is that the inlet has a unique solution with a universal dimensionless flux H 0 , while the outlet solution has a family of solutions with varying fluxes, where the adopted self-similar shape is found by matching to the central region thickness [44]. We note that such a qualitative feature is also found in the Bretherton bubbles in a tube [45], where the film thickness is selected from the universal solution in the front dynamical meniscus, while the rear adopts the same self-similarity but where the solution is non-unique and selected by matching the film thickness to the central solution. Hence, we conjecture that the typical thickness scale of the neck region in the retraction phase is selected by the matching to the central film thickness h 0 , and not by the elastohydrodynamic film thickness h n . As a result, the similarity solution is no longer universal and depends on a dimensionless number which is the instantaneous ratio between these two thicknesses h 0 /h n , that is actually large given the St scaling. As discussed in section V A, we observed numerically that the central film thickness in the retraction phase is roughly constant in time and scales as h 0 ∼ D 0 St -1/2 (see Fig. 5(a) inset). Hence, we suppose that the film thickness scale in the neck region during the retraction is h r = D 0 St -1/2 , where the subscript r stands for retraction. As in section IV A, we invoke the matching condition of the retracting neck solution to the singular behavior of Hertz theory (see (9)) to determine the lateral length and pressure scales in the neck as h r = 3/2 r a 1/2 /R and p r = E * a 1/2 1/2 r /R. Combining the latter expressions, we find the scales

h r = D 0 St -1/2 , r = RD 0 St -1/3 a √ RD 0 -1/3 , p r = p 0 St -1/6 a √ RD 0 1/3 . ( 24 
)
Once rescaled with (24), the thickness and pressure fields in the neck collapse fairly well, as shown in Fig. 6(b)-(d), which validate the approach. Nevertheless, as expected, there is no clear universal self-similar solution, and some details of the profiles are not described by the rescaling.

VI. ENERGY DISSIPATION AND COEFFICIENT OF RESTITUTION

Having discussed in details the evolution of the lubrication film during the contact dynamics, we now investigate the bouncing restitution coefficient. To predict the restitution coefficient, we analyse the energy budget during bouncing.

The only source of dissipation comes from the liquid viscosity, such that the energy dissipation rate is given by

dE dt = - R 3 η(∇v) 2 d 3 x = - R 2 h 3 12η (∇p) 2 d 2 x, (25) 
where we use the standard results from lubrication theory. The total energy of the system, including kinetic energy and elastic energy of the sphere is denoted E and is shown in Fig. 7(a). Interestingly, the amount of energy dissipated in each phases of the dynamics is of the same order of magnitude, which motivates a model accounting for all the phases of the bouncing dynamics. We define the energy dissipated in each phase of the dynamics by ∆E i = E(t i ) -E(t i-1 ), for i ∈ [1,[START_REF] Johnson | Contact mechanics[END_REF] and where t 0 = 0, and aim at describing the asymptotic behavior of each phase in the large St limit. First, during the approach phase, the elastic deformations are small (see Fig. 2(a)), such that the hydrodynamic force can be approximated by the lubrication drag of rigid planar surface F (t) = 6πηR 2 V 0 /D(t). Here we suppose that the velocity is asymptotically equal to the impact velocity V (t) -V 0 , such that the distance decreases linearly in time, as D(t) H -V 0 t. Here, we generalize the result to an arbitrary initial height (denoted H), which is D 0 in the numerical simulations of Fig. 7. Without elastic deformations, the energy dissipation rate can be expressed by

F (t)V (t) = -6πηR 2 V 2 0 /D(t).
Integrating the dissipation rate, we obtain the amount of energy dissipated as

∆E 1 = 6πηR 2 V 0 ln H δ = mV 2 0 St -1 ln H δ , (26) 
where one needs to introduce a cut-off length δ, a priori unknown, to regularize the integral. Similar expressions have already been derived previously [25]. In section IV B, we have shown that the typical thickness length scale of the lubricated layer during the contact is given by D 0 St -1/2 , which is a good candidate of regularizing length. Hence, we fit the energy drop in the approach phase with an asymptotic law mV 2 0 St -1 ln A 1 St 1/2 , where A 1 is a fitting constant. An excellent agreement is found (see Fig. 7(b)), where the fitting parameter is A 1 = 0.99. The same arguments can be employed for the bouncing phase, such that the energy drop should also follow the asymptotic law ( 26), but with a different cut-off length. Fitting ∆E 5 with mV 2 0 St -1 ln A 5 St 1/2 gives an excellent agreement (see Fig. 7(f)), where A 5 = 0.40.

In the spreading and retraction phase, the viscous flux is maximum in the neck region, such that the majority of the viscous dissipation occurs in this region. Estimating the viscous dissipation rate in (25) as h 3 n,r (p n,r / n,r ) 2 (a n,r )/η, and using the scales identified in sections IV A and V B, the energy drop is asymptotically

∆E 2 = A 2 mV 2 0 St -3/5 , ∆E 3 = A 3 mV 2 0 St -1/2 , (27) 
where A 2,3 are numerical constants. Again, fitting the energy drop numerically, we find a very good agreement with these asymptotic predictions, with respectively A 2 = 0.85 and A 3 = 0.27 (see Figs. 7(c) and (d)). Finally, the viscous adhesion phase has scales that are inertia-free, i.e. independent of the mass of the sphere. Using the scales identified in Fig. 2(d) for the force and time, we expect an asymptotic energy drop of the form

∆E 4 = A 4 mV 2 0 St -1 , (28) 
that is indeed mass-free. Once again, a good agreement in found with the numerical solutions, where A 4 = 3.88. Then, the global energy budget reads m(V 2 0 -V 2 ∞ )/2 = 5 i=1 ∆E i , which provides an expression for the restitution coefficient as

V ∞ V 0 = 1 -2 St -1 ln A 1 St 1/2 + A 2 St -3/5 + A 3 St -1/2 + A 4 St -1 + St -1 ln A 5 St 1/2 . ( 29 
)
The asymptotic prediction of the restitution coefficient with the numerical data is excellent, as shown in Fig. 1(b), which is not surprising as it relies on successive fitting of the energy drop through the dynamics. Most importantly, it provides an asymptotic expression of the restitution coefficient at large Stokes number, highlighting the physics at each phases of the bouncing. All the fitting parameters are found to be of order unity, validating the approach. Towards St → ∞ limit, the leading dissipative phase is the retraction phase, such that the restitution coefficient is asymptotically

V ∞ /V 0 = 1 -A 3 St -1/2 + O(St -3/5
). Nevertheless, in the experimental range of Stokes number (see Fig. 1(b)), the full expression is necessary to obtain a good approximation of the energy dissipated during the impact, as the energy drop in each phase is of similar magnitude (see Fig. 7(a)).

VII. CONCLUSION

In this article, we have performed numerical simulations and asymptotic analysis of the elastohydrodynamic bouncing of a soft sphere on a rigid surface. We have demonstrated that the lubricated film thickness has non-trivial self-similar dynamics, that are analogous to the steady problem of a soft sliding sphere. Interestingly, the typical scales of the lubricated film are different in the spreading and retraction phases. The characterization of the selfsimilar features of the lubrication layer allows us to find an asymptotic expression of the restitution coefficient in elastohydrodynamic bouncing.

More generally, this article provides a general framework to study the coupling between the lubrication layer and interface deformations during impacts or collisions. Our model focuses on one of the most simple system, but many effects important in real impacts could be implemented, e.g. surface roughness [46], viscoelasticity [47], adhesion [48], ect... An interesting extension of this work would be to consider oblique collisions [21,49] and investigating the torque generated by the shear forces during the contact. Additionally, the present framework could be extended to a large variety of systems either changing the impactor, e.g. drop impacts [50], elastic capsules [51,52], or changing the impacted surface, e.g., stretched membranes [53,54], liquid pool [55] and so on. where we used the film thickness definition (A4b). The non linear term h 3 of the thin-film equation is evaluated at the previous time, so that we end up with a linear discrete set of equations, which greatly reduces the computational time as compared to non linear schemes. Furthermore, we use an implicit scheme which provides a better numerical stability as compare to explicit methods. Hence, (B1) is discretized as

Ṽ n+1 - wn+1 i -wn i ∆t = St ( hn i ) 3 ri ∂ p ∂ r n+1 i + 3( hn i ) 2 r i - ∂ w ∂ r n i ∂ p ∂ r n+1 i + ( hn i ) 3 ∂ 2 p ∂ r2 n+1 i , (B2) 
where the film thickness discretization is hn i = Dn + r2 i /2wn i . The first and second order discrete spatial derivative of (B2) are evaluated as The thin-film equation is a second-order differential equation in the radial coordinate, so that we need to introduce two boundary conditions. The symmetry condition imposes that the gradient of the pressure in the center is null, i.e.

∂ p ∂ r (r = 0) = 0. Furthermore, at large radius, the pressure field decays rapidly as r -4 from (A4a). Hence, we impose the discrete boundary conditions

p n 1 -p n 0 = 0, p n N -1 = 0. (B4)
To evaluate the integral equation of elasticity (A4c), we suppose that the pressure field is uniform and equal to pn (B5)

The integrals in (B5) are independent of the discrete fields, and only depends on the spatial grid. Therefore, they can be computed once and stored in a matrix to save some computational time. Numerically, these are evaluated with a Gaussian quadrature using the scipy integrate library in Python. Finally, the sphere dynamical equation is discretized with a backward Euler scheme as 
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 1 FIG. 1. (a) Schematic of a elastohydrodynamic bouncing of a soft sphere on a rigid surface. The underformed sphere is indicated with red dashed lines. A thin film of thickness h(r, t) prevents direct contact. The grey rectangle indicates a zoom in the contact region. (b) Bouncing velocity as a function of the Stokes number measured in the experiments of Gondret et al.[17], in the numerical simulations and predicted by the asymptotic theory of (29).

FIG. 2 .

 2 FIG. 2. Bouncing dynamics: (a) Snapshots of the soft sphere interface during bouncing, which illustrates the different phases of the dynamics. The dimensionless times from left to right are V0t/D0 = 0.8, 1.2, 2.0, 2.8, 3.5, 4.1, 4.3 and the Stokes number is 100. Variation of the dimensionless sphere center of mass position (b), velocity (c) and hydrodynamic force (d), versus the dimensionless time for two Stokes numbers. The black dashed lines indicate the Hertz theory (7), corresponding to the absence of viscous dissipation. The points illustrate the five characteristic times separating the different phases as defined in the text. The inset in the panel (d) displays a zoom on the viscous adhesion phase, where both the horizontal and the vertical axis are rescaled with St -2/5 and St -3/5 respectively. We also point out that the origin of time has been shifted in the inset by t3 where the force vanishes.

  FIG. 3. Spreading phase: neck solution at different times. Typical dimensionless film thickness (a) and pressure (c) as a function of the dimensionless radius for three different times (resp. t = 1.3, 1.5 and 1.8 D0/V0) during the spreading phase. The Stokes number is set to 1000. The black dashed lines show the Hertz theory. In (b)-(d), the profiles are rescaled by the typical length and pressure scales in the neck region, corresponding to (11). The different lateral scales of the problem are shown in the schematic on top. The soft slider solution of Snoeijer et al. [40] is shown in pink dashed lines.
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 4 FIG. 4. Spreading phase: Stokes number (a) Typical dimensionless film thickness as a function of the dimensionless radius at t = 1.5D0/V0 during the spreading phase. The three colors indicate different Stokes number, respectively 50, 200, and 1000 and the black dashed lines the Hertz theory. In (b) (resp. (c)), the thickness profiles are rescaled by the typical length scales in the neck (resp. dimple) region. The inset shows the thickness at the Hertz contact radius (b) and the central film thickness (c) versus the Stokes number in log-log, highlighting the Stokes number scaling.

FIG. 5 .

 5 FIG. 5. Spreading phase: dimple solution. (a) Rescaled central film thickness height h0(t) = h(r = 0, t) as a function of time in both the spreading and retraction phases. The colors indicate different Stokes numbers (same as in Fig. 4), respectively 50, 200 and 1000 from light to dark blue. As in Fig. 2, the dots indicates the times separating the different phases of the bouncing dynamics. The prediction of the early-times dimple model (22) is shown in brown dashed lines. The inset show the dimple height rescaled by St -1/2 versus the dimensionless time. The panel (b) shows the spatial structure of the dimple, where the radius is rescaled by the prediction of the Hertz contact radius a. The brown dashed lines show the numerical solution of(20), which diverges at a given dimensionless radius ∼ 0.7. The color code is the same as in Fig.3and indicates various times during the spreading phase, respectively t = 1.3, 1.5 and 1.8 D0/V0.

)Figure 4 FIG. 6 .

 46 Figure4(c) displays film thickness profiles rescaled by St -1/2 at fixed time but different Stokes number, which indeed collapse in the central region. Specifically, the scaling law for the central film thickness h 0 ∼ St -1/2 is verified in the entire range of Stokes number, as shown in the inset of Fig.4(c). We point out that the -1/2 scaling in Stokes number has already been discussed by Venner et al.[29].

FIG. 7 .

 7 FIG. 7. Energy budget. (a) of the rescaled total energy of the sphere as a function of the dimensionless time. The colors indicate different Stokes numbers (same as in Fig. 4), respectively 50, 200 and 1000 from light to dark blue. The energy dissipated in each phases is denoted ∆Ei, for i ∈ [1, 5] and shown in (b)-(f) as a function of the Stokes number. The black dashed lines correspond to the fit of the numerical data with the asymptotic predictions in the large-Stokes limit.
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  on each domain [r i -∆r 2 , r i + ∆r 2 ], for i ≥ 1, and p n 0 on the domain [0, ∆r 2 ] near the symmetry axis. This leads to the equation wn ri ) 2 dx .

  discrete system of equations. The code is available at the link [56].
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Appendix A: Dimensionless equations

The appendix expands the non-dimensionalization of the soft lubrication equations ( 1)- (3). We choose to use the typical elastic scales to make the equations dimensionless, which does not account for viscous effects. The typical elastic deformation of a sphere with an impact speed V 0 follows

obtained by balancing the kinetic energy mV 2 0 with the elastic energy E * √ RD 5/2 0 . Using the Hertz pressure profile, we introduce a pressure scale p 0 based on the typical elastic deformation as

Hence, we introduce dimensionless variables with tilde as

Injecting (A3) into ( 1)-( 3), we obtain the system of equations

The sphere is assumed to start with an impact velocity V 0 and at a distance D 0 for the surface, leading to the initial conditions

Initial conditions are also required for the pressure and deformation fields. A naive choice would be to set the initial pressure and deformation to zero, which leads to unphysical jumps t = 0 + that affect the approach phase. To bypass this issue, we introduce an initialization phase where the velocity is ramped from 0 to -V 0 during a time t ini , as suggested in Ref. [33]. More precisely, the velocity and sphere position are set to

and the deformation and pressure fields are identically zero at t = -tini . Then, solving the initialization phase with the numerical scheme discussed in B allows to obtain initial pressure and deformation fields p(r, 0) and w(r, 0). We have checked that the choice of the initialization time has negligible effects in the overall bouncing dynamics.

Appendix B: Finite-difference scheme

In this appendix, we detail the finite-difference scheme used to solve the dimensionless lubrication equations (A4). We follow the methodology introduced by Liu et al. [33]. We introduce an uniform spatial grid ri = i ∆r, for i ∈ [0, N -1], where ∆r is the grid size and N the number of radial points. The temporal axis is also discretized by using a constant time step ∆t as tn = n∆t. Hence, the pressure, film thickness and deformation fields are discretized as p(r, t) = pn i , h(r, t) = hn i and w(r, t) = wn i and the velocity and sphere position Ṽ = Ṽ n and D = Dn respectively. The dimensionless thin-film equation (A4a) can be expanded as