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1i3S / CNRS, Université Côte d’Azur, Sophia Antipolis, France
2Department of Information Technology and Electrical Enginering, ETH Zürich, Zürich, Switzerland
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Abstract—Neuromorphic computing has been identified as an
ideal candidate to exploit the potential of event-based cameras,
a promising sensor for embedded computer vision. However,
state-of-the-art neuromorphic models try to maximize the model
performance on large platforms rather than a trade-off between
memory requirements and performance. We present the first
deployment of an embedded neuromorphic algorithm on Kraken,
a low-power RISC-V-based SoC prototype including a neuromor-
phic spiking neural network (SNN) accelerator. In addition, the
model employed in this paper was designed to achieve visual
attention detection on event data while minimizing the neuronal
populations’ size and the inference latency. Experimental results
show that it is possible to achieve saliency detection in event
data with a delay of 32ms, maintains classification accuracy of
84.51% and consumes only 3.85mJ per second of processed
input data, achieving all of this while processing input data
10 times faster than real-time. This trade-off between decision
latency, power consumption, accuracy, and run time significantly
outperforms those achieved by previous implementations on CPU
and neuromorphic hardware.

Index Terms—Neuromorphic, Embedded system, Event cam-
era, Academic platform, Visual attention

I. INTRODUCTION

Event-based cameras, often called silicon retinas, bring an
emerging vision paradigm by mimicking the biological retina.
Instead of measuring the intensity of every pixel in a fixed time
interval like RGB/grayscale frame-based cameras, an event-
based vision sensor reports events of significant pixel intensity
changes [1]. Because of the asynchronous operation principle
of event-based cameras, the natural match to process this
information is another emerging paradigm, namely Spiking
Neural Networks (SNN) [2]. These are advantageously replac-
ing standard Deep Neural Networks (DNN) for event-based
sensors, particularly event-based cameras. Although state-of-
the-art DNNs provide excellent results for vision tasks with
traditional cameras, asynchronous event sequences require spe-
cial handling for which SNNs are better suited. Indeed, many
previous works have demonstrated the benefits of SNN and
the excellent match with event-based cameras to reach both
exceptionally low latency and high energy efficiency [1] — all
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of this, however, without achieving equivalent performance to
DNNs in terms of accuracy.

Pushed by the objective of closing the gap with DNN
accuracy, many previous works are not considering the limits
of memory and complexity that state-of-the-art embedded
neuromorphic processors pose. However, previous works show
that detecting Regions of Interest (RoIs) in the original visual
scene to select the corresponding Objects of Interest (OoIs
— i.e., the events belonging to the detected RoIs) is a more
promising approach to increase accuracy, reducing both la-
tency and memory requirements. Many computer vision tasks
(classification, object tracking, or autonomous navigation)
could rely on small salient items in the global scene [3]. Only a
few models genuinely take advantage of the intrinsic dynamics
of SNNs and the uniqueness of event data. In particular,
Renner et al. [4] make use of the mathematical model of
Dynamic Neural Field [5] as a soft Winner-Takes-All (WTA)
to implement saliency tracking of pre-activated objects; Gruel
et al. [6] implement a similar mechanism with a significantly
low number of neurons and connections.

Another drawback that limits the success of today’s event-
based cameras and neuromorphic computing, especially for
embedded low-power systems, is that the promised low power,
low latency, and energy efficiency are diminished and often
compromised by the interface’s high power consumption,
often due to non-standard communication protocol. Although
nowadays data is mainly acquired using a high-power Field
Programmable Gate Array (FPGA) and a USB interface [7],
novel embedded processors are being developed, providing the
research community with reference platforms and resources
contained to address this issue. Large-scale, neuromorphic pro-
cessors like Intel Loihi [8] can simulate hundreds of thousands
or even millions of spiking neurons in real-time. To achieve
truly power-efficient real-time operation, such platforms must
be smaller, reach even lower power consumption, and inte-
grate the camera interface directly on board. Kraken [9] is
a prominent example of such a platform: this novel RISC-V-
based System on Chip (SoC) includes a heterogeneous parallel
ultra-low power (PULP) processor [10] and two hardware
accelerators for both spiking neural networks and frame-
based convolutional neural networks. Most notably, Kraken
can interface directly with event-based cameras without power-
hungry FPGAs or external interface adapters.



This work presents a novel implementation of a lightweight,
energy-efficient neuromorphic model for visual attention on
an embedded device with limited memory and computational
capabilities. The computational primitives of the algorithm
have been deployed and executed on the Kraken platform,
showing that the proposed saliency detection mechanism can
be performed on the Kraken SoC platforms in 140ms, con-
suming 4.73mJ .

The main contributions of this paper are as follows:
• The computational primitives of the algorithm are evalu-

ated on the Kraken platform and show that the proposed
algorithm is amenable to resource-constrained embedded
neuromorphic platforms;

• An accurate experimental evaluation demonstrates both
the benefits of the proposed model and the Kraken
platform;

• The deployment of [6]’s attentional model on Kraken
allows to detect OoIs with a significatively low decision
latency and to maintain a classification performance of
84.51%, results that are achieved by processing input data
up to 10 times faster than real-time.

II. MATERIAL

A. Spiking neural networks

Also known as the third generation of neural networks, SNN
differs from the previous generations by its high degree of bio-
inspiration [2]. Indeed, whereas information in classical mod-
els was encoded and processed as multi-bit numbers, an SNN
encodes input signals and internal network layer activations
using sequences of binary spikes distributed across a fixed
number of timesteps. Each neuron emits spikes depending
on an internal state variable, the membrane potential, which
increases whenever a spike arrives at the neuron (much like the
biological membrane potential increases when the biological
neuron is electrically activated) and decreases over time in
the absence of stimulation (thus simulating the leak observed
in the biological neurons) [11]. This work uses the Leaky
Integrate-and-Fire (LIF) model, the most common neuromor-
phic artificial neuron software and hardware implementation.

B. Academic platform Kraken

The Kraken chip [12] comprises three main subsystems
composing a heterogeneous architecture. The first subsystem,
the Fabric Controller (FC), is built around a 32-bit RISC-
V core that acts as the central control unit for the entire
SoC. FC contains the main interconnection busses to the main
L2 memory and the Advanced Peripheral Bus (APB), which
controls all the SoC peripherals. Additionally, the FC hosts a
complete set of on-chip peripherals and a power management
unit.

The second subsystem is a RISC-V-based general-purpose
accelerator known as the ”Cluster,” which hosts eight RISC-V
cores enhanced with specialized Instruction Set Architecture
(ISA) extensions. The Cluster also features a 128KiB L1
Tightly Coupled Data Memory (TCDM) and a dedicated

hardware block for fast event management, parallel thread
dispatching, and synchronization.

The third subsystem, the External Hardware Processing
Engine (EHWPE), hosts two accelerators, including the Sparse
Neural Engine (SNE) neuromorphic accelerator and CUTIE, a
ternary weight neural network accelerator. The accelerators op-
erate on two independent clock domains and are programmed
via memory-mapped register interfaces.

The chip features a vast set of IO peripherals that can
generate interrupts depending on data transmission events. An
autonomous IO subsystem called the µDMA hosts all the IO
peripherals. It can be programmed to orchestrate data transfers
from the peripherals to the L2 memory and vice versa. The IO
subsystem includes a dedicated hardware peripheral to directly
interface an ULP event camera. Events, i.e., active DVS pixels,
can be directly transferred from the event camera to the Kraken
TCDM, where they are accessible to the EHWPE and the
cluster domain for processing. Such an on-chip integrated
interface reduces the event acquisition power consumption by
more than one order of magnitude, compared to what is shown
in [7], improving the overall energy efficiency. Moreover,
Kraken also implements hardware power management strate-
gies, e.g., power gating, that allows the on/off switching of
unused system parts to reduce the overall power consumption.

The Kraken chip is mounted on an evaluation board incor-
porating external components essential to execute complete
applications. A USB-C connector is used to power the board
and for JTAG and UART data transfer. The three power
domains of Kraken are supplied by buck converters that
are individually runtime-configurable, permitting application-
controlled DVFS. External memory is present, including a
combined HyperFlash/HyperRAM chip and a quad-SPI flash
memory chip that can store application code for standalone
booting. Additional connectivity is provided by Arduino head-
ers and a Camera Parallel Interface (CPI) ribbon connector and
level shifters are present between each off-chip connector and
Kraken’s I/O pins.

C. Event camera

Instead of measuring the intensity of every pixel in a
fixed time interval, event sensors report events of significant
pixel intensity changes asynchronously. Every such event is
represented by its position, sign of change, and timestamp,
accurate to the microsecond. An event is triggered by the
sensor whenever the log luminance for a given pixel changes
over a threshold. Formally, an event is a tuple (x, y, t, p) that
indicates the pixel x, y where the event occurred, a timestamp
t (with 10−6s time resolution), and a binary polarity p that
indicates the direction of change: positive for brighter and
negative for darker. Event sensors show many advantages over
frame-based cameras, such as high temporal resolution, low
power consumption, and high dynamic range sensing. Also,
they do not suffer from motion blur or dazzling. On Kraken,
the spatial and temporal position of each event acquired from
the event camera is explicitly stored in memory by the DVSI
µDMA peripheral in a sparse, low memory footprint coordinate
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Fig. 1. Architecture of the spatiotemporal attention model introduced in [6].
(Image taken with permission from [6].) The spiking neurons are placed in
rectangular layers according to a 2D orthogonal frame of reference.

list format (COO). The Cluster or the EHWPE computing
domain can directly consume a variable-length stream of such
events.

III. METHOD

A. Reference model

Authors in [6] introduce a novel neuromorphic model
of spatio-temporal attention on event data, implemented on
both the CPU simulator PyNN [13] and Intel’s neuromorphic
hardware Loihi [8]. This model, illustrated in Fig. 1, detect
the salient regions of the input sensor and outputs the first
corresponding object of interest (i.e., the spikes corresponding
to the detected region). It performs this task using a network
composed of three SNN layers linked by two sets of excitatory
synapses (the downscale connection between the input and
the RoI detector and the One-to-One connection between the
input and the output layers) and two sets of inhibitory synapses
implementing WTA mechanisms. Additionally, the model can
adapt to any input data thanks to two adaptive mechanisms:
a weight adaptation rule — which favors the activation of
the RoI detector depending on its previous activations, and
a threshold adaptation rule — which promotes the passage
of spikes in the output regions corresponding to the salient
regions identified by the RoI detector and hinders this passage
in other places. All in all, this neuromorphic event-based
spatiotemporal attention model achieves interesting results by
solely relying on intrinsic SNN dynamics.

B. Implementation on Kraken

The model described in [6] was initially implemented using
PyNN, a simulator-independent Python interface for SNN
simulators [13], combined with NEST (NEural Simulation
Tool) [14], a Python simulator for SNN on CPUs; then
implemented on Intel’s neuromorphic hardware Loihi [8]. The
main limitations of these tools are the simulation time and the
impossibility of modifying neuronal and synaptic parameters
during the simulation, thus hindering the implementation of
dynamic adaptation rules. Both those limits can be overcome
using the academic platform Kraken [12], which allows for
the adaptation of neuronal and synaptic parameters mid-run.

The Sparse Neural Engine (SNE), Kraken’s dedicated neu-
romorphic energy-proportional accelerator, is primarily de-
signed to accelerate feed-forward neural networks. Such net-
works are trained using the framework PyTorch [15]. This
framework differs significantly from PyNN: in the latter, each
neuronal population is implemented first and then intercon-
nected; PyTorch implements a neural network by instantiating
layers including a specific synaptic connectivity. Therefore
an adaptation of the architecture’s implementation is required
to allow the reference model to be deployed on Kraken.
Pytorch-defined networks are deployed on Kraken by convert-
ing them into an intermediate neural network representation
format (ONNX). Executable C code is then auto-generated
by using a dedicated Kraken deployment toolchain. The low-
level generated C code is entirely available for the programmer
and, therefore, can be modified to include dynamic threshold
adaptation rules and custom interconnection schemes among
neurons belonging to different populations.

To map the saliency detection algorithm to Kraken, the orig-
inal synaptic interconnection schemes connecting the various
neuron populations, and performing the attention mechanism,
have been mapped on equivalent neural network layers which
account for the neuron synaptic connectivity supported by
SNE, i.e., 1x1 and 3x3 convolutional and fully-connected
synaptic connectivity, and the exact LIF neuron model im-
plemented in SNE. Specifically, the downscale connection
between the input and the RoI detector, originally implemented
as two populations of LIF neurons connected via an excitatory
downscaling connection (i.e., a convolutional layer with no
padding — see Fig. 1), is translated into a fully-connected
synaptic connection with no bias and with synaptic weights
of the unconnected regions set to zero. Indeed, the PyTorch
linear layer is the most appropriate to implement All-to-All
connections. The excitatory One-to-One connection between
the input and the output layers (see Fig. 1) is translated into a
convolutional layer with a kernel of size 3, padding of size 1
and no pooling nor bias. All the weights are null, except the

TABLE I
NEURONAL AND SYNAPTIC PARAMETERS USED TO IMPLEMENT [6]’S

MODEL ON PYNN AND ON KRAKEN.

Parameters PyNN’s values [6] Values in our
PyTorch implementation

RoI detector

Resting membrane potential −65mV 0

Neuronal threshold −25mV 0.9

ωWTA 1 0.1

ωreset 0.7 10

∆ω 0.01 5

Output layer

Resting membrane potential −65mV 0

Neuronal threshold −20mV 0.7

ωWTA 50 0.2

θreset −65mV 50

θmax 0mV 100

∆θ 10mV 1



kernel’s central weight, which is set to 1, thus allowing only
a connection between corresponding pre and post-synaptic
neurons. Additionally, exponential WTA mechanisms applied
to the RoI detector and the output layer are implemented using
linear layers with no bias. Since the inhibition is implemented
in PyTorch by setting the weights to a negative value (the
lower the value, the higher the inhibition), the exponential rule
is updated to enable a correct WTA behavior as described in
Eq. 1:

ωWTA = max(
−ed

w × h
+ ωWTA, 0) (1)

where d corresponds to the Euclidean distance between the
active and target neuron subject to inhibition, w and h to the
width and height of the layer and wmin to the lower bound
of the weight ωWTA.

Finally, all neural network weights and parameters are
quantized to be deployed to Kraken (see TABLE I).

IV. EXPERIMENTAL RESULTS

In this section, we describe the experiments conducted on
the Kraken platform and discuss the results of such explo-
rations compared to the performance achieved by [6] using
the same event-based dataset: DVS 128 Gesture [16].

Fig. 2 compares the simulation time of the attentional
algorithm on a CPU1, Loihi and Kraken. We show that
it is possible to achieve real-time saliency detection with
Kraken. Furthermore, we compare the quality of the detected
OoI by comparing the classification accuracy obtained on
those detected in DVS128 Gesture [16], performed by the
Parametric Leaky Integrate-and-Fire (PLIF) classifier [17]. The
classification performance is 20% better on the OoIs detected
by Kraken compared to PyNN: this marked increase both
confirms the quality of the implementation of the original
model on Kraken and can be explained by the greater number

1Intel 8-core i9-10885H at 2.4GHz.

TABLE II
SNE LATENCY AND ENERGY CONSUMPTION OF THE SALIENCY

DETECTION FUNCTIONAL MODULES

Layer Energy (in J) Latency (in s)

Input to RoI detector 3.46 × 10−4 1.26 × 10−2

WTA on RoI detector 2.16 × 10−5 7.86 × 10−4

Input to Output 3.63 × 10−4 1.26 × 10−2

WTA on Output 3.12 × 10−3 1.13 × 10−1

Total 3.85 × 10−3 1.39 × 10−1

TABLE III
KRAKEN PLATFORM ENERGY CONSUMPTION AND LATENCY

Kraken platform Current (in A) Simulation time Energy (in J)

Fabric controller 9.5 × 10−3 1.4 × 10−1 8.62 × 10−4

SNE - active (avg) 44.4 × 10−3 1.39 × 10−1 3.85 × 10−3

SNE - idle 3.635 × 10−2 3.6 × 10−4 8.51 × 10−6

Total NA 1.4 × 10−1 4.72 × 10−3

Fig. 2. Simulation time for an event input of 1s, detection latency (i.e. how
long should be simulated before identifying the OoIs) and PLIF classification
accuracy [17] of the OoIs detected in DVS128 Gesture [16] by the model
introduced in [6], compared between the PyNN and Loihi implementations
presented in [6] and the current Kraken deployment. As Loihi’s data comes
from [6], no classification accuracy could be measured on this hardware.

of events contained in Kraken’s OoIs. Indeed, the PLIF clas-
sifier [17] accumulates events in frames and performs better
on a dataset rich in events.

TABLE II provides the energy and latency breakdown for all
the relevant algorithm functional modules benchmarked on the
SNE accelerator. Our experiments used a 6% spiking activity,
the highest spiking activity measured across DVS 128 Gesture.
TABLE III reports the overall energy and execution latency for
the entire Kraken platform, including the energy consumption
of the RISC-V core (Fabric Controller) that orchestrate the
algorithm execution on SNE. TABLE III also reports the
SNE idle consumption, i.e., when the accelerator is waiting
for Fabric Controller to reprogram the SNE accelerator for
a new execution of the algorithms. Kraken achieves real-time
simulation run-time, as it requires 0.14s to execute the saliency
detection algorithm on 1s of input spiking activity from an
event camera, significantly lower than both Loihi and CPU run
times. Moreover, compared to the algorithm implementation
executed on Loihi and on CPU, it is possible with Kraken to
fully implement, on-site, the dynamic weight and threshold
adaptation rules presented in [6], which are a crucial feature
for online adaptation.

V. CONCLUSION

This paper introduces an embedded neuromorphic algorithm
for saliency detection in event data. The proposed approach
minimises the model size and inference latency, consumes only
3.85mJ per second of processed data, and detects objects
of interest with quality such that it maintains an accuracy
of 84.51% in a classification task while processing data 10
times faster than real-time. This proposal is the first saliency
detection algorithm deployed on Kraken, an academic platform
with a neuromorphic hardware accelerator.

Future work will compare the energy consumption of the
algorithm deployed on Kraken to a CPU simulation and Intel
Loihi. The parameters identified in this paper will also be used
to compare this Kraken deployment to the SpiNNaker [18]
neuromorphic hardware, which also allows for implementing
dynamic adaptation rules.
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