
HAL Id: hal-04182953
https://hal.science/hal-04182953

Submitted on 18 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weakly synchronous systems with three machines are
Turing powerful

Cinzia Di Giusto, Davide Ferré, Etienne Lozes, Nicolas Nisse

To cite this version:
Cinzia Di Giusto, Davide Ferré, Etienne Lozes, Nicolas Nisse. Weakly synchronous systems with three
machines are Turing powerful. Inria. 2023. �hal-04182953�

https://hal.science/hal-04182953
https://hal.archives-ouvertes.fr

Weakly synchronous systems with three
machines are Turing powerful

Cinzia Di Giusto Davide Ferré Etienne Lozes
Nicolas Nisse

Abstract

Communicating finite-state machines (CFMs) are a Turing powerful
model of asynchronous message-passing distributed systems. In weakly
synchronous systems, processes communicate through phases in which mes-
sages are first sent and then received, for each process. Such systems enjoy
a limited form of synchronization, and for some communication models,
this restriction is enough to make the reachability problem decidable. In
particular, we explore the intriguing case of p2p (FIFO) communication,
for which the reachability problem is known to be undecidable for four pro-
cesses, but decidable for two. We show that the configuration reachability
problem for weakly synchronous systems of three processes is undecidable.
This result is heavily inspired by our study on the treewidth of the Message
Sequence Charts (MSCs) that might be generated by such systems. In this
sense, the main contribution of this work is a weakly synchronous system
with three processes that generates MSCs of arbitrarily large treewidth.

1 Introduction
Systems of communicating finite-state machines (CFMs) are a simple, yet ex-
pressive, model of asynchronous message-passing distributed systems. In this
model, each machine performs a sequence of send and receive actions, where a
send action can be matched by a receive action of another machine. For instance,
the system in Fig. 1 (left), models a protocol between three processes a, b, and r.

A computation of such a system can be represented graphically by a Message
Sequence Chart (MSC), a simplified version of the ITU recommendation [16].
Each machine of the system has its own “timeline” on the MSC, where actions
are listed in the order in which they are executed, and message arrows link a send
action to its matching receive action. For instance, the MSC of Fig. 1 (right)
represents one of the many computations of the system in Fig. 1 (left). The set
of all MSCs that the system may generate is determined both by the machines,
since the sequence of actions of each timeline must be a sequence of action in
the corresponding CFM, and by the “transport layer” or “communication model”
employed by the machines. Roughly speaking, a communication model is a class of
MSCs that are considered “realizable” within that model of communications. For

1

a

0

1

b

0

1 2

c

0

1

a!b(m1)

a!c(m2)

b?a(m3) a?b(m1)

b!a(m3)

c?b(m
4)

a?c(m2)

a?c(m2)

c!b(m4)

a b c

m1

m2

m
2m

3

m
4

Figure 1: Example of a system of 3 CFMs (left) and of an MSC generated by it
(right). a!b(m1) (resp., b?a(m1)) denotes the sending (reception) of message m1

from (by) process a to (from) process b.

instance, for rendezvous synchronization, an MSC is considered to be realizable
with synchronous communication if the only path between a sending and its
matching receipt is the direct one through the message arrow that relates them.
Among the various communication models that have been considered, we can cite
p2p (or FIFO) model, where each ordered pair of machines defines a dedicated
FIFO queue; causal ordering (CO), where a message cannot overtake the messages
that were sent causally before it; the mailbox model, where each machine holds a
unique FIFO queue for all incoming messages; the bag (or simply asynchronous)
model, where a message can overtake any other message (see [3, 9, 10] for various
presentations of these communication models).

The configuration reachability problem for a system of CFMs consists in
checking whether a control state, together with a given content of the queues,
is reachable from the initial state. This problem is decidable for synchronous
communication, as the state space of the system is finite, and also for bag
communication, by reduction to Petri nets [18]. For other communication
models, as soon as two machines are allowed to exchange messages through two
FIFO queues, reachability becomes undecidable [8]. Due to this strong limitation,
there has been a wealth of work that tried to recover decidability of reachability
by considering systems of CFMs that are “almost synchronous”.

In weakly synchronous systems, processes communicate through phases in
which messages are first sent and then received, for each process; graphically,
the MSCs of such systems are the concatenation of smaller, independent MSCs,
within which no send happens after a receive. For instance, the MSC in Fig. 1
(right) is weakly synchronous, as it is the concatenation of three “blocks” (namely
{m1}, {m2}, and {m2,m3,m4}), within which all sends of a given machine hap-
pen before all the receives of this same machine. It is known that reachability is
decidable for mailbox weakly synchronous systems [6], whereas it is undecidable
for either p2p or CO weakly synchronous systems with at least four machines.
On the other hand, reachability is decidable for two machines (since any p2p

2

MSC with two machines is also mailbox). In this work, we deal with weakly
synchronous systems with three machines, and conclude that reachability is
undecidable for these systems. Our result is based on a study of the unbounded-
ness of the treewidth for MSCs that may be generated by these systems. The
first contribution of this work is a weakly synchronous system with only three
machines that is “treewidth universal”, in the sense that it may generate MSCs
of arbitrarily large treewidth. The second contribution, strongly inspired by
the treewidth universal system, is showing that weakly synchronous systems
with three processes are Turing powerful. To do so, we establish a one-to-one
correspondence between the computations of a FIFO automaton (a finite state
machine that may push and pop from a FIFO queue, which is known to be a
Turing powerful computational model) on the one hand, and a subset of the
MSCs of the treewidth universal system on the other hand.

Related work. Beyond weakly synchronous systems, several similar notions
have been considered to try to capture the intuition of an “almost synchronous”
system. Reachability of existentially bounded systems [17, 13] is decidable for
FIFO, CO, p2p, or bag communications. Synchronizable systems [2] were an
attempt to define a class of systems with good decidability properties, however
reachability for such systems with FIFO communications is undecidable [11].
The status of reachability for k-stable systems [1] is unknown. Finally, reach-
ability for k-synchronous systems [7] is decidable for FIFO, CO, p2p, or bag
communications.

Another form of under-approximation of the full behaviour of a system of
CFMs is the bounded context-switch reachability problem, which is known to
be decidable for systems of CFMs, even with a controlled form of function
call [14, 19].

Finally, weak synchronisability share some similarities with reversal-bounded
counter machines [12, 15]: in the context of bag communications, a send is a
counter increment, a receive a decrement, and weak synchronisability is a form
of bounding the number of reversals of increment and decrement phases.

Outline. Section 2 introduces the necessary terminology. Section 3 presents
the weakly synchronous system with three machines that may generate MSCs of
arbitrarily large treewidth. Then, Section 4 discusses the undecidability of the
configuration reachability problem for weakly-synchronous systems with three
machines. Finally, Section 5 concludes with some final remarks. The Appendix
contains proofs and additional material.

2 MSCs and communicating automata
We recall here concepts and definitions related to MSCs and communicating
automata. Assume a finite set of processes P and a finite set of messages M. A
send action is of the form p!q(m) where p, q ∈ P and m ∈M; it is executed by p
and sends message m to process q. The corresponding receive action, executed
by q, is p?q(m). Let Send(p, q,) = {p!q(m) | m ∈ M} and Rec(p, q,) =

3

{p?q(m) | m ∈M}. For p ∈ P, we set Send(p, ,) = {p!q(m) | q ∈ P \ {p} and
m ∈M}, etc. Moreover, Σp = Send(p, ,) ∪Rec(, p,) ∪ {ε} will denote the
set of all actions that are executed by p. Finally, Σ =

⋃
p∈P Σp is the set of all

the actions.

Definition 2.1 (p2p MSC). A (p2p) MSC M over P and M is a tuple M =
(E ,→,�, λ) where E is a finite (possibly empty) set of events and λ : E → Σ is a
labeling function. For p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set of events
that are executed by p. → (the process relation) is the disjoint union

⋃
p∈P →p

of relations →p ⊆ Ep×Ep such that →p is the direct successor relation of a total
order on Ep. � ⊆ E × E (the message relation) satisfies the following:

(1) for every pair (s, r) ∈ �, there is a send action p!q(m) ∈ Σ such that
λ(s) = p!q(m), λ(r) = p?q(m), and p 6= q;

(2) for all r ∈ E with λ(r) = p?q(m), there is a unique s ∈ E such that s� r;

(3) letting ≤M = (→∪�)∗, we require that ≤M is a partial order;

(4) for every s1 ∈ E and pair (s2, r2) ∈ � with λ(s1) = p!q(m1) and λ(s2) =
p!q(m2), if s1 →+

p s2, then there exists r1 such that (s1, r1) ∈ � and
r1 →+

q r2.

Condition (1) above ensures that message arrows relate a send event to a
receive event on a distinct machine. By Condition (2), every receive event has
a matching send event. Note that, however, there may be unmatched send
events in an MSC. An MSC is called orphan free if all send events are matched.
Condition (3) ensures that there exists at least one scheduling of all events such
that each receive event happens after its matching send event. Condition (4)
captures the p2p communication model: a message cannot overtake another
message that has the same sender and same receiver as itself.

Let M = (E ,→,�, λ) be an MSC, then SendEv(M) = {e ∈ E | λ(e) is a send
action}, RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E |
there is f ∈ E such that e� f}, and Unm(M) = {e ∈ E | λ(e) is a send action
and there is no f ∈ E such that e � f}. We do not distinguish isomorphic
MSCs. Let E ⊆ E such that E is ≤M -downward-closed, i.e, for all (e, f) ∈ ≤M
such that f ∈ E, we also have e ∈ E. Then the MSC M ′ = (E,→,�, λ)
obtained by restriction to E is called a prefix ofM . IfM1 = (E1,→1,�1, λ1) and
M2 = (E2,→2,�2, λ2) are two MSCs, their concatenation M1 ·M2 = (E ,→,�, λ)
is as expected: E is the disjoint union of E1 and E2, � = �1 ∪ �2, λ is the
“union” of λ1 and λ2, and → = →1 ∪→2 ∪ R. Here, R contains, for all p ∈ P
such that (E1)p and (E2)p are non-empty, the pair (e1, e2), where e1 and e2 are
the last and the first event executed by p in M1 and M2, respectively. Due
to condition (4), concatenation is a partially defined operation: M1 · M2 is
defined if for all s1 ∈ Unm(M1) and s2 ∈ SendEv(M2) that have the same
sender and destination (λ(s1) ∈ Send(p, q,) and λ(s2) ∈ Send(p, q,)), we
have s2 ∈ Unm(M2). In particular, M1 ·M2 is defined when M1 is orphan-free.
Concatenation is associative.

4

We recall from [5] the definition of weakly synchronous MSC. We say that
an MSC is weakly synchronous if it can be broken into phases where all sends
are scheduled before all receives.

Definition 2.2 (weakly synchronous). We say that M ∈ MSC is weakly
synchronous if it is of the form M = M1 · M2 · · ·Mn such that for every
Mi = (E ,→,�, λ) SendEv(Mi) is a ≤Mi-downward-closed set.

We now recall the definition of communicating system, which consists of
finite-state machines Ap (one per process p ∈ P) that can exchange messages.

Definition 2.3 (communicating system). A (communicating) system over P
and M is a tuple S = ((Ap)p∈P). For each p ∈ P, Ap = (Locp, δp, `

0
p, `

acc
p) is

a finite transition system where: Locp is the finite set of (local) states of p,
δp ⊆ Locp × Σp × Locp (also denoted `

a−−→
Ap

`′) is the transition relation of p,

`accp ∈ Locp is the final state of p.

Given p ∈ P and a transition t = (`, a, `′) ∈ δp, we let source(t) =
`, target(t) = `′, action(t) = a, and msg(t) = m if a ∈ Send(, ,m) ∪
Rec(, ,m).

An accepting run of S on an MSC M is a mapping ρ : E →
⋃
p∈P δp that

assigns to every event e the transition ρ(e) that is executed at e by Ap. Thus, we
require that (i) for all e ∈ E , we have action(ρ(e)) = λ(e), (ii) for all (e, f) ∈ →,
target(ρ(e))

ε−−→
Ap

∗
source(ρ(f)), (iii) for all (e, f) ∈ �, msg(ρ(e)) = msg(ρ(f)),

(iv) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with f → e, we have
source(ρ(e)) = `0p, (v) for all p ∈ P and e ∈ Ep such that there is no f ∈ E with
e → f , we have target(ρ(e)) = `accp and, (vi) Unm(M) = ∅. Essentially, in an
accepting run of S every Ap takes a sequence of transitions that lead to its final
state `accp , and such that each send action will have a matching receive action (i.e.,
there are no unmatched messages). The language of S is L(S) = {M ∈ MSC |
there is an accepting run of S on M}. We say that S is weakly synchronous if
for all M ∈ L(S), M is weakly synchronous.

The emptiness problem is the decision problem that takes as input a system
S and addresses the question “is L(S) empty?”. This problem is a configuration
reachability problem, and under several circumstances, its decidability is closely
related to the one of the control state reachability problem. In this work, we will
study the emptiness problem with the additional hypothesis that S is a weakly
synchronous system with three machines only.

Finally, we recall the less known notion of “FIFO automaton”, a finite state
machine that can push into and pop from a FIFO queue. This is a system of
communicating machines with just one machine, whose semantics is a set of
MSCs with a single timeline, for which we exceptionally relax condition (1) of
Definition 2.1, so to allow a send event and its matching receive event to occur
on the same machine. The following result is proved in [11, Lemma 4].

Lemma 2.1 ([11]). The emptiness problem for FIFO automata is undecidable.

5

3 Treewidth of weakly synchronous p2p MSCs
There is a strong correlation between MSCs and graphs. An MSC is a directed
graph (digraph in the following) where the nodes are the events of the MSC
and the arcs are represented by the → and the � relations. We are, therefore,
able to use some tools and techniques from graph theory to possibly derive
some interesting results about MSCs. A graph parameter which is particularly
important in this context is the treewidth [4] mostly due to Courcelle’s theorem
that, roughly, states that many properties can be checked in classes of MSCs
with bounded treewidth1. For instance, in [5], it is shown that the class of weakly
synchronous mailbox MSCs has bounded treewidth. Interestingly enough, it is
also shown that the bigger class of weakly synchronous p2p MSCs has unbounded
treewidth, by means of a reduction to the Post correspondence problem. Here
we give a more direct proof, for all weakly synchronous systems that have at
least three processes. We begin with some terminology:

Definition 3.1. To contract an arc (u, v) in a (di)graph G means replacing u
and v by a single vertex whose neighborhood is the union of the neighborhoods
of u and v. A (di)graph H is a minor of a (di)graph G if H can be obtained
from a subgraph of G by contracting some edges/arcs.

Next, we show how to build a family of weakly synchronous MSCs with three
processes (a, b and c) and unbounded treewidth. We want to find a class of
MSCs that admit grids of unbounded size as a minor. The idea is illustrated
in Fig. 2, and it consists in bouncing groups of messages between processes so
to obtain the depicted shape. The class of MSCs is indexed by two non-zero
natural numbers: h and `. Intuitively, h represents the number of consecutive
events in a group, and ` is the number of groups per process, divided by 2. The
graph depicted on the top left of Fig. 2 is not an MSC, because it is undirected
and there are multiple actions associated to the same event. Nonetheless, the
connection with MSCs is quite intuitive, and formalized in Lemma 3.1.

We, now, specify how to build a digraph Gh,` = (V (Gh,`), E(Gh,`)), from
which our MSC G∗h,` will be obtained. The set of vertices V (Gh,`) = A ∪ B ∪ C
contains all the events of each process: A = {si,ja , ri,ja | 1 ≤ i ≤ h, 1 ≤ j ≤ `},
B = {si,jb , r

i,j
b | 1 ≤ i ≤ h, 1 ≤ j ≤ `}, and C = {si,jc , ri,jc | 1 ≤ i ≤ h, 1 ≤ j ≤ `}.

For x ∈ {a, b, c} and y ∈ {r, s}, we add the following arcs to E(Gh,`), which
will represent the “timelines” connecting events of each process:

1. for each group of h events/messages and 1 ≤ j ≤ `, Colx,y,j = {(yi,jx , yi+1,j
x) |

1 ≤ i < h};

2. then, to link groups together {(yh,jx , y1,j+1
x) | 1 ≤ j < `};

3. and finally, to link the phase of sendings with the one of receptions:
(sh,`x , r1,1x).

1Since we do not explicitly use tree-decompositions, we refer to [4] for their formal definitions.
Definitions are recalled in Appendix A for the reviewer convenience.

6

Figure 2: The undirected graph of G4,2 (top left) with a 4× 12 grid as a minor
(top right and bottom). All arcs go from top to bottom.

It remains to add the arcs that correspond to the messages exchanged by the
processes. Intuitively, each vertex si,jx corresponds to two messages sent by
process x to the other two processes (except for j = 1 and x = a, in which case
it will correspond to a single message), and each vertex ri,jx will correspond to
two messages received by process x from the other two processes (except for
j = ` and x = c, in which case it will correspond to a single message). Formally:

EM ={(si,ja , r
i,j
b), (si,jc , r

i,j
b), (si,jc , r

i,j
a), (si,jb , r

i,j
a), (si,jb , r

i,j
c) | 1 ≤ i ≤ h, 1 ≤ j ≤ `}

∪ {(si,j+1
a , ri,jc) | 1 ≤ i ≤ h, 1 ≤ j < `}. (1)

Lemma 3.1. For any h, ` ∈ N+, Gh,` is the minor of a graph arising from a
weakly synchronous p2p MSC G∗h,` with 3 processes and a single phase.

Proof. Fig. 3 exemplifies the transformation below. Note that some vertices
of Gh,` have degree 4 while any MSC is a subcubic graph (i.e., every vertex
has degree at most 3). For every si,jx with degree 4, let α (resp., β) be the
in-neighbor (resp., out-neighbor) of si,jx in Px and let γ and δ be the other
two neighbors of si,jx . Replace si,jx by two vertices sui,jx and sdi,jx , with the
5 arcs (α, sui,jx), (sui,jx , sd

i,j
x), (sdi,jx , β), (sui,jx , γ) and (sdi,jx , δ). Do a similar

transformation for every ri,jx with degree 4. A similar transformation is done for
the four vertices (with degree 3) s1,1b , s1,1c , rh,`a and rh,`b . Let G∗h,` be the obtained
digraph. It is clear that G∗h,` is an MSC and that Gh,` is a minor of G∗h,`.

Note that for any x ∈ {a, b, c}, X ∈ {A,B, C} induces a directed path Px
with first the vertices si,jx (in increasing lexicographical order of (j, i)) and then
the vertices ri,jx (in increasing lexicographical order of (j, i)). The fact that G∗h,`
is weakly synchronous with one phase directly follows the fact that, for every
x ∈ {a, b, c}, the vertices s, su and sd (corresponding to sendings) appear before
the vertices r, ru and rd (corresponding to receptions) in the directed path Px.

7

Moreover, for every x, y ∈ {a, b, c}, x 6= y, the arcs from Px to Py are all
parallel (i.e., for every arc (u, v) and (u′, v′) from Px to Py, if u is a predecessor
of u′ in Px, then v is a predecessor of v′ in Py). This implies that G∗h,` is
p2p.

Figure 3: Trans-
formation of
Lemma 3.1.

Note that, for fixed i ≤ h and j < `, Pi,j =

(si,ja , r
i,j
b , si,jc , r

i,j
a , si,jb , r

i,j
c , si+1,j

a) is a (undirected) path with
6 arcs linking si,ja to si,j+1

a . From this, it is not difficult to see
that Gh,` admits a grid of size h× 6` as a minor, which is the
content of next lemma (see Fig. 2 for an example).

Let tw(Gh,`) be the treewidth of the underlying undirected
graph of Gh,`.

Lemma 3.2. For any h, ` ∈ N∗, tw(Gh,`) ≥ min{h, 6`}.

Proof. The subgraph obtained from Gh,` by keeping the
arcs in item 1 and Equation 1: G′h,` = (V (Gh,`), EM ∪⋃
x∈{a,b,c},y∈{r,s},1≤j≤` Colx,y,j), is a h × 6` grid. From [4],

we know that tw(G′h,`) ≥ min{h, 6`} and, since treewidth
is closed under subgraphs [4], tw(Gh,`) ≥ tw(G′h,`) ≥
min{h, 6`}.

We can then easily derive the main result for this section.

Theorem 3.3. The class of weakly synchronous p2p MSCs with three processes
(and a single phase) has unbounded treewidth.

Proof. From Lemma 3.1, G∗h,` is a weakly synchronous p2p MSC with 3 processes
and Gh,` is a minor of G∗h,`. Hence, from Lemma 3.2 and the fact that the
treewidth is minor-closed [4], we get that tw(G∗h,`) ≥ min{h, 6`}.

Notice that, a similar technique, this time exploiting four processes instead
of three, can be used to show that we can build a weakly synchronous p2p MSC
that can be contracted to whatever graph.

Theorem 3.4. Let H be any graph. There exists a weakly synchronous p2p
MSCs with four processes that admits H as minor.

Proof. Let V (H) = {v1, · · · , vh} and E(H) = {e1, · · · , e`}. Take graph Gh,`
defined above. Add a new directed path (d1, · · · , d`) (which corresponds to the
fourth process). Finally, for every 1 ≤ j ≤ `, and edge ej = {vi, vi′} ∈ E(H),
add two arcs (ri,ja , dj) and (ri

′,j
a , dj). Let G be the obtained graph.

Using similar arguments as in the proof of Lemma 3.1, G arises from a weakly
synchronous p2p MSC with 4 processes. Now, to see that H is a minor of G, first
remove all “vertical” arcs from G. Then, for every 1 ≤ i ≤ h, contract the path⋃

1≤j≤` Pi,j into a single vertex (corresponding to vi), and finally contract the
arc (ri

′,j
a , dj) for every edge ej = {vi, vi′}. These operations lead to H.

8

`0b `?b `accb

`mb0

`mb?

ε

b!a(m) b!c(m)

ε

a?b(m)c?b(m)

Ab `0c `?c `accc

`mc0

`mc?

ε

c!b(m) c!a(m)

ε

b?c(m)a?c(m)

Ac

Figure 4: Sketch of Ab and Ac of S3 (only a single message m is considered).

4 Reachability for weakly synchronous p2p sys-
tems with 3 machines

In [5], it is shown that the control state reachability problem for weakly p2p

synchronous systems with at least 4 processes is undecidable. The result is
obtained via a reduction of the Post correspondence problem. In the same paper,
following from the boundedness of treewidth, it is also shown that reachability is
decidable for systems with 2 processes. The arguments easily adapt to show the
same results for the emptiness problem instead. The decidability of reachability,
or emptiness, remained open for systems with 3 processes. We already showed
that the treewidth of weakly synchronous p2p MSCs is unbounded for 3 processes.
But, this result alone is not enough to prove undecidability, still it gives us a hint
on how to conduct the proof. Indeed, inspired by the proof of the unboundedness
of the treewidth, we provide a reduction from the emptiness problem for a FIFO
automaton S1 (undecidable, see Lemma 2.1) to the emptiness problem for a
weakly synchronous system S3 with three machines. The reduction makes sure
that there is an accepting run of S1 if and only if there is one for S3, which shows
the undecidability of the emptiness problem for weakly synchronous systems
with three machines.

Let S1 = (A), with A = (Loc, δ, `0, `acc) be a communicating system with a
single process over M. We will consider only automata that, from any state, have
at most one non-epsilon outgoing transition, and no self loops (i.e., transitions
that start and land in the same state). More precisely, we prove that any system
can be encoded into one that satisfies this additional property while accepting
the same language (see the corresponding encoding in Appendix B).

We provide an encoding of the FIFO automaton S1 into the system S3 =
(Aa, Ab, Ac) over M ∪ {D}, where D is an additional special message called the
dummy message. We show that S3 is weakly synchronous, and that L(S1) 6= ∅ if
and only if L(S3) 6= ∅. Processes b and c (see Fig. 4) are used as forwarders so
that messages circulate as in Fig. 2. Basically, process b (resp., process c) goes
through two phases, the first one in which messages are sent to a and c (resp.,
a and b), and the second in which messages can be received. In Fig. 4, there
should be one state `mb0 (resp., `mb?), which is the in and out-neighbor of `0b (resp.,

9

`?b), per message m ∈M ∪ {D}. Formally, Ab = (Locb, δb, `
0
b , `

acc
b) where

Locb ={`0b , `?b, `accb } ∪ {`mb0 , `
m
b?
| m ∈M ∪ {D}}

δb ={(`0b , ε, `?b), (`?b, ε, `accb)} ∪ {(`0b , b!a(m), `mb0), (`mb0 , b!c(m), `0b),

(`?b, b?a(m), `mb?), (`mb? , b?c(m), `?b) | m ∈M ∪ {D}}

and symmetrically Ac = (Locc, δc, `
0
c , `

acc
c) where

Locc ={`0c , `?c, `accc } ∪ {`mc0 , `
m
c?
| m ∈M ∪ {D}}

δc ={(`0c , ε, `?c), (`?c, ε, `accc)} ∪ {(`0c , c!b(m), `mc0), (`mc0 , c!a(m), `0c),

(`?c, c?b(m), `mc?), (`mc? , c?a(m), `?c) | m ∈M ∪ {D}}.

Process a mimics the behavior of A. Fig. 5 shows an example of how Aa is
built, starting from A. At a high level, Aa is composed of two parts: the first
simulates A, and the second (after state `Da) receives all messages sent by b and
c. In the first part of Aa, each send action of A is replaced by a send action
addressed to process b, and each reception of A is replaced by a send action
to process c. We then use some dummy messages to ensure that our encoding
works properly. Roughly, we force Aa to send a dummy message to b after each
message sent to c, and we let Aa send any number of dummy messages to c right
before each message sent to b, or right before entering the "receiving phase"
of Aa, where messages from b and c are received. Similarly, after Aa sends a
dummy message to b, it is also allowed to send two other dummy messages (the
first one to c and the second one to b) an unbounded number of times. Formally,
Aa = (Loca, δa, `

0, `acca), where:

Loca =Loc ∪ {`t1 , `t2 | t = (`, ?m, `′) ∈ δ}∪
{`Da , `?a, `acca } ∪ {`ma? | m ∈M ∪ {D}}

δa ={(`, a!b(m), `′), (`, a!b(D), `) | (`, !m, `′) ∈ δ}∪
{(`, a!c(m), `t1), (`t1 , a!b(D), `t2),

(`t2 , a!c(D), `t1), (`t2 , ε, `
′) | t = (`, ?m, `′) ∈ δ}∪

{(`, ε, `′) | (`, ε, `′) ∈ δ}∪
{(`acc, ε, `Da), (`Da , a!c(D), `Da)}∪
{(`Da , ε, `?a), (`?a, ε, `

acc
a)}∪

{(`?a, a?c(m), `ma?), (`ma? , a?b(m), `?a) | m ∈M ∪ {D}}

In Fig. 5, colors show the mapping of states from an instance of A to the
corresponding automaton Aa. Fig. 6 illustrates an accepting run of some system
S1 and one of the corresponding accepting runs of the associated S3.

Given a sequence of actions !m and ?m, where m can be any message, we call
it a FIFO sequence if (i) all messages are received in the order in which they are
sent, and (ii) no message is received before being sent. We relax this definition to

10

Figure 5: The automaton Aa for the system S3, built from the automaton A of
S1. Arcs without actions represent ε transitions.

Figure 6: Above, a run with two messages for some system S1 with a single
process (timeline drawn horizontally). Below, one possible corresponding MSC
realized by the associated S3. Gray lines correspond to dummy messages.

talk about sequences of send actions a!b(m) and a!c(m) taken by a (in the first
part of the automaton Aa); in particular, we say that such a sequence γ′ is FIFO
if, when interpreting each a!b(m) and a!c(m) action as !m and ?m, respectively,
γ′ is a FIFO sequence. Dummy messages are used to enforce that the sequence
of send actions taken by Aa in an accepting run of S3 is FIFO.

Theorem 4.1. There is an accepting run of S1 if and only if there is an accepting
run of S3.

Sketch of proof. We only provide a sketch of the proof, which is quite convoluted
and requires several intermediate lemmata. The full proof is in Appendix C.
(⇒) We design Algorithm 1, which takes an accepting run σ of S1, and returns
an accepting run µ for S3. At a high level, Algorithm 1 takes the sequence of
actions taken by A in σ, rewrites each !m and ?m action as a!b(m) and a!c(m),
and then adds some actions related to dummy messages. We first show that the
sequence of actions γ′ returned by Algorithm 1 is a sequence of send actions
that takes Aa of S3 from state `0 to `acc (note that this is not the final state of

11

Aa, see Fig. 5 for an example). We then show that γ′ is a FIFO sequence, and
prove that there exists an accepting run of S3 in which Aa starts by executing
exactly the sequence of actions in γ′. Finally, we show that Algorithm 1 always
terminates.
(⇐) Let µ be an accepting run of S3, from which we show that it is easy to
build a sequence of actions γ taken by A in an accepting run of S1. Let γ′ be
the sequence of send actions taken by Aa in the accepting run µ. The first step
is to show that γ′ is a FIFO sequence. The three automata Aa, Ab, and Ac are
built so to ensure that γ′ is always a FIFO sequence. This is closely related to
the shape of the MSCs associated to accepting runs of S3; these MSCs exploit
the same kind of pattern seen in Section 3 to bounce messages back and forth
between the three processes. We then prove that, if we ignore actions related to
dummy messages in γ′ and interpret each a!b(m) and a!c(m) action as !m and
?m, we get a sequence of actions γ that takes A from its initial state `0 to its
final state `acc in an accepting run of S1. �

Algorithm 1 Let σ be an accepting run of S1, and ασ be the sequence of n
actions taken by A in σ. We use ασ(i) to denote the i-th action of ασ.

1: γ′ ← empty list
2: Queue ← empty queue
3: for i from 1 to n do
4: action ← ασ(i)
5: if action =!x then
6: while first(Queue) = D do
7: add a!c(D) to γ′
8: dequeue D from Queue
9: end while

10: add a!b(x) to γ′
11: enqueue x in Queue
12: else if action =?x then
13: add a!c(x) to γ′
14: dequeue x from Queue
15: add a!b(D) to γ′
16: enqueue D in Queue

17: if Queue does not contain only
D then

18: while first(Queue) = D do
19: add a!c(D) to γ′
20: dequeue D from Queue
21: add a!b(D) to γ′
22: enqueue D in Queue
23: end while
24: end if
25: end if
26: end for
27: while first(Queue) = D do
28: add a!c(D) to γ′
29: dequeue D from Queue
30: end while
31: return γ′;

The following result immediately follows from Lemma 2.1 and Theorem 4.1.

Theorem 4.2. The emptiness problem for weakly synchronous communicating
systems with three processes is undecidable.

Notice that our results extend to causally ordered (CO) communication, since
an MSC is weakly synchronous if and only if it is weakly synchronous CO (see
Appendix D).

12

Corollary 4.2.1. The emptiness problem for causal order communicating
systems with three processes is undecidable.

5 Conclusion
We showed the undecidability of the reachability of a configuration for weakly
synchronous systems with three processes or more. The main contribution lies
in the technique used to achieve this result. We first show that the treewidth of
the class of weakly synchronous MSCs is unbounded, by proving that it is always
possible to build such an MSC with an arbitrarily large grid as minor. Then, a
similar construction is employed to provide an encoding of a FIFO automaton
into a weakly synchronous system with three processes, allowing to show that
reachability of a configuration is undecidable.

13

References
[1] Lakhdar Akroun and Gwen Salaün. Automated verification of automata

communicating via FIFO and bag buffers. Formal Methods Syst. Des.,
52(3):260–276, 2018.

[2] Samik Basu and Tevfik Bultan. Choreography conformance via synchroniz-
ability. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th
International Conference on World Wide Web, WWW 2011, Hyderabad,
India, March 28 - April 1, 2011, pages 795–804. ACM, 2011.

[3] Samik Basu and Tevfik Bultan. On deciding synchronizability for asyn-
chronously communicating systems. Theor. Comput. Sci., 656:60–75, 2016.

[4] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1–2):1–45, dec 1998.

[5] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne
Lozes, and Amrita Suresh. A unifying framework for deciding synchroniz-
ability. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,
volume 203 of LIPIcs, pages 14:1–14:18, Virtual Conference, 2021. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[6] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne
Lozes, and Amrita Suresh. A unifying framework for deciding synchro-
nizability (extended version). Technical report, HAL, 2021. available at
https://hal.archives-ouvertes.fr/hal-03278370/document.

[7] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On
the completeness of verifying message passing programs under bounded
asynchrony. In Hana Chockler and Georg Weissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part
of the Federated Logic Conference, FloC 2018, July 14-17, 2018, Proceedings,
Part II, volume 10982 of Lecture Notes in Computer Science, pages 372–391,
Oxford, UK, 2018. Springer.

[8] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines.
J. ACM, 30(2):323–342, 1983.

[9] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Syn-
chronous, asynchronous, and causally ordered communication. Distributed
Comput., 9(4):173–191, 1996.

[10] Cinzia Di Giusto, Davide Ferré, Laetitia Laversa, and Étienne Lozes. A
partial order view of message-passing communication models. Proc. ACM
Program. Lang., 7(POPL):1601–1627, 2023.

14

https://hal.archives-ouvertes.fr/hal-03278370/document

[11] Alain Finkel and Étienne Lozes. Synchronizability of communicating finite
state machines is not decidable. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[12] Alain Finkel and Arnaud Sangnier. Reversal-bounded counter machines re-
visited. In Edward Ochmański and Jerzy Tyszkiewicz, editors, Mathematical
Foundations of Computer Science 2008, pages 323–334, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[13] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating
automata with bounded channels. Fundam. Informaticae, 80(1-3):147–167,
2007.

[14] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre.
Reachability analysis of communicating pushdown systems. In Luke Ong,
editor, Foundations of Software Science and Computational Structures,
pages 267–281, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[15] Oscar H Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM (JACM), 25(1):116–133, 1978.

[16] ITU-T. Recommendation itu-t z.120: Message sequence chart (msc). Tech-
nical report, International Telecommunication Union, Geneva, February
2011.

[17] Markus Lohrey and Anca Muscholl. Bounded MSC communication. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science
and Computation Structures, 5th International Conference, FOSSACS 2002.
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2002, April 8-12, 2002, Proceedings, volume 2303 of
Lecture Notes in Computer Science, pages 295–309, Grenoble, France, 2002.
Springer.

[18] Ernst W. Mayr. An algorithm for the general petri net reachability problem.
In Symposium on the Theory of Computing, 1981.

[19] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded
analysis of concurrent queue systems. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, pages 299–314, 2008.

15

A Tree-decomposition and treewidth
Definition A.1. A tree-decomposition of a graph G = (V,E) is a pair (T,X =
{Xt | t ∈ V (T)}) such that T is a tree, and X is a set of subsets of V , one for
each node of T , such that: (i)

⋃
t∈V (T)Xt = V (G); (ii) for every {u, v} ∈ E(G),

there exists t ∈ V (T) such that u, v ∈ Xt; (iii) for every v ∈ V (G), the set
{t ∈ V (T) | v ∈ Xt} induces a subtree of T .

The width of a tree decomposition (T,X) is maxt∈V (T) |Xt| − 1, i.e., the size
of the largest set V minus one. The treewidth tw(G) of G is the minimum width
over all possible tree decompositions of G.

The following well-known result in graph theory gives a connection between
the notions of treewidth and minor.

Theorem A.1. [4] If G is a minor of H, then tw(G) ≤ tw(H).

B Automata with epsilon transitions
Given a communicating automaton A, we build an equivalent one with epsilon-
transitions such that (i) from each state there are either only epsilon-transitions
or a single transition labeled with a letter from Σ, (ii) and there are no states
with a transition that lands in the same state (i.e., a self-loop).

Let A = (Loc, δ, `0, `acc) be a communicating automaton for process p. Its
encoding into an automaton with single non-epsilon transitions is the automaton
Aε = (Locε, δε, `0, `acc) where

• Locε = Loc ∪ {`t | t ∈ δ}

• δε = {(`, ε, `t), (`t, a, `′) | t = (`, a, `′) ∈ δ}

Let Sε be the system obtained from S where each for each of the processes p ∈ P
we take the corresponding encoding Aεp.

Immediately from the definition of accepting run we can see that L(Sε) =
L(S).

C Proofs for Section 4
This section is devoted to the proof of Theorem 4.1, which we restate below.

Theorem 4.1. There is an accepting run of S1 if and only if there is an accepting
run of S3.

Proof. (⇒) Follows from Lemma C.5, which uses Lemmata C.1 to C.4.
(⇐) Follows from Lemma C.8, which uses Lemmata C.6 and C.7. All Lemmata
are stated and proved below.

16

Let µ be an accepting run of a system S, over a setM of messages and a set P of
processes, on an MSC M = (E ,→,�, λ). For p ∈ P, we will use αµp to denote the
sequence of actions, ignoring ε-actions, taken by Ap in the run µ; more formally,
αµp is the sequence of actions in {action(t) | t ∈ µ(e), e ∈ Ep, action(t) 6= ε},
ordered according to the →P relation, i.e., given a1 = action(µ(e1)), b2 =
action(µ(e2)), such that e1 →p e2, then a1 is right before a2 in αµp , which we

abbreviate as a1
p
99K a2 (or simply a1 99K a2, when the process p is clear from

the context). The lightweight notation αp will be used when the run µ is clear
from the context, and we omit p when the system only has one process. The j-th
action in αµp will be denoted by αµp (j). In this section, when talking about an
accepting run of a system S = ((Ap)p∈P) on an MSC M , we will often not even
mention M , and only focus on the sequence of actions taken by the automata
Ap.

Let S1 = (A) be any communicating system with a single process and one
queue, and S3 = (Aa, Ab, Ac) be the weakly synchronous system obtained from
S1 with the reduction described in Section 4. For p ∈ {a, b, c}, we use !αµp and
?αµp to denote the sequence of send actions and, respectively, receive actions
taken by Ap. Note that αµp =!αµp+?αµp , where + is the concatenation of two
sequences, since S3 is a weakly synchronous system with one phase.

Lemma C.1. Let γ = a1 . . . ak be a sequence of send actions taken by Aa to
get from `0a to `?a, where Aa is also allowed to take extra ε-actions in any state.
If γ is a FIFO sequence, there is an accepting run µ of S3 such that !αµa = γ.

Proof. Suppose γ is a FIFO sequence. It follows that a must send messages to b
in the same order X = m1 . . .mk as a sends messages to c. We will now build
an accepting run µ of S3 such that !αµa = γ. For Ab (Ac), we can construct !αµb
(!αµc) by sending messages to a and c (b and a) in order X. For p ∈ {a, b, c}, ?αµp
is constructed by receiving messages from the other two processes in order X.
αµa , α

µ
b , and α

µ
c all lead the corresponding automaton to the final state, and all

messages that are sent are also received, so µ is an accepting run of S3.

We now present Algorithm 1, which essentially takes an accepting run of S1,
and returns an accepting run for S3. The correctness of the algorithm is proved
in a few steps.

Lemma C.2. Let γ′ be the sequence of actions returned by one execution of
Algorithm 1. Then, γ′ is a sequence of actions that takes Aa of S3 from state `0
to `acc.

Proof. Let σ be the accepting run of S1 that is given as an input to the algorithm.
Suppose that both A in S1 and Aa in S3 start in their initial states and, every
time we read an action from ασ in the algorithm (line 4), we take that action
in the current state of A2; we know that this is always possible since ασ is by
definition a sequence of actions3 that takes A from its initial state `0 to its final

2Or from a state of A that is reachable from the current one using only ε-transitions.
3Possibly interleaved by some ε actions.

17

state `acc. Similarly, each time that an action is added by the algorithm to the
sequence γ′, we take that action in the current state of Aa in S32, provided that
there exists a transition with such an action; we show that there always is such a
transition, and that the sequence of actions γ′ built by the algorithm3 will take
Aa from its initial state `0 to the state `acc (note that `acc is not the final state
of Aa, by definition). We show by induction that, right before each iteration
of the for loop, A and Aa can always be in the same state (the correspondence
between states of A and the states of Aa is given by the definition of Aa); in
particular, we show that before the i-th iteration of the for loop, they can always
both be in state `i−1, which is the state from which A will take the action ασ(i).
For the base case, we are right before the first execution of the for loop. A is
in a state ` that is either the initial state `0 or some state reachable with only
ε-transitions from `0. In both cases, by construction, Aa can also be in the same
state `. For the inductive step, we assume that A and Aa are both in the same
state `i−1 before executing the i-th iteration of the for loop (where `i−1 is the
state in which A is ready to take the ασ(i) action), and we show that at the
end of the i-th iteration both A and Aa end up in state `i. There are two main
possibilities for the i-th iteration of the for loop:

• ασ(i) =!x, so the if at line 5 is entered. This means that `i−1 in A is a state
that has an outgoing transition with the send action !x. By construction,
since Aa is also in `i−1, it can take an unlimited number of a!c(D) actions,
followed by a a!b(x) action. These are exactly the kind of actions added to
γ′ by the if that starts at line 5.

• ασ(i) =?x, so the if at line 12 is entered. A is then in a state `i−1 that
has an outgoing transition with the receive action ?x. By construction, Aa
in state `i−1 can take the a!c(x) action, followed by a a!b(D) action; after
that, Aa can take the consecutive pair of actions a!c(D) and a!b(D) any
number of times. These are exactly the kind of actions added to γ′ by the
if that starts at line 12.

In both cases, after taking action ασ(i), A gets to state `i (possibly using some
additional ε-actions), ready for the next execution of the for loop; after taking the
actions added by the algorithm to γ′, Aa can also get to state `i, by construction.
After the last iteration of the for loop, A and Aa will both be in state `n = `acc.
By construction, Aa can take an unlimited number of a!c(D) actions in this
state, which are the only kind of actions that can be added by the algorithm
during the final while loop (line 27).

Lemma C.3. Let γ′ be the sequence of actions returned by one execution of
Algorithm 1. γ′ is a valid FIFO sequence.

Proof. Each time that a a!b(m) action gets added to γ′ by the algorithm, m is
enqueued, and each time a a!c(m) action is added to γ′, m is dequeued. Our
claim directly follows (the behavior of a queue is naturally FIFO).

Lemma C.4. Algorithm 1 always terminates.

18

Proof. The only ways in which the algorithm does not terminate are either (i) if
it blocks when trying to dequeue a message m that is not the first in Queue,
or (ii) if a while loop runs forever. We show that neither ever happens. Let us
first focus on the specific case of line 14, when a message x is dequeued. Each
time the algorithm encounters a send action !x in ασ, message x is enqueued;
each time it encounters a receive action ?x, message x is dequeued. There are
no other occasions in which a normal message (i.e., not a dummy message D) is
enqueued or dequeued. By definition, ασ is a valid FIFO sequence for a single
queue, so each time that the algorithm reads a receive action ?x and gets to
line 14, message x must be the first in the queue, unless there are some dummy
messages D before. We show that this is impossible. Suppose, by contradiction,
that during the i-th iteration of the for loop, ασ(i) =?b and the algorithm blocks
at line 14, because there are some D messages before b in the queue; these D
messages must have been enqueued during previous iterations of the for loop.
Note that i > 1, since the first action in ασ cannot be a receive action, and
the algorithm gets to line 14 only when it reads a receive action. Consider the
previous (i− 1)-th iteration of the algorithm, where ασ(i− 1) could either be a
send or receive action:

• In the first case, we would have entered the while loop at line 6, which
would have dequeued all the D messages on the top of the queue, leaving
b as the first one when entering the i-th iteration of the for loop, therefore
leading to a contradiction.

• In the second case, ασ(i− 1) is a receive action, so we would have entered
the if at line 17 (since b is in the queue by hypothesis), and the while
loop right after at line 18; this loop also dequeues all D messages and puts
them back in the queue, leaving b as the first one when entering the i-th
iteration of the for loop, leading again to a contradiction.

We showed that the dequeue operation at line 14 never blocks.
Now, we consider the cases in which a D message is dequeued (line 8, 20,

and 29), and show that the algorithm never blocks. In all of these cases, we are
in a while loop that is entered only if the message at the top of the queue is
D, therefore the algorithm will never block. The last thing to show is that no
while loop will run forever. To do this, we first show that, at any point of the
algorithm, the number of D messages in the queue is at most n. Note that a D
message can only be added to the queue at lines 16 and 22. In the case of line
22, a D message is enqueued only after another D message was dequeued (line
20), so the total number of D messages in the queue does not change each time
that an iteration of the while loop at line 18 is executed. Line 16 is therefore the
only one that can effectively increase the number of D messages in the queue,
and can only be executed at most once per iteration of the for loop. The number
of D messages in the queue at any time can then be at most n (in particular,
it is finite). It follows directly that the while loops at line 6 and 27 will never
run forever. We get to the while loop at line 18 only if there is at least one
non-dummy message x in the queue; since the number of D in the queue is finite,

19

the loop will run a finite number of time before encountering message x at the
top of the queue.

Lemma C.5. If there is an accepting run σ of S1, then there is an accepting
run µ of S3.

Proof. By Lemma C.4, Algorithm 1 always terminates and returns γ′. By Lemma
C.2, γ′ is a sequence of actions that takes Aa from `0a to `?a. Lemma C.3 shows
that γ′ is a FIFO sequence, so we can finally use Lemma C.1 to claim that there
is an accepting run µ of S3 in which !αµa = γ′.

Lemma C.6. Let µ be an accepting run of S3. In !αµa , there is an equal number
of messages sent to b and to c. Moreover, in !αµa , if x is the i-th message sent to
b, and y the i-th message sent to c, then x = y.

Proof. By construction, in an accepting run of S3, Ab must send messages in the
same order and in the same number to the other two processes, in order not to
block and to reach the state `?b, in which it is ready to start receiving messages.
The same goes for Ac (but not for Aa). Also, once Ab gets to state `?b, it must
receive messages from the other two processes in the same number (let it be n)
and in the same order, so not to block and to reach the final state; this means
that a and c must send exactly n messages to b4. The same kind of reasoning
holds for Aa and Ac, i.e., each process receives messages in the same order and
in the same number from the other two processes in an accepting run of S3. We
now show that the number of messages sent by a to b (let it be n1) and by a
to c (let it be n2) is the same. Suppose, by contradiction, that n1 6= n2 in an
accepting run of S3. Based on the above, n1 is also the number of messages
sent by c to b, and by c to a; similarly, n2 is the number of messages sent by b
to c, and by b to a. We then have that a receives n1 messages from c, and n2
messages from b. We said that we must have n1 = n2 in an accepting run of S3,
hence the contradiction. The second part of the lemma essentially says that, for
every accepting run of S3, the order in which a sends messages to b is the same
as the order in which a sends messages to c. By contradiction, suppose a sends
messages to b following the order X = m1 . . .mk, and messages to c following
another order Y , such that X 6= Y . Based on the above, X is also the order in
which messages are sent by c to b, and by c to a; similarly, Y is the order in
which messages are sent by b to c, and by b to a. We then have that a receives
messages in order X from c, and in order Y from b. We said that we must have
X = Y in an accepting run of S3, hence the contradiction.

In order to make the following proofs more readable, we introduce some sim-
plified terminology. Let µ be an accepting run of S3. In !αµa , we will often refer to
send actions addressed to b as “sends”, and to send actions addressed to c as “re-
ceipts” (it follows from the way S3 was built from S1). Additionally, in !αµa , we will

4By the definition of accepting run, Ab has to receive all messages that were sent by the
other two processes before moving to the final state, since we cannot have some messages sent
to b that are not received.

20

refer to the i-th send action to c as the matching receipt for the i-th send action to
b (which, in turn, will be referred to as the matching send for the i-th send action
to c). For example, let !αµa = a!c(x) a!b(x) a!b(y) a!b(y) a!b(z) a!c(y) a!c(y) a!c(z)
(note that it respects Lemma C.6): we will refer to the first a!c(x) action as the
receipt of the first a!b(x) action, and similarly to a!c(z) as the receipt of the only
a!b(z) action in !αµa (note that a!c(z) is the 4th send action to c, and a!b(z) is
the 4th send action to b).

Lemma C.7. Let µ be an accepting run of S3. For every message x, we cannot
have more a!c(x) actions than a!b(x) actions in any prefix of !αµa .

Proof. Using the above-mentioned simplified terminology, we could rephrase
the lemma as: given an accepting run µ of S3, in !αµa there cannot be a receipt
that appears before its send. By contradiction, suppose there is an accepting
run µ of S3 in which a receipt appears before its matching send in !αµa . Let
us uniquely identify as lastRx the first such receipt in !αµa , and as lastSx its
matching send (we have lastRx 99K+ lastSx in !αµa). According to our reduction
rules, we must send a dummy message right after lastRx in !αµa . We will
uniquely identify this action as lastSD, and its receipt as lastRD. There are two
possibilities: either (i) lastSD 99K+ lastRD or (ii) lastRD 99K+ lastSD. The
first case leads to a contradiction, because we would have lastSD 99K+ lastSx
and lastRx 99K+ lastRD, which violates Lemma C.6 (message D is sent to b
before message x, but D is sent to c after x). We then consider the second
scenario, in which lastRD 99K+ lastSD. According to the implementation of
S3 (see reduction rules), a receipt of a dummy message, such as lastRD, can
only happen either (i) before a send, or (ii) somewhere after a receipt (in any
case, before the next non dummy-related action)5. The first case leads to a
contradiction. Let s be the above-mentioned send action and r its receipt; we must
have s 99K+ r, since lastRx was chosen as the first receipt that appears in !αµa
before its send, but this violates again Lemma C.6 (we would have s 99K+ lastSD
and lastRD 99K+ r). We then consider the second scenario, in which lastRD
happens somewhere after a receipt of a message y, which we uniquely identify
as Ry. Let Sy be the matching send of Ry. For the same reason as before,
Sy 99K+ Ry. According to our reduction rules, between Ry and lastRD there
could be an arbitrary large sequence of alternating a!b(D) and a!c(D) actions,
where the last a!c(D) is exactly lastRD. In any case, if there are k + 1 dummy
messages sent between Ry and lastRD, there must be k dummy messages received
(excluding the end points). Let SD be any send of these dummy messages. Note
that the matching receipt of SD (uniquely identified as RD) cannot be neither
(i) after lastRD, nor (ii) before Ry, since both would again violate Lemma C.6: in
the first case, we would have SD 99K+ lastSD and lastRD 99K+ RD, whereas in
the second case Sy 99K+ SD (since Sy 99K+ Ry 99K+ SD) and RD 99K+ Ry. This
means that any of the k sends of dummy messages between Ry and lastRD must
have its matching receipt also between Ry and lastRD (end points excluded); this

5When not specified, actions do not refer to dummy messages. For example, “can only
happen before a send” refers to the sending of a non-dummy message.

21

is impossible, since between Ry and lastRD there are only k dummy messages
received and k + 1 dummy messages sent, so at least one send will not have its
matching receipt.

Lemma C.8. If there is an accepting run µ of S3, then there is an accepting
run σ of S1.

Proof. Given an accepting run µ of S3, Algorithm 2 always returns a sequence
of actions ασ for an accepting run σ of S1. The proof is very similar to that
of Lemma C.5, but much easier; therefore, we only describe the main intuition
without dealing with most of the formalism. First, the algorithm removes all
actions related to dummy messages from !αµp , and creates the sequence seq; then,
it returns the sequence γ, which is identical to seq, except that a!b(x) and a!c(x)
actions are rewritten as !x and ?x, respectively. Let l0 . . . l? be the sequence of
states traversed by Aa while taking the actions in !αµa , ignoring states in which
the only outgoing transitions have a a!b(D) or a!c(D) action; more specifically,
these are the intermediate states introduced by the first reduction rule, which do
not have a one-to-one correspondence with states of A. Note that, by Lemmas
C.6 and C.7, seq and, therefore, γ, are FIFO sequences. By construction, it
is now not difficult to see that the sequence of actions γ takes A from l0 to l?
where l? is its final state. After all, just by looking at how Aa is constructed, it
is clear that a sequence of send actions in Aa, when removing dummy messages
actions and interpreting a!b(x) and a!c(x) as !x and ?x, also represents a valid
sequence for A, as long as it is a valid FIFO sequence (otherwise some receive
actions in A might block trying to read a message that is not at the top of the
queue).

Algorithm 2 Let µ be an accepting run of S3, and !αµa be the sequence of size
send actions taken by Aa in µ. !αµa(i) denotes the i-th action of !αµa .

1: seq ←!αµa
2: for i from 1 to size do
3: action ← !αµa(i)
4: if action = a!b(D) or action =

a!c(D) then
5: remove action from seq
6: end if
7: end for
8: n← length(seq)
9: γ ← empty list

10: for i from 1 to n do
11: action ← seq(i)
12: if action = a!b(x) then
13: add !x to γ
14: else if action = a!c(x) then
15: add ?x to γ
16: end if
17: end for
18: return γ;

22

D Weakly synchronous causally ordered MSCs
We recall here the definition of causally ordered (CO) MSC, borrowed from [10].

Definition D.1 (CO MSC). An MSC M = (E ,→,�, λ) is causally ordered
if, for any two send events s and s′, such that λ(s) ∈ Send(, q,), λ(s′) ∈
Send(, q,), and s ≤hb s′:

• either s, s′ ∈ Matched(M) and r →∗ r′, with r and r′ receive events such
that s� r and s′ � r′.

• or s′ ∈ Unm(M).

An MSC is weakly synchronous CO if it is a weakly synchronous MSC and a
CO MSC.

Theorem D.1. An MSC is weakly synchronous CO if and only if it is weakly
synchronous p2p.

Proof. (⇐) Let M be a weakly synchronous CO MSC. M is weakly synchronous
and is also p2p, since each CO MSC is a p2p MSC.
(⇒) Let M be a weakly synchronous p2p MSC. By contradiction, suppose it
is not causally ordered, which means that there exist two send events s and s′
addressed to the same process, such that s≤Ms′, and one of the following holds:

• r′ →+ r, where s� r and s′ � r′. Note that s and s′ cannot be executed
by the same process, otherwise M would not even be p2p. Since s ≤M s′,
there is a ’chain’ of events that causally links s to s′. Note that, in this
chain, there must exist a receive event r′′ and a send event s′′ such that
r′′ →+ s′′ (otherwise s and s′ could not be causally related). We now
have a send event s′′ that is executed after a receive event r′′ by the same
process. Note that r′′ and s′′ cannot be in two distinct phases of the weakly
synchronous MSC M , since s and r (matching events) must be in the same
phase, and we have that s ≤M r′′ →+ s′′ ≤M s′ � r′ →+ r (i.e., all these
events between s and r must be part of the same phase).

• s in unmatched, and s′ � r′. As before, note that s and s′ cannot be
executed by the same process, otherwise M would not even be p2p.

23

	Introduction
	MSCs and communicating automata
	Treewidth of weakly synchronous p2p MSCs
	Reachability for weakly synchronous p2p systems with 3 machines
	Conclusion
	Tree-decomposition and treewidth
	Automata with epsilon transitions
	Proofs for Section 4
	Weakly synchronous causally ordered MSCs

