N

N

A software engineering perspective on digital twin:
many candidates, none elected

Antoine Beugnard

» To cite this version:

Antoine Beugnard. A software engineering perspective on digital twin: many candidates, none elected.
DigitalTwin 2023, IEEE Smart World Congress, Aug 2023, Portsmouth, United Kingdom. hal-
04183036

HAL Id: hal-04183036
https://hal.science/hal-04183036
Submitted on 18 Aug 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04183036
https://hal.archives-ouvertes.fr

A software engineering perspective on digital twin:
many candidates, none elected.

(Position Paper)

Antoine Beugnard
IMT Atlantique - Lab-STICC
CS 83818
F-29238 Brest, France
Email: antoine.beugnard @imt-atlantique.fr

Abstract—The digital twin (DT) is a central idea in the
digitization of society. The goal of this position paper is to
acknowledge this idea as a paradigm and discuss how current
implementations are far from software engineering standards. I
propose a consideration of 8 aspects of the DT: the paradigm, its
concretization as a component, its variability, its building process,
its description with models, type and instance differences, its
relation with simulation, and its composability. I conclude that
although many digital twins claim to be such, none of them fulfill
the definition as expected. This position paper provides food for
thought.

I. INTRODUCTION

Digital twin is a relatively new concept introduced by
Grieves in 2014 [1] (previously named “Mirrored Space
Model” [2]) and applied in many fields. The software com-
munity has naturally seized on this concept since it involves
digitization and relies on many software and models.

Many review papers (e.g., [3]-[8] which reference 74, 303,
146, (356 + 49), 136, 75 articles, respectively) have been
published, and dedicated conferences have been organized.
Digital twins of many kinds have been presented, developed,
and used: digital twins of products, of organization, of humans,
of factories, of cities, and even of an entire country (Gemini
project [9]). Many definitions have been proposed [10], as have
many architectures for DTs.

The objective of this article is to offer a software engineering
perspective on digital twins, drawing a parallel between digital
twin and software.

It is worth noting that while the digital twin is about
digitalization, it is more than just its software. Beyond the
fact that a digital twin is connected to a reality (usually a
cyber-physical system, or more generally a socio-technical
cyber-physical system that includes humans), a digital twin can
have its own hardware, sensors and physical resources. Thus, a
digital twin is a cyber-physical system (usually) connected to
another cyber-physical system, where the first is the reference
system (RS) and the second is the digital twin (DT). The
purpose of the second is to reflect the first and help users
to interact with the first through enriched information (e.g.,
augmented reality), dedicated interfaces, and specific tools.

The remainder of this article draws a parallel between
digital twins and several software engineering aspects: object-

oriented programming (II), software components (III), vari-
ability (IV), process (V), models and metamodeling (VI), type
and instances (VII), simulation (VIII), and composition (IX) to
support analysis and presentation of several important software
challenges.

II. DIGITAL TWIN AND OBJECTS

Historically, humans started building complex hardware
systems far before building software. Then, programming ap-
peared and software became a field of study in itself. To control
hardware, of course, but highly focused on computation, data
representation, algorithms, and compilation. Connection to the
real world remained confined to drivers or approaches where
real-time is central. Then, cyber-physical systems were identi-
fied as complex systems where both hardware and software are
interleaved. These CPS have many variants: System of System
(SoS), Socio-Technical Systems (STS) Systems when humans
are also considered as part of the system, etc.

Research and practice on computation lead to the identifi-
cation of many paradigms: functional, procedural, rule-based,
object-oriented, and so on. All these paradigms have their
strengths and limitations, their field of choice. The immateri-
ality of software allows a great freedom on ways of thinking.
Hardware is more tied to reality with physical constraints.
Physical systems are naturally decomposed in subsystems,
parts, devices, etc. Hence, a ”natural” decomposition emerges.

It appears to me that the digital twin is in fact a paradigm;
a way of thinking and building cyber-physical systems. The
objective of this system is not only to control something,
but also to present it to users, to monitor it, to simulate it,
to improve it, to understand it, and so on. Quite naturally,
digital twins are a way of achieving these objectives with an
expected property of composition. Digital twins should be able
to collaborate (to be composed) in order to build more complex
digital twins of more complex systems.

The goal of object-oriented programming was very close.
First evangelists of OOP insisted on the “natural” mapping
between real objects and programming objects, making pro-
gramming “simple”. In fact, as everybody know, it is more
subtle. But the abstraction provided by objects is fruitful [11].
Programming objects are often mapped to abstractions not

Management

Services

I

User Interface

Fig. 1. Digital twin as component with its interfaces.

actual or physical things. A question emerges: May we have
to develop abstract digital twins?

I think yes. Imagine the digital twin of a communication
between two humans. We may have to develop two human
digital twins (HDT), one for each human, probably a digital
twin of the environment to collect information about the
context (noise, distance, etc.) and why not an interaction digital
twin that represent the properties of the interaction we are
interested in. The idea is to reify an abstraction that is of
interest, and where computation has to be done on selected
data.

Another paradigmatic question is whether we may or may
not have several DT for the same reference system? Again,
I think yes. Digital twins have purposes and may manage
different data (levels of data). Then, a Reference System (RS)
could be connected to several digital twins. For instance, the
digital twin of the RS manufacturer, and another one for its
owner. We may imagine that insurance or user digital twins
may also be developed. Ideally, a single digital twin, the digital
twin, should be developed for all purposes, however, this can
only be a theoretical point of view and not a pragmatic one.
Then, the question of synchronizing multiple digital twins or
not, rises.!

To conclude this section, I believe we must consider digital
twins as a paradigm. This helps us build, or more precisely or-
ganize, complex STS (socio-technical systems). In that sense,
literature is right to use the term digital twin and current digital
twin development can justifiably be called digital twins.

To go further, as a software engineer, digital twins could
be made concrete as something close to a software artifact: a
component.

III. DIGITAL TWIN AND COMPONENTS

Object orientation, as a paradigm, has been very fruitful.
Many programming languages, methods, tools, and theories
have been developed. Among good properties of objects, we
may list: encapsulation (responsibility of internal state man-
agement, interface of services), classification (levels of abstrac-

'T imagine that, we, as humans, are developing many neural twins of parts
of our environment...and we try to share or build consensus of description
by talking, writing and doing together.

tions, inheritance) and reuse. Modularity, low coupling, strong
consistency were previously identified and other paradigms
already gave adequate solutions (for instance functional pro-
gramming). However, the OO paradigm has limitations: they
have bad composition properties and they have a very low-
level management process (create/use/garbage). Software ar-
chitecture and software components have tried to improve
this situation. Software components bring composability as
a primary objective. Services such as connect, disconnect,
start, stop, resume become parts of the management. In order
to realize services, the interface has been enriched: required
services became explicit and a management interface too. This
gives birth to many component models such a OSGi, .NET,
CCM, Fractal, ...

Concerning digital twins, the current state of the art gives
only very partial responses. There is no real boundary, there is
no real interface (neither offered nor required, nor with a high
level of contract) and there is no management interface. This
lack of concretization makes digital twins poorly composable,
poorly reusable.

I propose to build digital twins as software components
(figure 1). An explicit boundary must be identified. Attached
to the boundary, an interface to the Reference System shows
inputs and outputs’. Then, depending on the digital twin
purpose, several interfaces® to other components can be pro-
vided (blue circle) or required (open cup). A user interface
(bottom of the figure), with a dashboard and a control panel
for example, may also be furnished. Finally, a management
interface must be provided for the configuration, deployment,
running, monitoring, etc. The boundary is important since
it encapsulates/defines all what constitutes the digital twin.
Interfaces are important since they define the way the digital
twin can be used (inputs and outputs, offered and required
services) and managed.

To go further, and since digital twins are made of many
different sources of data and programs, I propose a loose
definition of their internal architecture (figure 2). A digital
twin is composed of 4 sets:

1) A set of drivers whose responsibility is to manage the

connection to reality (Core)

2) A set of data repositories whose responsibility is to store
(or give access to) all data produced during all lives (see
definition below) of the digital twin.

3) A set of services used to monitor, analyze, explain,
simulate, ... providing and requiring interfaces.

4) A set of management services (that have to be defined)

The core is the closest layer to the RS. It contains sensors,
actuators, drivers, operational (raw) data storage. It can be
called the “edge” layer. For performance sake, monitoring
processes, anomaly detection, and possibly other services can
be installed here.

2 An abstract digital twin may have no such interface if it interacts directly
with other twins and gather data, information or knowledge, indirectly, from
other digital twins.

31 do not detail the nature of interfaces, they can be synchronous, asyn-
chronous, synchronized, specified by contracts, etc.

& -3 AT —(&
72 1 . [a)
a 777777 IS - 4. 6
Fig. 2. Insight of digital twin internal.
Ul
= 8
Cloud 2 B
> —
n s
IT 3 &b
5 (o)
Sensors/ 8
IoT/Edge o)
[
Hardware

Fig. 3. A digital twin crossing layers.

The memory is the long-term memory layer. It can contain
many kinds of information: possibly persistence for the core
layer, but also information build from operational data and
more sophisticated information called knowledge. The hierar-
chy of data (data, information, knowledge) can be stored in a
multi-layer data storage : data in the edge, information in the
fog (IT), and knowledge in the cloud.

The services gather all computations available: human inter-
faces, analysis, simulations, or predictive tools, etc. They can
be implemented at any level (edge, IT, cloud).

The management package gathers all scripts, configuration
files, installation and deployment recipes to manage the DT.
It provides the glue to connect, deploy, and clone the DT and
its services. They may be implemented at any level (edge, IT,
cloud).

Figure 3 shows how a reference system and a digital twin
cross layers. I make the assumption that a digital twin as
no specific hardware, but can have sensors (hardware with
software). Both may have, or not, parts at the IT or cloud level,
and both can have, or not, user interfaces. Ul are separated
from IT and cloud because of their specific interaction with
users.

To give an idea of what the management interface should
provide, we have to imagine the life cycle of a digital twin.
Figure 4 shows a simplified life cycle where the main steps of
a digital twin life appear:

« status change operations:

— install (prepare the configuration from development
state to installation state)
— connect/disconnect (connect to an existing CPS - or
simulation environment to reach instance state)
— start, pause, resume, stop (in life state)
« observation and query operations:
— query (introspection)
— view (run a specific monitor)
launch tool (data analysis, data enrichment, etc.)
archive (disconnect and prevent any future configu-
ration)

« simulation operations:

— clone (install another instance) (followed by a con-
nect)

— simulate (run an instance within a simulated environ-
ment)

— replay (replay a stored history)

Note that some operations require information with a high
level of abstraction such as an environment. High-level models
probably have to be designed. We come back to this aspect in
section (VI).

The service that makes a digital twin, a complete digital
twin, is to my opinion, the clone operation. This operation
is used when simulations are needed (to accelerate time, to
optimize process or physical arrangement, etc.). The obtained
clone may have to be modified (for studying variants) and
connected to another real environment, or to a virtual environ-
ment.

Ideally, a digital twin component encapsulates its data, in-
formation and knowledge. That is, a digital twin is responsible
for the access and delivery of information and thus controls
accesses. However, implementations may release this strong
assumption; it is then the developer’s responsibility to check
properties such as privacy, data protection, and so on.

To conclude this section, we can consider a digital twin as
a component. This helps us build, or more precisely assemble,
complex STS (socio-technical systems). In that sense, literature
rarely refers to digital twins (seen as software components) and
current digital twin development can hardly be called digital
twins as they do not compose. For instance in [8], Boyes and
Watson wrote ~Although a significant volume of literature has
sought to define the concept, there appears little agreement
on the composition of a ‘digital twin’.” In another article [12],
Michael and Wortmann build digital twins by software compo-
nent assembly but nothing specific to digital twin management
operation is proposed. Authors reuse a classical MAPE-K loop
for self-adaptive systems, and externalize digital twin data in
a data lake.

Now that a digital twin is considered as a component, the
next question is how to deal with its variability?

IV. DIGITAL TWIN AND VARIABILITY

Until now, we have considered a digital twin as a cyber-
physical system connected to another CPS, that can run
simultaneously. This is the instantiated and running version of

install

(Installation)

connect

[InDev

[Installed

disconnect Runnable

Be

[y

query/view/launch/archiye

clone/simulate/replay o

Data

start (w stop
v/

Running

4 (LifégauseﬁJresume/

{ Suspended

-/

Fig. 4. A possible digital twin life-cycle.

a digital twin. However, before this running version, a digital
twin exists in different forms. For instance:

o As developed (source code on the shelf, hardware speci-

fication)

o As installed (deployed source code on the destination

infrastructure - partial configuration, selected hardware)

o As configured (fully configured code and hardware)

o As running (the configured version in operation)

o As expected (simulations - future or alternate configura-

tions)

o Archived

At each stage, many variations are possible with different
hardware, tools or configurations. During its lifespan, a digital
twin may evolve by adding new models, new points of view,
new dimensions, new tools. We come back to this process
aspect in the next section (V).

The many faces of a digital twin, and the possibility of
being instantiated several times, raise the question of identi-
fication. This is an important point since data are collected
in a specific configuration, a specific context that had to
be kept for the sake of analysis consistency. If the refer-
ence system is important, it is not sufficient. As a solu-
tion, I propose a naming scheme like: NameOfReferenceSys-
tem:Installation Variant:Instance:Life (see states in figure 4)

All this leads to the need of a powerful version man-
agement system to manage the digital twin and its variants.
Git connected to variability models could be an idea as
suggested in [13]. The git tree could encode the variants in
their different levels of abstraction: from the fully configured
running instances to the totally abstract description where only
configuration patterns are identified without any values.

Now that a digital twin is considered as a component with
many variants, the next question is how is it built?

V. DIGITAL TWIN AND PROCESS

The target artifact being identified, the question is now: what
is the build process? The answer depends on a few factors: the

need for diversity in implementations and usages.

In fact, one specificity of digital twins is the heterogeneity
of its parts. A digital twin is a cyber-physical system with all
its complexity. Drivers and tools required to the connection
to the Reference System can be very different (sensors, 10T,
controllers, etc.), techniques to store data can also be diverse
(relational database, time series database, streaming storage,
simple files, etc.) and many tools for monitoring, presenting,
simulating, analyzing data, predicting, etc. can be reused.

Another specificity is the diversity of usages as shown by
the digital twin consortium in its Capability Periodic Table
[14]. This diversity of usage has obviously an impact on the
diversity of implementations.

The last observation is the digital twin lifespan that implies
that usages, tools and needs evolve during a long period of
time.

Facing this diversity and durability, the typical software
engineering answer for development is iteration. Each iteration
improves the digital twin with refined aspects, additional
analysis tools, new facets, etc. Following this, R. Parmar et
al. identify five principles in [15]:

Principle 1: Start with what you have
Principle 2: Set the data free

Principle 3: Move the digitization frontier
Principle 4: Seek new digital opportunities
Principle 5: Increment the models

The first principle is summarized in the sentence, “a full
audit of the existing sensors, connections, data, and analytical
models [of the organization]*, suppliers, and complementors,
and then using those resources to create the initial entity
model of the digital twin.” I would add tools, behaviors,
and algorithms to cover the dynamic aspects of the reference
system. The idea here is to collect and select what is inside
the digital twin boundary and outside. What is managed and
what is not. Building the digital twin becomes the realization

“4brackets are mine.

BettérControl 3)
-

Twin (2)
\.(

K
BetterControl (4)

RS (1)

Fig. 5. Reference system and its digital twin: improvement loop.

of services on top of all the information collected: services
for installing, configuring, running, simulating, and so on. As
a software engineer, this resembles the way large applications
or infrastructure are managed. This resembles DevOps tools:
generic (shell script, makefile), or dedicated (Ansible, Chef or
Puppet).

The second principle relies on the assumption that “the
more the data are set free, the greater the potential scope
of a digital twin.” I would add, beyond data accessibility
and all the ethical implications which are beyond the scope
of this article, the importance of data classification, data
organization, and metadata. All data produced must be labeled
with all the details of production (when, how, who, for what,
etc.) in order to facilitate access and analysis. If I agree on
principle, we must recall that data are related to privacy (for
human), to intellectual property (for companies), to secrecy
(for countries) and must have specific access policy. I remind
that encapsulating data makes the digital twin responsible for
accesses.

The third and fourth principles invite to focus on digitizing
all kinds of assets, processes, and interactions and ensuring that
the resulting data flows are compatible with the information,
context, and impact models that comprise the digital twin” [not
just digitizing physical assets] and “’to identify and execute new
digital opportunities to further extend the reach and coverage
of the digital twin.” These principles are consistent with our
first observation considering digital twins as a paradigm for
building new complex systems.

Finally, the fifth principle “requires an active extension of
the digital twin rather than simply maintaining and updating
the information, context, and impact models.” This, again,
meets software engineering principles were software and ap-
plications must evolve to remain of interest.

All these considerations lead to a dynamic evolutionary
process close to existing iterative development processes that
allow continuous improvement.

For instance, in figure 5 we show a development cycle with
four steps. First (1), the reference system is identified and,
second (2), a twin is developed. Then, a better control (3)
improves the twin thanks to powerful simulation or analysis
tools. Stopping the process here would be accepting the risk
of coming back to the previous, not as good control, in case of
digital twin halt or disconnection. I therefore propose to close
the improvement loop by integrating the better control (4) into

the reference systems.

In [8], Boyes and Watson claimed that [t]he concept of
direct control of a physical entity by its digital twin is a fallacy.
If a digital twin is subsumed into and becomes an essential
element of the control system architecture of a physical
entity, then it has ceased to be a digital twin and is now a
subsystem forming part of the physical entity.” Well, I guess
it is a matter of interpretation. Remember that whatever the
implementation of a digital twin is, it remains a model. That is,
an approximation, a set of views on a reference system. But it
is also more since results of analysis, predictions, simulations
of variants are parts of a digital twin. It is also possible to
enrich (extend) the control of an RS through a digital twin as
shown in figure 5. The reference system and its digital twin
become a couple of entities that evolve together.

Note that the reference system must be autonomous (i.e.,
being able to work properly independently). If a so-called
digital twin cannot be removed (unplugged) from its reference
system, it means we do not have a digital twin, but a part of
the reference system itself. Conversely, the digital twin cannot
operate without a reference system that feeds it with dataS. It
cannot operate, but it can be used, as an archive for example,
or to compute statistics or predictions from previously stored
data.

As software engineers, we are interested in languages for
describing all digital twin aspects. That is interfaces (services
and contracts), configuration (to the reference system or its
data feeder), user interfaces, contents (for deployment and
operation implementations), etc.

VI. DIGITAL TWIN AND MODELS

Cyber-physical systems have many facets. Many dimensions
could be described: shapes, locations, physical properties, data
properties, time properties, behaviors, costs, energy, docu-
mentation, requirements, ...All these dimensions have been
studied and tooled with dedicated software and models. Often,
independently. One major challenge is to make all these tools
and models cooperate smoothly...in duration. What are the
data or information that can be changed?e.g. for another
instance of the digital twin, for an optimized version of the
current digital twin. What consequences have a change in the
physical model onto the behavioral models? What impact has
a reduction of maintenance on reliability? The challenge is to
build a unified model (the digital twin) from heterogeneous
ones (its facets). Multi-model consistency management is still
an open problem (see [16] for instance).

I acknowledge any source of information as a model. A
script, a program, a configuration file, a diagram, etc. We may
explicitly have their metamodel (grammar), or not. They are
models anyway. Building a digital twin is gathering a consis-
tent federation of models (connected to a reality) responding
to specific evolving usages. In that sense, we can consider
digital twin engineering as model engineering, like Tisi et al.

SWhen the RS is a human, this step may be (for the time being) impossible.
6possibly a virtual reference system in case of simulation (see VIII).

Mgthactory

Serv1ces
Memorles\

;\

Fig. 6. Insight of digital twin internal with two instances. The red dashed
line separates type aspects from instance ones.

suggested in [17]. We think model federation [18] can be a
step forward in the capacity of managing interactions among
models. This approach helps build new models by linking
models and pieces of models together, and assigning a specific
semantic to each link.

There are already many types of models. However, I think
that specific models for digital twins are yet to be defined.
As previously suggested, what realizes the implementation of
digital twin is a set of scripts dedicated to implement man-
agement and services. For instance the clone and configure
implementations seem critical to me. Here, we probably need
new abstractions that could be represented in new models of
deployment, configuration, monitoring, cloning, and so on.

Now that we have digital twin as components and their mod-
els (or descriptions), we can explore an important difference
between type and instances.

VII. DIGITAL TWIN, TYPE AND INSTANCES

So far, I have avoided the question of the type/instance dif-
ference. This distinction is prevalent in modeling approaches.
Since 1994 [19], and more recently in [20], [21], the need
for a more complex hierarchy than the usual two levels is
acknowledged. For digital twins, an instance is a runnable
(or running) digital twin (see figure 4), i.e. a digital twin
connected to a reference system. Before this state, a digital
twin remains abstract, i.e. configuration values are missing to
be fully instantiated. An abstract digital twin defines a digital
twin type.

What is the scope defined by a digital twin component?
Do we need a single component per (instance of) product?
Does a single component “drive” many copies (instances)
of the same product? What about variants of this product?
These questions arise the same way in software components.
A classical solution is to make a distinction between instances
and a factory of instances.

Figure 6 refines figure 2. The memory stores data of a single
instance or many, of its variants (partly configured type), and
more generally of types (everything abstract). The memory
spans the type part and the instance part. The management
could be a digital twin factory, whose responsibility would be

Virtual K------7

Reference System

Fig. 7. A digital twin connected to a simulation (a virtual reference system).
Installed from simulation models.

to produce instances of core (Instl and Inst2 in the figure),
the storage for these instances in memories, and their Uls.

The type level describes information shared by instances.
This information can be organize with variants, for instance
different possible configurations described in a feature model.
This level maps to the conceptual level. The instance level
gives all values required to connect to a reference system. It is
the running level. As a component, a digital twin, must manage
both levels as a unit, consistently.

Now that we have digital twin as components with their
models (or descriptions), types and instances, we can explore
one important use, beyond mirroring a reference system:
simulation.

VIII. DIGITAL TWIN AND SIMULATION

Many digital twin articles refer to simulation, using a digital
twin as a simulator of the reference system. I think this is
misleading: a digital twin cannot be a simulation. A digital
twin requires a reference system to operate. If not a physical
one, it could be a simulated one. Then, following figure 7,
using a digital twin to collect and analyze data on simulation
is possible when the digital twin is connected to a virtual
reference system (VRS).

The VRS has to provide the expected connection points to
the digital twin. If not, the configuration options to a simulation
has to generate the proper glue. Nevertheless, special care
should be taken with the configuration of digital twins. As
an example, in a simulation, time can run very fast (or slow)
and GUI may become irrelevant.

Simulation models of the reference system are part of the
digital twin and are used to install, configure and connect a
VRS (figure 7). Data collected by the digital twin through
a simulation are also part of the DT. The source of data
must be identified, and data analysis, optimization searches,
predictions, are again full parts of the digital twin.

Notice that classical simulations - without digital twins -
also allow data analysis, optimization searches, and predic-
tions. One difference with a digital twin based simulation is
the organization of the simulation. Here again, the paradigm
aspect (see II) helps to improve the organization. Real parts of
interest have their digital twins, their data and memory, and are
organized. Another difference is the ability to mix real systems

shared
Ul ./ copied E
Cloud e . » ?
: 2 =
IT . « > ° A
TS T “
Sensors delegated E

Hardware

Fig. 8. Digital twins and the reference system cross all layers. Reused parts
may be shared, copied or delegated.

and simulations. Since digital twins can be connected to both,
it should be possible to build or integrate systems mixing CPS
and virtual parts, as we do in software with mockups during
test or integration.

IX. DIGITAL TWIN AND DIGITAL TWINS

This last section is no more about digital twins, but about
the composition of digital twins. Seen as components (see
IIl), they offer interfaces. Interfaces are great for surface
interactions, but what about internal data layers and services
like XR or simulations? Figure 8 illustrates the composition
problems of digital twins: all systems cross (almost) all layers.
I consider 5 layers : hardware, IoT (sensors), IT (business
layer), cloud (applications) and user interfaces. This view
is simplified. The layers can be physically distributed; IT,
cloud and UI rely obviously on hardware and UI are parts
of IT and applications. A reference system crosses over all
these layers. Whatever its size, a digital twin crosses-over
almost all layers; it should have no hardware (but sensors).
Simulations have neither hardware, nor sensors (well, not the
hardware part of sensors). Hence, composing digital twins
requires composition operators at each layer. Questions such
as “are sensors shared?” or "how logs are merged?” emerge.
In fact, many strategies are possible: sharing, delegating (using
a proxy), copying, ...and this, at each layer, for each “part”.
Note that, the reused parts may come from different status
installed, configured, or running depending on needs (and
probably the composed DT status itself).

My feeling is that in order to be fully operational, digital
twin composition cannot but rely on bricks that are digital twin
aware. Hence, simulators, XR renderers, data storage, etc. have
to adopt the digital twin paradigm introduced in section II and
offer appropriate services for digital twins.

X. CONCLUSION

As a paradigm, digital twin is widely used. However, the
current digital twin does not exist as a software entity. Articles
on digital twins present, with few details, software solutions
that are collections of applications, software, data, models
with no or very few real connection among them. When

a software component model is used, like in [12], nothing
specific to digital twins is highlighted. We propose a digital
twin architecture close to software components architecture.
It would be industrially relevant to define and standardize
a management interface based on a digital twin life cycle.
Services such as install, configure (to a real environment or
to a simulated environment), clone, start, stop, monitor, etc.
with high-level parameters (models) are to be considered. The
clone operation seems central to me.

The development of a digital twin component produces
many kinds of artifacts at different levels of concretization
(from instances - everything is configured and valued - to
pure abstractions) with possibly many configuration variants.
I envision the use of git to manage this diversity (tried, but
not evaluated). By chance, git happens to propose a clone
operation; this can be of interest. Such code management tools
are compatible with iterative development and permit the use
of many branches (variants).

I have also argued that the improvement of control through
the enhancement of digital twins must trigger the upgrade
of the reference system in order to ensure autonomy of the
real system. A digital twin cannot operate without a reference
system. However, it can be used as an archive or a simulation
for offline analysis. On the contrary, a reference system must
always be able to be used without its digital twin.

Finally, even if many models are already used for specific
aspects of digital twins, I think the most specific models
remain to be identified and defined: especially, management
and configuration models.

Hence, here are the top challenges I believe we face for
making digital twins concrete artifacts:

1) Identifying management models and management ser-

vices (the component model)

2) Improving capacities of multi-model management

3) Controlling encapsulation in presence of scattered stor-

age for security and privacy

4) Understanding digital twin interactions (including inter-

nal interactions) in order to ease their composition

5) Understanding (and tooling) the RS/DT improvement

loop

To conclude, digital twin is still at paradigm stage but to
become a digital artifact, and a scientific object, a lot of
software engineering research has to be performed. Many
candidates, none elected.

ACKNOWLEDGMENT

I want to thank Jean-Christophe Bach, Gaélic Béchu, Car-
oline Cao, Fabien Dagnat, Salvador Martinez, Quentin Pérez,
Christelle Urtado, and Sylvain Vauttier for the fruitful discus-
sions we had.

REFERENCES

[1] M. Grieves, “Digital twin: manufacturing excellence through virtual
factory replication,” 2014.

, “Product lifecycle management: the new paradigm for enterprises,”

International Journal of Product Development, vol. 2, no. 1-2, pp. 71—

84, 2005.

(2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital Twin in Industry:
State-of-the-Art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405-2415, Apr. 2019, conference Name: IEEE Transactions
on Industrial Informatics.

R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the IoT Context:
A Survey on Technical Features, Scenarios, and Architectural Models,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785-1824, Oct. 2020,
conference Name: Proceedings of the IEEE.

K. Y. H. Lim, P. Zheng, and C.-H. Chen, “A state-of-the-art survey of
Digital Twin: techniques, engineering product lifecycle management and
business innovation perspectives,” Journal of Intelligent Manufacturing,
vol. 31, no. 6, pp. 1313-1337, Aug. 2020. [Online]. Available:
https://doi.org/10.1007/s10845-019-01512-w

M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmeister,
M. Wimmer, and A. Wortmann, “A Cross-Domain Systematic Mapping
Study on Software Engineering for Digital Twins,” Journal of Systems
and Software, vol. 193, p. 111361, Nov. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121222000917

Y. Lin, L. Chen, A. Ali, C. Nugent, C. Ian, R. Li, D. Gao,
H. Wang, Y. Wang, and H. Ning, “Human Digital Twin: A
Survey,” Dec. 2022, arXiv:2212.05937 [cs]. [Online]. Available:
http://arxiv.org/abs/2212.05937

H. Boyes and T. Watson, “Digital twins: An analy-
sis framework and open issues,” Computers in Industry,
vol. 143, p. 103763, Dec. 2022. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0166361522001609

A. Walters, “Gemini Principles,” Jan. 2019. [Online]. Available:
https://www.cdbb.cam.ac.uk/DFTG/GeminiPrinciples
A ‘Wortmann, “Digital Twin Definitions,”

https://awortmann.github.io/research/digital_twin_definitions/, 2023.

J. Aldrich, “The power of interoperability: why objects are inevitable,”
in Proceedings of the 2013 ACM international symposium on New
ideas, new paradigms, and reflections on programming & software.
Indianapolis Indiana USA: ACM, Oct. 2013, pp. 101-116. [Online].
Available: https://dl.acm.org/doi/10.1145/2509578.2514738

J. Michael and A. Wortmann, “Towards Development Platforms for
Digital Twins: A Model-Driven Low-Code Approach,” in Advances in
Production Management Systems. Artificial Intelligence for Sustainable
and Resilient Production Systems, A. Dolgui, A. Bernard, D. Lemoine,
G. von Cieminski, and D. Romero, Eds. Cham: Springer International
Publishing, 2021, vol. 630, pp. 333-341, series Title: IFIP Advances

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

in Information and Communication Technology. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-85874-2_35

J. C. Casquina and L. Montecchi, “A proposal for organizing source
code variability in the git version control system,” in Proceedings of the
25th ACM International Systems and Software Product Line Conference
- Volume A. Leicester United Kingdom: ACM, Sep. 2021, pp. 82-88.
[Online]. Available: https://dl.acm.org/doi/10.1145/3461001.3471141
Digital Twin Consortium, “Capabilities Periodic Table.” [Online].
Available: https://www.digitaltwinconsortium.org/initiatives/capabilities-
periodic-table/

R. Parmar, A. Leiponen, and L. D. W. Thomas, “Building
an organizational digital twin,” Business Horizons, vol. 63,
no. 6, pp. 725-736, Nov. 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0007681320301014
P. Stiinkel, H. Konig, Y. Lamo, and A. Rutle, “Comprehensive Systems:
A formal foundation for Multi-Model Consistency Management,”
Formal Aspects of Computing, vol. 33, no. 6, pp. 1067-1114, Dec.
2021. [Online]. Available: https://dl.acm.org/doi/10.1007/s00165-021-
00555-2

M. Tisi, H. Bruneliere, J. de Lara, D. Di Ruscio, and D. Kolovos, “To-
wards Twin-Driven Engineering: Overview of the State-of-The-Art and
Research Directions,” in Advances in Production Management Systems.
Artificial Intelligence for Sustainable and Resilient Production Systems,
ser. IFIP Advances in Information and Communication Technology,
A. Dolgui, A. Bernard, D. Lemoine, G. von Cieminski, and D. Romero,
Eds. Cham: Springer International Publishing, 2021, pp. 351-359.

C. Guychard, S. Guérin, A. Koudri, F. Dagnat, and A. Beugnard,
“Conceptual interoperability through Models Federation,” in Semantic
Information Federation Community Workshop, 2013.

Jim Odell, “Power Types,” J. Object-Oriented Programming, 7(2), pp.
8-12, 1994.

C. Atkinson and T. Kiihne, “The Essence of Multilevel Metamodeling,”
in UML 2001 — The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, G. Goos, J. Hartmanis, J. van
Leeuwen, M. Gogolla, and C. Kobryn, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, vol. 2185, pp. 19-33, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/3-540-45441-1_3

C. Atkinson, M. Gutheil, and B. Kennel, “A Flexible Infrastructure
for Multilevel Language Engineering,” IEEE Transactions on Software
Engineering, vol. 35, no. 6, pp. 742-755, Nov. 2009, conference Name:
IEEE Transactions on Software Engineering.

