
HAL Id: hal-04183020
https://hal.science/hal-04183020

Submitted on 18 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining GAN with reverse correlation to construct
personalized facial expressions

Sen Yan, Catherine Soladié, Jean-Julien Aucouturier, Renaud Seguier

To cite this version:
Sen Yan, Catherine Soladié, Jean-Julien Aucouturier, Renaud Seguier. Combining GAN with reverse
correlation to construct personalized facial expressions. PLoS ONE, 2023, Affective Computing and
Human-Computer Interactions, 18 (8), pp.e0290612. �10.1371/journal.pone.0290612�. �hal-04183020�

https://hal.science/hal-04183020
https://hal.archives-ouvertes.fr


Combining GAN with reverse correlation to construct
personalized facial expressions

Sen Yan1*, Catherine Soladié1, Jean-Julien Aucouturier2, Renaud Seguier1

1 CentraleSupelec, IETR, Rennes, France
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Abstract

Recent deep-learning techniques have made it possible to manipulate facial expressions
in digital photographs or videos, however, these techniques still lack fine and
personalized ways to control their creation. Moreover, current technologies are highly
dependent on large labeled databases, which limits the range and complexity of
expressions that can be modeled. Thus, these technologies cannot deal with non-basic
emotions. In this paper, we propose a novel interdisciplinary approach combining the
Generative Adversarial Network (GAN) with a technique inspired by cognitive sciences,
psychophysical reverse correlation. Reverse correlation is a data-driven method able to
extract an observer’s ‘mental representation’ of what a given facial expression should
look like. Our approach can generate 1) personalized facial expression prototypes, 2) of
basic emotions, and non-basic emotions that are not available in existing databases, and
3) without the need for expertise. Personalized prototypes obtained with reverse
correlation can then be applied to manipulate facial expressions. In addition, our
system challenges the universality of facial expression prototypes by proposing the
concepts of dominant and complementary action units to describe facial expression
prototypes. The evaluations we conducted on a limited number of emotions validate the
effectiveness of our proposed method. The code is available at
https://github.com/yansen0508/Mental-Deep-Reverse-Engineering.

1 Introduction 1

Facial expression manipulation (FEM) is an image-to-image translation technique that 2

aims to automatically edit face photographs of real humans to change their 3

appearance [1, 2]. With the recent development of deep learning methods [3–6], FEM 4

techniques have become highly realistic and attracted increasing attention in the media 5

and general public, such as the ubiquitous face filters in TikTok, Instagram, and Zoom 6

and the computer graphic animations in movies and video games. 7

However, most FEM techniques have three weaknesses. Lack of fine control. For 8

most FEM-based systems, the smallest editable components of manipulation are the 9

global attributes, such as emotion labels [4, 5]. Although these systems can synthesize 10

different types of facial expressions, the facial expression prototype of each emotion is 11

often unique. What if an AI system is required to generate a happy face only with 12

“smiling” eyes while the other areas of the face remain neutral? These FEM techniques 13

are unable to handle such tasks. Lack of ability to be personalized. Most 14
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FEM-based systems are based on the emotional prototypes defined by Ekman et al., 15

which are supposed to be universally perceived by humans [7, 8]. However, the 16

universality of Ekman’s prototypes is now being challenged by a growing number of 17

psychologists [9–11]. Indeed, facial expression prototypes should be diverse among 18

different people. Yet, there is no FEM-based application that can generate their 19

personal facial expressions. Lack of variety. As research in psychology covers, there 20

are more than 4000 labels of emotions [12]. Due to the limitation of large and reliable 21

labeled data for training, most AI tools can only deal with Ekman’s basic emotions, i.e., 22

happiness, anger, sadness, surprise, fear, and disgust [13]. Non-basic emotion labels, 23

such as self-confidence, are not explicitly available in existing databases. In addition to 24

the lack of large labeled data, creating such a database with various emotion labels 25

comes with many concerns: 1) time-consuming for the annotation and 2) requiring 26

expertise (e.g., certified FACS coders [13]) for some labeling tasks. 27

1.1 Requirements 28

To address more critical domains, such as psychotherapy or the service industry, AI 29

applications should describe, understand or detect more emotions in real life. For 30

instance, one can imagine training to express self-confidence before a job interview or 31

dealing with anxiety in a therapeutic context [14]. Thus the FEM-based process needs 32

to adapt to more various and fine-grained requirements. 33

• Flexibility. The process should be capable of personalizing facial expressions for 34

observers. That is, generating the desired expression that meets the need of the 35

observer. As in most literature, we refer to the person whose face is being 36

manipulated as an “actor”, and to the person supervising/designing the 37

manipulation as an “observer”. In case they want to personalize their own facial 38

appearance, the actor and the observer can be the same person. 39

• Exhaustiveness. The process should be applicable to any expressions, and not 40

limited to basic facial expressions. This can be complex emotions or social 41

attitudes (e.g., self-confidence) as well as more general expressions (e.g., how do 42

you want to be seen during your job interview?). 43

• Expertise-free. The process should be controllable by any observers in a precise 44

and consistent manner without the need for expert knowledge (e.g., 45

FACS-certified coders, and knowledge in affective computing). 46

1.2 Contribution 47

In this paper, we propose a novel interdisciplinary approach (see Fig 1) to personalize 48

facial expressions by combining Generative Adversarial Networks (GANs) [15] with a 49

technique inspired by the cognitive sciences, psychophysical reverse correlation [16,17]. 50

Reverse correlation is both an experimental procedure and an analysis technique able to 51

extract facial prototypes, or ‘mental representations’ of any given desired facial 52

expression from the observer. In other terms, our approach identifies which attributes 53

need to be modified to better fulfill the need of the observer, resulting in the generation 54

of personalized facial expressions. This can meet the requirement of Flexibility. 55

Differing from typical GANs that can manipulate facial expressions, our approach 56

has the following strengths. 57

• Exhaustiveness. One can address any emotion or social attitude, with no need 58

to build a dedicated training database for each emotion or social attitude. Rather, 59

we use local attribute to manipulate facial expressions, which can cover a wide 60
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Fig 1. The framework of our approach to personalize facial expressions. We
combine the recent deep learning technique, i.e., Generative Adversarial Network
(highlighted in blue), with psychophysical reverse correlation, a recently emerging
technique from the cognitive sciences (highlighted in green). We employ the same GAN
to extract personalized control parameters (i.e., mental representation) and to
personalize facial expressions.

range of local facial movements, in order to reproduce the observer’s prototype, 61

regardless of what the prototype’s target expression is. 62

• Expertise-free. No expert knowledge in affective computing or certified FACS 63

coder [13]) is needed to create the personalized prototype since our approach only 64

requires the observer’s perception (i.e., subjective judgment) rather than the 65

observer’s expertise. 66

Conversely, differing from typical reverse correlation approaches which use 3D 67

virtual avatars [18], using FEM techniques (such as GANs) allows manipulating real 68

faces (2D pictures), thus providing an easier and more intuitive way to edit facial 69

expressions. In detail, we use the same tool (GAN, for instance) twice: first, to generate 70

experimental stimuli for the reverse correlation procedure, and then to apply the 71

resulting prototype for the manipulation. This can ensure that the manipulation is 72

consistent with the mental representation of the observer. 73

Finally, the mental prototype extracted in the intermediate step (i.e., reverse 74

correlation procedure) does not especially fit any so-called universal prototype. It is 75

specific to the observer. To enhance the definition of facial expression prototypes, we 76

introduce below the concept of dominant and complementary action units to precisely 77

describe facial expression prototypes. 78

1.3 Related work 79

Here, we briefly review the facial expression manipulation techniques (FEM) from 80

computer science, and the reverse correlation procedure from cognitive science. 81

August 18, 2023 3/21



1.3.1 Facial expression manipulation 82

Generative Adversarial Networks (GANs) [1, 2, 15] have achieved a series of impressive 83

results in image-to-image translation tasks. This technique has widely spread to diverse 84

domains such as art [19], medical research [20], and entertainment [21,22]. The inputs 85

of the model are usually a face image and a set of control parameters. The output is a 86

new face image. According to the control parameters for manipulation, the 87

manipulation can be divided into two categories: global attribute manipulation and 88

local attribute manipulation. 89

Preamble. In detail, global attribute manipulation involves altering the overall 90

appearance of the face. These attributes encompass aspects such as gender, age, face 91

shape, face structure [6, 23,24], and emotion [4, 25,26]. On the other hand, local 92

attributes are specific features or localized regions that can be individually modified to 93

alter the facial appearance. These attributes focus on fine-grained details and localized 94

features, such as hairstyle, presence of facial hair (beard, mustache), presence of 95

accessories (glasses, earrings) [6, 23,24], specific facial components (e.g., mouth 96

shape [27–29], cheek, and eyebrows [29]) and facial muscles [3, 18]. These attributes 97

usually do not alter the entire facial structure and identity. 98

As one of the representative models, the StyleGAN family (StyleGAN [6], 99

StyleGAN2 [23], StyleGAN3 [24]) provided state-of-the-art architectures to generate 100

high-resolution and more realistic faces. These models were able to manipulate not only 101

global attributes such as gender, age, skin, face shape, and bone structure but also local 102

attributes such as hairstyle, beard, mustache, and wearing accessories. Moreover, some 103

StyleGAN-based models achieved editing photo-related features (global attributes) such 104

as rotating, lighting, and super-resolution [21,22]. 105

However, all of these mentioned approaches [6, 21–24] are face-based. They do not 106

contribute to facial expression manipulation (FEM) since these approaches edit neither 107

the global attributes such as emotions nor the local attributes such as specific facial 108

components (eyebrows, eyelids, nose, etc.) and facial muscles. On the premise of FEM, 109

we focus on the global attribute manipulation that edits the overall expressions such as 110

emotions, and the local attribute manipulation that edits specific facial components and 111

facial muscles. 112

Global attribute manipulation. As a representative FEM task, face reenactment 113

mainly aims at animating facial expressions from the source video to the target 114

video [30–34]. As a result, the entire facial expressions (global attributes) are copied 115

from the source video to the target video. The other attributes that are not related to 116

the facial expression such as gender, age, face shape, face structure (global attributes), 117

and hairstyle, beard, accessories (local attributes) are totally the same as the target 118

video. In this task, the Face2Face model [31] and the dual-generator-based 119

approach [32] use 3D landmarks to encode head pose, face shape, and facial expressions, 120

and approaches such as ReenactGAN [33] and FReeNet [34] use 2D facial landmarks. 121

Differing from face reenactment that directly copies facial expressions, the following 122

approaches aim at editing the overall expressions. StarGAN [4] proposed a unified 123

model that transfers real faces from one of the six basic emotions to another. 124

G2-GAN [25] employed the overall facial geometry as controllable parameters to 125

synthesize the six basic emotions. By modeling the motion of facial landmarks as curves 126

encoded as points on a hypersphere, Otberdout et al. [26] proposed an approach that 127

generated the six basic emotions from a given neutral face. 128

Although the purpose of these mentioned approaches is generating realistic facial 129

expressions, manipulating global attributes for FEM can not fulfill the aforementioned 130

requirements (see Subsection Requirements). Flexibility: For a given emotion, the 131

prototypes of this emotion can be limited by the database. For instance, if all the happy 132

faces in the database have lip corners raised and mouths opened, the model cannot 133
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generate a happy face with lip corners raised but with mouth closed. Exhaustiveness: 134

Due to the limitation of the database that only a few emotion labels are available, these 135

FEM models [4, 25, 26] that directly controlled global attributes (such as emotion labels 136

and overall facial landmarks) can only deal with limited emotion categories such as the 137

six basic emotions of Ekman. However, the reality is that there are already more than 138

4000 emotional labels [12]. 139

Local attribute manipulation. Otberdout et al [29] proposed an approach both 140

modeling the temporal dynamics of expressions and deforming the neutral mesh to 141

obtain the expressive counterpart. This approach achieved dynamically generating 142

different local facial movements mostly around the mouth (e.g., bare teeth, high smile, 143

lips up, mouth down, mouth extreme, mouth open). Zaied et al [27,28] proposed 144

geometric and geometric-machine learning methods mainly to personalize smiles. 145

However, these approaches [27–29] mainly manipulate the region around the mouth. 146

Departing from these approaches, GANimation [3] can generate anatomically-aware face 147

animation by taking a list of action units (AUs) as input. AUs [13], proposed by the 148

psychologist Paul Ekman, are defined by the contraction or relaxation of one or some 149

muscles. Differing from the emotion labels (i.e., global attributes) that require human 150

interpretation [11], these local attributes are objective. They only contain local 151

anatomical information about the face and can be used in combination to describe facial 152

expressions. For instance, the prototype of happiness (proposed by Ekman) [13] is the 153

combination of AU6 (cheek raiser) and AU12 (lip corner puller). These local attributes 154

(i.e., AUs) involve vast facial areas such as eyebrows, eyelids, cheek, nose, mouth, and 155

jaw. For more information, see S1 Appendix in supporting information. 156

In this paper, we chose GANimation [3] as a tool to synthesize facial expressions by 157

controlling local attributes (i.e., AUs). Compared to editing global attributes such as 158

emotions of the face, editing AUs (i.e., local attributes) can achieve fine-grained control 159

and thus have the potential to personalize facial expressions that meet different needs of 160

different observers. This has the potential to fulfill the requirement of Flexibility. 161

Even though GANimation [3] can generate various facial expressions by combining 162

different AUs, it lacks the ability to determine which AUs should be activated to 163

generate the desired facial expressions that are not explicitly available in the existing 164

database. This limitation arises from the need for expert knowledge to identify the 165

appropriate AUs for generating the desired facial expression. This cannot meet the 166

requirements of Exhaustiveness and Expertise-free. To the best of our knowledge, 167

GANimation is the appropriate tool for the moment, but it can be replaced in the 168

future by other state-of-the-art tools that manipulate local attributes. 169

1.3.2 Reverse correlation 170

The reverse correlation process is a powerful data-driven method widely used in the 171

field of cognitive science to extract mental representations of observers (or called 172

participants). Based on observers’ judgments of a large quantity of randomly-varied 173

stimuli, reverse correlation is able to reverse-engineer what perceptual representations 174

subtend these judgments [35]. This can help researchers to identify the neural 175

mechanisms and processing strategies involved in perception. This process is widely 176

employed to study the perception of faces [10,18,36,37], speech [38–40] and 177

bodies [41,42]. Note that the works [41,42] use reverse correlation to understand how 178

humans identify gender via bodies, and the work [36] focuses more on identity, gender, 179

with/without expression via faces. These works are far from the research on facial 180

expressions. 181

In an influential example, Jack et al. [10] randomly generated 4800 trials (i.e., 182

stimuli generation). Each trial consists of one dynamic facial animation (called stimuli) 183

created by the 3D morphing tool of [18]. 15 Western Caucasian and 15 East Asian 184
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observers were asked to categorize the random animations into six basic emotion 185

categories (i.e., perceptual experiment). The authors then used reverse correlation to 186

extract one mental representation of each emotion for each cultural group ((i.e., mental 187

representation computation)) and conclude that these representations were, in fact, not 188

culturally universal. This work can in principle produce control parameters for its 189

generative model, i.e., generate a 3D synthetic face that maximizes the probability that 190

a given observer judges it representative of one of the tested emotion categories. 191

As aforementioned, we choose GANimation [3] as a tool to edit AUs (local 192

attributes) thus flexibly altering facial expressions. This can fulfill the first requirements 193

(see Requirements), yet the second and the third requirement (i.e., Exhaustiveness 194

and Expertise-free) cannot be addressed. In order to fulfill all requirements, we can 195

use reverse correlation process to obtain the mental prototype exclusively for the 196

observer. According to the mental prototype, the system can identify which AUs need 197

to be activated to generate facial expressions exclusively for the observer (i.e., 198

personalized). The entire reverse correlation process does not rely on expert knowledge 199

(such as FACS [13], psychology) since reverse correlation requires only the observer’s 200

perception (i.e., subjective judgment on the stimuli). 201

To sum up, we propose a novel interdisciplinary approach by combining the reverse 202

correlation process with GANimation to fulfill all the aforementioned requirements: 203

Flexibility, Exhaustiveness, and Expertise-free. As shown in Fig 1, GANimation 204

can randomly generate arbitrary stimuli by editing different AUs (local attributes). By 205

adopting reverse correlation process, the mental prototype of the observer (a vector of 206

AUs) can be extracted. This prototype can be regarded as the control parameter of 207

GANimation and finally, GANimation synthesizes the personalized facial expression of 208

the observer. 209

2 Method 210

Our approach is composed of four successive steps (in Fig 1). In the first step (Stimuli 211

generation), based on the real face of an actor, a generative model (denoted by GAN) is 212

applied to synthesize a large number of arbitrary facial expressions (i.e., 213

reverse-correlation stimuli). Then (in Perceptual experiment), the observer performs a 214

perceptual experiment of reverse correlation in which the input is the generated stimuli. 215

Next (in Mental representation computation), based on the responses of the observer, 216

we compute the dominant AU and the complementary AUs and then construct the 217

mental representation (i.e., personalized control parameters). And (in Personalized 218

manipulation), according to the mental representation, we employ the same generative 219

model (i.e., GAN) to generate the personalized facial expression that meets the 220

observer’s expectation. At the end (in Experiment setting), we detail the setting in 221

terms of implementation and experiment. 222

2.1 Stimuli generation 223

To generate input stimuli (random facial expressions) for reverse correlation, we can 224

employ any tool that can control objective local attributes. Here, we choose 225

GANimation [3] controlled by facial action units (AUs) [13] to synthesize random facial 226

expressions (i.e., reverse-correlation stimuli). In this step, GANimation takes as input 227

an image of the actor’s face (e.g. captured with an emotionally neutral expression) and 228

a vector of AUs to create a deformed face (i.e., stimulus). 229

In terms of the vector of AUs, GANimation is capable of manipulating 16 AUs by 230

activating or deactivating the corresponding AU. While simultaneously activating too 231

many AUs typically will create visual artifacts. Therefore, we generate stimuli by only 232
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activating 3 AUs. Combining 3 out of 16 AUs, there can be C3
16 = 560 possible AU 233

vectors , where C is the mathematical combination function. For more details about 234

GANimation, please see the literature [3] and S1 Appendix. 235

2.2 Perceptual experiment 236

The second step of our approach is the perceptual experiment. For each perceptual 237

experiment, observers perform m trials. In each trial of the perceptual experiment, a 238

pair of randomly generated stimuli is presented to the observer. Each pair of randomly 239

generated stimuli is displayed only once. The observer is asked to choose which stimulus 240

of the given pair best corresponds to the target expression (e.g., “which of these two 241

faces looks happier?”). Note that for one trial, if we randomly select a pair of 3 242

AU-activated stimuli, there are C2
560 ≈ 1.56× 105 possible combinations. For each 243

perceptual experiment, the set of m trials is randomly selected from the 244

C2
560 ≈ 1.56× 105 trials. 245

2.3 Mental representation computation 246

Here, we obtain the mental representations by a two-step computation: dominant action 247

unit computation and complementary action units computation. The purpose of the 248

dominant action unit computation is to determine which action unit has a significant 249

effect on the perception of the observer. We then determine the complementary action 250

units, i.e., in combination with the dominant action unit, which action units also drive 251

the perception of the observer. 252

We’ll use mathematical notation to avoid any ambiguity. To this end, we define Ω as 253

all the trials within a perceptual experiment, where |Ω| = m. Note that in this paper, |.| 254

represents the cardinality of the set. According to the activation or deactivation of a 255

given action unit AUi (i is the subscript number of AU), each perceptual experiment Ω 256

can be divided into three subsets. 257

• Ω{i∗}: the subset of trials in which one of the paired stimuli has AUi activated 258

and another one has AUi deactivated. 259

• Ω{i}: the subset of trials in which both stimuli have AUi activated. 260

• Ω{i}: the subset of trials in which both stimuli have AUi deactivated. 261

Dominant action unit computation. We first define ZΩ{i∗} as the set of stimuli 262

selected by the observer from the subset Ω{i∗}, and Φi as the set of all stimuli in which 263

AUi is activated. We then count P (i|Ω{i∗}) the proportion of the selected stimuli that 264

have AUi activated in the subset Ω{i∗}, i.e., how likely an activated AUi is to drive the 265

observer’s perception. 266

P (i|Ω{i∗}) =
|ZΩ{i∗} ∩ Φi|

|ZΩ{i∗} |
(1)

Finally, we can determine the action unit AUi with the largest proportion P (i|Ω{i∗}) 267

as the dominant action unit denoted by AUd. d is the subscript number of dominant 268

AU. 269

d = argmax
i

P (i|Ω{i∗}) (2)

Complementary action units computation. Similar to the definition of Ω{i}, 270

we specify Ω{d} as the subset of trials where both stimuli have dominant AUd activated. 271

We continue to divide subset Ω{d} into three subsets according to the activation status 272

of the non-dominant AU (denoted by AUj , where j is the subscript number of AU). 273
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• Ω{d,j∗}: under the premise that each pair of stimuli has AUd (the dominant action 274

unit) activated, the subset of trials in which one of the paired stimuli has AUj 275

activated and another one has AUj deactivated. 276

• Ω{d,j}: under the premise that each pair of stimuli has AUd (the dominant action 277

unit) activated, the subset of trials in which each pair of stimuli has AUi activated. 278

• Ω{d,j}: under the premise that each pair of stimuli has AUd (the dominant action 279

unit) activated, the subset of trials in which each pair of stimuli has AUi 280

deactivated. 281

Since previously the dominant action unit has been determined, the complementary 282

action units can not be the dominant one (i.e., ∀AUj ̸= AUd). We define ZΩ{d,j∗} as the 283

set of stimuli selected by the observer from the subset Ω{d,j∗}, and Φj as the set of all 284

stimuli in which AUj is activated. We compute P (j|Ω{d,j∗}) the proportion of selected 285

stimuli in subset Ω{d,j∗} that have AUj activated, i.e. how likely the addition of AUj to 286

dominant AUd is to drive the observer’s perception. 287

P (j|Ω{d,j∗}) =
|ZΩ{d,j∗} ∩ Φj |

|ZΩ{d,j∗} |
(3)

In practice, we limit the number of complementary action units by introducing a 288

threshold Tq (to separate complementary AUs and non-complementary AUs). 289

C = {j|P (j|Ω{d,j∗}) ≥ Tq} (4)

Note that C is the set of all the subscript numbers of complementary AUs. 290

The output of this step is the mental representation (i.e., personalized control 291

parameters for facial expression manipulation). We construct the mental representation 292

of the observer (as aforementioned in Stimuli generation, a 16-dimensional binary AUs) 293

by activating the dominant action unit and all the complementary action units. 294

2.4 Personalized manipulation 295

Once the mental representation of the observer is extracted, we apply personalized 296

manipulation on each frame. To be consistent with the mental representation and the 297

final manipulation, we employ the same tool (GANimation [3]) for the stimuli 298

generation and the personalized manipulation. To make the video compatible with 299

GANimation (especially with the dimension of the face), we crop, align and resize the 300

face of the actor in each frame. 301

2.5 Experiment setting 302

Implementation: GANimation model. We choose GANimation [3] as the tool to 303

generate facial expressions by editing local attributes, namely action units (AUs) [13]. 304

We use the code of GANimation released by its authors. All settings are unchanged. 305

The input image and the output image are 148px× 148px. To crop, align, and resize 306

the face, we employ OpenFace [43]. 307

Implementation: mental representation computation. As aforementioned, we 308

determine a dominant AU for one emotion as the action unit that dominantly drives the 309

observer’s perception. For the complementary AUs, we need to determine which AUs 310

combined with the dominant AU have a significant effect on driving the observer’s 311

perception. Therefore, we need to set a relatively high threshold Tq to eliminate most 312

AUs with less significant proportions P (j|Ω{d,j∗}). Indeed, Tq = 50% corresponds to the 313

situation in which, among each pair of AUd-activated stimuli, the observer selects as 314
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many AUj-activated stimuli as AUj-deactivated stimuli. This means that AUj carries 315

no information content for this experimental task. To identify which AU is activated 316

that positively influences the perception of the observer, the threshold Tq should be 317

significantly higher than 50%. Considering that state-of-the-art prototypes [13, 18] have 318

2 to 5 AUs activated, to align with state-of-the-art prototypes, we manually set the 319

threshold Tq to 80% for happiness, sadness and anger and 70% for self-confidence. Thus 320

all the personalized prototypes can have 2 to 5 AUs activated. 321

Experimental protocol: observers. Four observers (one female) participated (in 322

October 2021) in the perceptual experiment, all relatively young (mean=27.7yo) adults 323

of three cultural groups: Brazil (1), China (2), and France (1), respectively denoted by 324

observers #1 to #4. Only one observer had experience in affective computing, and 325

nobody is a certified coder in Facial Action Coding System [13] or a psychologist. Each 326

observer signed informed consent, and the experimental data were anonymous. 327

Experimental protocol: perceptual experiment. The perceptual experiment 328

aims to illustrate that our approach can personalize the facial expressions of a given 329

emotion, even though this emotion is not available in existing deep-learning databases. 330

Note that the purpose of the perceptual experiment is not to give extensive results or to 331

discuss facial expression prototypes. We chose three basic emotions (happiness, sadness, 332

and anger) that existed in deep-learning databases and one non-basic emotion 333

(self-confidence) that is not explicitly available in existing deep-learning databases. Each 334

of the four observers participated in four different experimental tasks to extract his/her 335

mental representation of happiness, sadness, anger, and self-confidence. In related work 336

using reverse correlation [10,37,38,40], the average number of trials for the perceptual 337

experiment of one emotion varies from 700 to 1800. For each experimental task, we 338

decided that observers performed m = 840 trials. The question was fixed and unique, 339

e.g., “Which of these two faces looks happier?” The order of the four experimental tasks 340

was counterbalanced among observers, and all experimental tasks used the same actor’s 341

photograph. It took about 40 to 60 minutes for one observer to complete a task. The 342

time interval between experimental tasks was set to half a day. All experiments were 343

conducted in a quiet room in the lab, using a custom computer graphic interface 344

implemented in PsychoPy. 345

Ethics statement. Our work does not require an ethics statement, since the risk in 346

our work is minimal. 1) The identity of individuals is not known. 2) There is no way to 347

track them from the data in the database. 3) There is no social or physical risk. 4) The 348

psychological risk is absent since we asked participants according to their perceptions. 349

5) All the observers and participants signed informed consent forms and all the data 350

were totally anonymous. 351

3 Results and discussion 352

For the results, we adopt an example from an observer to illustrate and discuss the 353

dominant and complementary AUs computation in Dominant and complementary AUs 354

computation, then list and discuss all personalized prototypes and the corresponding 355

manipulations in Personalized prototypes. 356

3.1 Dominant and complementary AUs computation 357

Fig 2 details dominant and complementary AUs computations of each emotion (happy, 358

sad, angry, and confident) from observer #2. See S1 Fig-S3 Fig for the computations 359

from other observers. As mentioned in Mental representation computation, the 360

proportion of each AU is computed based on the corresponding subset of trials (see 361

Eq (1) and Eq (3)). 362
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Fig 2. The results for dominant and complementary AUs computation from
observer #2. Note that “Dom.” = dominant AU computation; “Comp.” =
complementary AUs computation; “Conf.” = self-confident. In each chart, the
proportion for each AU is computed based on the corresponding subset of trials. We
highlight the dominant AU in red and the complementary AUs in yellow. The
thresholds for the complementary AUs computation are marked by yellow dashed lines.

The concept of dominant and complementary AUs contains more information about 363

emotional prototypes than a list of activated AUs in the universal prototypes [13]. Here 364

are our observations. Similar observations can be found in supporting information (S1 365

Fig-S3 Fig). 366

The dominant AU drives the observer’s perception. As defined in Mental 367

representation computation, the dominant AU is the AUi with the largest proportion 368

P (i|Ω{i∗}), where i ∈ µ. As shown in the first row of Fig 2, the corresponding 369

proportions exceed 80%. This means the observer has a significant probability to choose 370

the facial expression that has the dominant AU activated. 371

We can observe the dependency between the dominant AU and the 372

complementary AUs. For the dominant AU computation shown on the first row of 373

Fi 2, the complementary AUs have much lower proportions than that of the dominant 374

AU. For instance, in the histogram for dominant AU computation of “happy”, the 375

proportion of AU6 being selected is just 52% (note that AU6 is later determined to be 376

the complementary AU). That is to say in the following situation when the observer saw 377

a pair of stimuli that one had AU6 activated and another one did not have AU6 378

activated; the observer #2 made a nearly random selection (i.e., 52% to select the 379

stimulus that had AU6 activated and 48% to select the stimulus that did not have AU6 380

deactivated). This indicates that a single complementary AU can not drive the 381

observer’s perception as much as the dominant AU. However, for the complementary 382

AU computation shown on the second row of Fig 2, when the dominant AU is activated, 383

the facial expressions that have the complementary AUs activated have a significant 384

probability of being selected by the observer. For instance, in the histogram for 385

complementary AUs computation of “happy”, the proportion of AU6 being selected is 386

100%. That is to say in the following situation when the observer saw a pair of stimuli, 387

both stimuli had AU12 activated, one of them had AU6 activated but another one did 388

not have AU6 activated; the observer #2 always chose the stimulus that have AU6 389

activated. This means that complementary AUs can drive the observer’s perception only 390

in combination with the dominant AU. 391
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3.2 Convergence efficiency 392

We discuss here the convergence efficiency of our approach by monitoring the 393

convergence of 1) dominant AU computation and 2) complementary AUs computation 394

as we increase the number of trials used in the reverse correlation procedure. 395

To do so, we compute 1) the correlation between the histogram for dominant AU 396

computation using the first n trials from the entire perceptual experiment (i.e., Ω), and 397

the final histogram of dominant AU computation (in Fig 2); 2) the correlation between 398

the histogram of complementary AUs computation using the first n trials from the 399

subset of trials in which all the stimuli have the dominant AU activated (i.e., Ω{d}), and 400

the final histogram of complementary AUs computation (in Fig 2). 401

Fig 3 shows the convergence of dominant AU computation and complementary AUs 402

computation from the perceptual experiment of confidence. Similar converging curves 403

from the perceptual experiments of happiness, sadness, and anger can be found in S4 404

Fig-S6 Fig. These curves reflect the typical reverse-correlation convergence (see e.g., 405

Figure 6 in [40]). 406

The dominant AU can be determined with only a 12-minute experiment. 407

For the convergence of the dominant AU computation (in Fig 3a), while all 840 trials 408

are considered, it takes less than 170 trials to reach a correlation of 0.9. As our 409

approach just takes the AU with maximum proportion to determine the dominant AU 410

(see Eq. 2), performing 170 trials is enough. That is to say, only 170/840 ≈ 20% of the 411

trials are necessary (equivalent to 12 minutes if the entire perceptual experiment needs 412

60 minutes). 413

Only a few data are used for complementary AUs computation. For each 414

observer, only a small subset of trials (i.e., Ω{d}) are, in effect, used to estimate 415

complementary AUs. For instance, Fig 3b illustrates that the largest subset, which is 416

from observer #2, only includes 31 trials, and these trials are distributed throughout 417

the entire perceptual experiment. 418

A prototype can be determined accurately in about 20 minutes. Although 419

in our approach, the number of trials is set based on related works [10,37,38,40], it 420

appears unnecessary to randomly generate as many as 840 trials to determine dominant 421

and complementary AUs for an observer. In fact, the duration of the perceptual 422

experiment can be largely reduced. If our approach only randomly generates the first 423

170 trials to determine the dominant AU and then generates another 100 trials only 424

from Ω{d} to determine the complementary AUs, it will be less than 20 minutes (270 425

trials, instead of 840 trials) to obtain the mental prototype. 426

3.3 Personalized prototypes 427

We reconstruct the personalized prototypes of each observer by activating the dominant 428

and complementary AUs. Fig 4 shows the personalized prototype of each observer, as 429

well as state-of-the-art prototypes from the literature [13,18] (denoted by “Ek” and 430

“Yu”). The corresponding activated AUs are listed at the bottom of the faces. For the 431

personalized prototypes, we highlight the dominant AU in square brackets; the others 432

are the complementary AUs. Note that there is not any published database of 433

confidence, and there is no state-of-the-art prototype for confidence. 434

According to the results in Fig 4, we observe that the personalized prototypes 435

are compatible with state-of-art prototypes. All 12 prototypes of basic emotions 436

generally convey expressions similar to that of Ekman [13] and Yu [18]. All dominant 437

AUs: AU12 for happiness, AU4 or AU15 for sadness, and AU4 or AU9 for anger, can be 438

found in state-of-the-art prototypes. 439

The prototypes are personalized. In each perceptual experiment task, although 440

observers were asked the same questions, all observers acquired subtly different mental 441
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Fig 3. Example from the perceptual experiment of confidence to monitor
the convergence of our approach. (a) Correlation between the result of dominant
AU computation after the first n trials (x-axis) and the result after 840 trials. The
average correlation for all observers is marked by the red dashed line. (b) Correlation
between the result of complementary AUs computation after the first n trials (x-axis) in
the corresponding subset and the result using all trials in the corresponding subset.

representations and, especially, different complementary AUs. With the exception of 442

observer #1-sad and Ekman [13], all synthesized facial expressions also differed from the 443

state-of-the-art prototypes by at least one AU. For instance, observer #2-happy is the 444

same as Yu [18], plus the addition of AU20 (lip stretcher), resulting in a wider smile. 445

Our manipulations can be extended to the emotions that are not 446

available in existing databases, such as confidence. We had no comparison 447

prototypes for confidence. Although all confidence manipulations had the same 448

dominant AU12 as happiness, the expressions remained different from any of the listed 449

prototypes of happiness, notably because of the involvement of AU4 (brow lowerer), 450
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Fig 4. Personalized prototypes of the four emotions from observers and
state-of-the-art prototypes [13,18]. For each personalized prototype, we indicate
the emotion category followed by the observer (denoted by “#1” to “#4”) or the state
of the art (denoted by “Ek” and “Yu”). We detail the dominant AU in square brackets
and the others are complementary AUs. For the state-of-the-art prototypes, we only list
the activated AUs. All facial expressions are reconstructed by the same GAN (i.e.,
GANimation [3]) and the same actor. Note that GANimation [3] cannot edit AU16
(lower lip depressor). We replace AU16 with AU25 (lips part) to reconstruct the angry
prototype of Yu [18] (“angry-Yu”).

AU5 (upper lid raiser), AU9 (nose wrinkler) and AU17 (chin raiser). 451

4 Evaluations 452

Here, we evaluate the personalized prototypes to prove the effectiveness of our approach. 453

In Subjective evaluation by mean opinion score, we conduct a subjective evaluation with 454

the people who participated in the perceptual experiment, i.e., observers. The purpose 455

of this evaluation is to assess the satisfaction of each observer with the prototypes they 456

have created. In Subjective evaluation by ranking, we conduct another subjective 457

evaluation by two diverse groups of people: observers and non-observers. We aim to 458

quantify the acceptance of the personalized prototypes and compare them with the 459

state-of-art prototypes [13, 18]. Note that the purpose of this paper is not the extensive 460

discussion of prototypes, such as their impact on affective states across different 461

cultures, but only to validate the effectiveness of the procedure. 462

4.1 Subjective evaluation by mean opinion score 463

To assess what observers thought of their own personalized facial expression prototypes, 464

we employed the Mean Opinion Score, which is a popular indicator of perceived media 465
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quality [44]. We asked the four observers to rate their personalized facial prototypes 466

from 1 to 5 representing bad satisfaction to excellent satisfaction. In Table 1, we listed 467

all the scores rated by observers and presented the mean opinion score for each emotion 468

(happy, sad, angry and confident) in the last column. 469

Table 1. Subjective evaluation by mean opinion score.

emo.
obs.

#1 #2 #3 #4 mean

Happy 4 5 5 4 4.5
Sad 5 5 4 4 4.5

Angry 5 4 4 4 4.25
Conf. 4 5 4 5 4.5

Each observer (denoted by #1, #2, #3, and #4) rated their personalized prototypes.
The mean opinion score for each emotion (denoted by emo.) is shown in the last column.
Note that Conf. = self-confident.

All observers rated their personalized facial prototypes with “4” and “5”, meaning 470

that observers were satisfied with their personalized facial prototypes. 471

4.2 Subjective evaluation by ranking 472

To quantify the acceptance of the personalized prototypes, we added the state-of-art 473

prototypes of Ekman and Yu [13,18] for comparison. We conducted a ranking study 474

involving two distinct groups of people: 1) The “observers” group consisted of the 475

observers who had previously performed Perceptual experiment (i.e., observers #1, #2, 476

#3, and #4), and 2) The “non-observers” group comprised participants recruited from 477

Amazon Mechanical Turk (AMT) who had not performed the previous Perceptual 478

experiment. 479

Based on the ranking results obtained from the “observers” group, we aimed to 480

investigate whether each observer still preferred his/her own personalized prototype 481

when presented with a set of prototypes mixed with other observers’ personalized 482

prototypes and state-of-the-art prototypes. Additionally, by analyzing the ranking 483

results obtained from the “non-observers” group, we aimed to gain insights into the 484

preferences of the other people (bystanders) who did not participate in the previous 485

perceptual experiments. 486

4.2.1 Procedure 487

In detail, each one performed 4 ranking tasks. Each task corresponds to one of the four 488

emotions. In each ranking task, all prototypes (6 listed prototypes for happy, sad, and 489

angry, 4 listed prototypes for confident as in Fig 4) were presented anonymously and 490

shuffled. Participants were asked to rank these faces from the happiest / saddest / 491

angriest / most confident to the least. Everyone was informed that all data collected 492

were totally anonymous. 493

For the “observers” group. In order to investigate if the prototypes are really 494

personalized, we calculate the probability that each observer ranks his/her own 495

personalized prototypes in each position (i.e., from the 1st place to the 6th place). 496

For the “non-observers” group. Since “non-observers” are not involved in 497

personalizing these prototypes, the measurement applicable to the “observers” group is 498

not suitable for the “non-observers” group. Therefore, we compared personalized 499

prototypes as well as state-of-the-art prototypes (i.e., baseline) in a relatively objective 500

way. To analyze the rankings from all the AMT participants, we assess the preferences 501
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of the prototypes in the following two steps. 1) We first counted for each possible pair 502

of prototypes how many participants preferred one of the prototypes to the other. 2) 503

We then employed the Schulze voting method [45] to compute the preferences between 504

each pair of prototypes and to derive the final ranking of these prototypes. 505

Moreover, in the first step, according to the ranking, some preferences are cyclic: for 506

sadness, 51% of the participants preferred the prototype of observer #2 to the 507

prototype of observer #4, 57% of the participants preferred the prototype of observer 508

#4 to the state-of-the-art prototype of “Yu” [18], whereas 52% of the participants 509

preferred the state-of-the-art prototype of “Yu” [18] to the prototype of observer #2. 510

Thus, we can not directly quantify the acceptance between these prototypes. That’s the 511

reason why we employ the Schulze method to compute the preferences in the second 512

step. For more details about the Schulze voting method, please see the literature [45] 513

and the supporting information (S2 Appendix). 514

4.2.2 Results 515

In terms of the “observers” group, Table 2 illustrates that each observer ranks 516

his/her personalized prototypes in each position. Note that there are only 4 prototypes 517

of self-confidence (no state-of-the-art prototype of self-confidence), whereas, for the 518

other emotions, there are 6 prototypes. That is why the probability of “5th” and “6th” 519

by random ranking is different from the others. 520

Table 2. The probability that each observer ranks his/her own personalized
prototype in each position.

obs.
pos.

1st 2nd 3rd 4th 5th 6th

#1 75% 25%
#2 75% 25%
#3 50% 50%
#4 50% 25% 25%

random 18.75% 18.75% 18.75% 18.75% 12.5% 12.5%

We set the probability to select their personalized prototypes by random ranking as the
baseline. “obs.” = observer; “pos.” = position.

We notice that all the observers rank their personalized prototypes in the top-3. All 521

the observers have at least a 50% probability to rank their personalized prototypes in 522

the first place. However, if the ranking is random, the probability to select their 523

personalized prototypes is only 18.75%. This indicates that the prototypes are 524

personalized. They can reflect the observer’s mental image and well answer 525

the question in the perceptual experiment. 526

In terms of the “non-observers” group, in Table 3, we present the preferences 527

between each pair of prototypes computed by the Schulze method and the final rankings. 528

Note that due to cyclic preferences (such as the aforementioned “#2”, “#4”, and “Yu.” 529

of sadness) the sum of the paired preferences is not always equal to 100%. For instance, 530

in Table 3(b), the sum of the preference from “#4” to “Yu.” (57%) and the preference 531

from “Yu.” to “#4” (51%) is 108%. Considering state-of-the-art prototypes as the 532

baselines and for these 217 participants, our observations are as follows. 533

• The low-ranking personalized prototypes are about equally preferred to 534

at least one of the state-of-the-art prototypes. “#3”, “#4”, and “Ek.” in 535

Tables 3(a) and 3(c), and “#2”, “#3”, and “Yu.” in Table 3(b) are low-ranking 536

(ranked in the last three). The paired preferences between them are around 50%. 537
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Table 3. Preferences between each pair of prototypes computed by the
Schulze method and the final rankings.

(a) happiness

From
To #1 #2 #3 #4 Ek. Yu. ranking

#1 - 16% 75% 70% 82% 63% 2
#2 84% - 82% 87% 94% 87% 1
#3 25% 18% - 54% 52% 24% 4
#4 30% 13% 46% - 46% 25% 6
Ek. 18% 6% 48% 54% - 15% 5
Yu. 37% 13% 76% 75% 85% - 3

(b) sadness

From
To #2 #3 #4 #1/Ek. Yu. ranking

#2 - 52% 51% 48% 51% 4
#3 48% - 42% 38% 46% 5
#4 52% 58% - 49% 57% 2

#1/Ek. 52% 62% 51% - 64% 1
Yu. 52% 54% 51% 36% - 3

(c) anger

From
To #1 #2 #3 #4 Ek. Yu. ranking

#1 - 70% 76% 78% 76% 84% 1
#2 30% - 78% 72% 73% 45% 3
#3 24% 22% - 52% 51% 33% 4
#4 22% 28% 48% - 54% 36% 5
Ek. 24% 27% 49% 46% - 34% 6
Yu. 16% 55% 67% 64% 66% - 2

(d) self-confidence

From
To #1 #2 #3 #4 ranking

#1 - 46% 38% 46% 4
#2 54% - 26% 44% 3
#3 62% 74% - 76% 1
#4 54% 56% 24% - 2

The personalized prototypes of the corresponding observers are denoted by “#1” to
“#4”. “Ek.” and “Yu.” refer to state-of-the-art prototypes [13,18]. Since the sadness
prototypes of observer #1 and “Ek.” are identical, we merged their preference data and
denoted them by “#1/Ek.”. For each pair of prototypes, we highlight the larger
preferences in bold. For instance, for happiness, 84% of the participants preferred “#2”
to “#1”, whereas 16% of the participants preferred “#1” to “#2”.

For instance, in Table 3(a), 46% of the participants preferred “#4” to “Ek.”, and 538

54% of the participants preferred “Ek.” to “#4”. That is to say, these low-ranking 539

personalized prototypes are about equally preferred to the state-of-the-art 540

prototype (“Ek.” or “Yu.”). This also validates that our approach can generate 541

personalized prototypes. 542

• Emotional prototypes are not universal. As shown in Table 2, the prototypes 543

are not universally preferred among participants. Although in Tables 3(a) and 544
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3(c), the top-ranking prototypes are much preferred over the others (“#2” of 545

happiness and “#1” of anger), most preferences are far from 100% (and 0%). 546

Especially in Table 3(b), most prototypes of sadness (including state-of-the-art 547

prototypes) are about equally preferred among the hired participants. Indeed, 548

most preferences are close to 50% which is quite far from 100%. Even there are 549

cyclic preferences. Hence, there can be many prototypes of one emotion. 550

To sum up, our approach generated personalized prototypes which both differed 551

from each other and from state-of-the-art prototypes. According to rankings from the 552

“observers” group, we can validate that the prototypes are personalized. According to 553

the rankings from the “non-observers” group, personalized prototypes are either close to 554

state-of-the-art prototypes (e.g. “#1” and “Ek.” of sadness are identical) or preferred to 555

state-of-the-art prototypes. Rankings also suggest that preferred prototypes of any 556

single emotion are not unique across different people. 557

5 Limitations and future work 558

The first limitation of our approach comes from the tool (GAN or any other type of 559

local attribute manipulation tool) for personalizing prototypes. The choice of the tool 560

can limit the number and the type of local attributes that could be manipulated. For 561

instance, GANimation only focuses on AUs and does not consider other attributes, such 562

as gaze direction [46], yet such attributes should ideally be integrated into the reverse 563

correlation process. Additionally, GANimation is also incapable of editing AU16 (lower 564

lip depressor). Although it is not the goal of this paper, the authenticity of the face 565

textures can therefore be improved. 566

Another limitation of our approach comes from the reverse correlation process. 567

Performing 840 trials (about 40 to 60 minutes) for the perceptual experiment is 568

time-consuming. As mentioned in Convergence efficiency, the procedure can be greatly 569

reduced, to about 270 trials, without losing accuracy. While this amount of ’training’ 570

data is several orders of magnitude smaller than what would be needed to e.g. train a 571

GAN from a dataset of annotated examples for each emotion, the time burden on 572

observers (about 20 minutes) can still be high in certain application contexts. An 573

automatic optimization process can be considered to further speed up the process. 574

Finally, a limitation common to our approach and relative reverse correlation work is 575

that all the stimuli are unimodal. Reverse-correlation multimodal prototypes (i.e., both 576

how a face should look and how it should sound) have the potential to enrich affective 577

computing studies such as [47] in the future. 578

6 Conclusion 579

In this paper, we proposed a novel interdisciplinary approach to personalize facial 580

expressions by combining the facial expression manipulation technique from computer 581

science with reverse correlation, a procedure from cognitive science able to extract 582

personalized mental representations based on observers’ judgments. Our approach can 583

personalize manipulations of facial expressions that are not limited to basic emotions, 584

and without the need for expertise. 585

We hope our approach can pave the way for further scientific studies in both 586

affective computing and computer science, and also expect it can be customized for 587

audiences in different application domains, e.g., a digital coach for the online interview 588

or a digital mirror treating psychiatric disorders of emotion. 589
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S5 Fig. Converging curves for sadness. 596
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