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SAMPLING RANDOM CYCLE-ROOTED SPANNING FORESTS ON

INFINITE GRAPHS

H. CONSTANTIN

Abstract. On a finite graph, there is a natural family of Boltzmann probability mea-
sures on cycle-rooted spanning forests, parametrized by weights on cycles. For a certain
subclass of those weights, we construct Gibbs measures in infinite volume, as limits
of probability measures on cycle-rooted spanning forests of increasing sequences of fi-
nite graphs. Those probability measures extend the family of already known random
spanning forests and can be sampled by a random walks algorithm which generalizes
Wilson’s algorithm. We show that, unlike for uniform spanning forests, almost surely,
all connected components are finite and two-points correlations decrease exponentially
fast with the distance.
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Introduction

We call cycle-rooted spanning forest, on a finite connected graph, every subgraph which
contains all vertices and all of whose connected components contain a unique cycle. Such
a configuration of edges, endowed with a choice of orientation of cycles, can be seen as a
discrete vector field on the graph: edges which are not in the cycle are oriented towards
the cycle. Every vertex is associated with an edge starting from it.

1



2 H. CONSTANTIN

Given a connected finite graph G = (V, E), all of whose oriented cycles (γ)γ∈C(G) are
endowed with positive weights (w(γ)), we say that two oriented cycles are equivalent if
they are equal after removal of their orientations. We define a probability measure on
cycle-rooted spanning forests, induced by these cycle-weights as follows. Every spanning
forest has a probability proportional to the product of weights of its cycles, counting both
orientations:

(1) µw(F ) =

∏

[γ]∈C(F )(w(γ) + w(γ−1))

Zw
,

where γ, γ−1 are both oriented cycles of the equivalence class [γ]. The normalizing con-
stant Zw is called the partition function of the model and is defined as follows:

Zw =
∑

F

∏

[γ]∈C(F )

(w(γ) + w(γ−1)).

Recall that the usual model of uniform spanning tree is defined on finite graphs and its
limit for infinite graphs is studied in [BP93, BLPS01]. In these papers, the existence of a
measure for infinite graphs is shown. This measure is sampled by an extension in infinite
volume of Wilson’s algorithm [Wil96] which does not depend on the ordering of vertices;
see [LP16] for a textbook treatment of this topic. These authors study the properties of
the configurations under the measure in infinite volume, such as the number of connected
components.

A model of random rooted spanning forests, all of whose connected components are
rooted trees is studied in [BdTR17]. In this model, probability measures are associated
with weights on vertices. If only one vertex has a weight, the probability measure associ-
ated with this weight has support in rooted trees, whose unique root is this vertex, and
is equal to the uniform spanning tree measure after forgetting this root. In the model of
rooted spanning forests, the random configurations are still sampled by an algorithm of
loop-erased random walks.

The model of rooted spanning forests is a particular case of the model of cycle-rooted
spanning forests, which is studied in this article. Indeed, weights on vertices can be
interpreted as weights on small self-loops over vertices and the roots of the random config-
uration can be seen as the unique cycles of their connected component. From this point of
view, the model of cycle-rooted spanning forests is a generalization of the rooted spanning
forests and of the uniform spanning tree.

The measure on cycle-rooted spanning forests on finite graphs associated with a weight
function on cycles for which every cycle has a weight smaller than 1 is studied in [KK17].
This measure is sampled by a loop-erased random walks algorithm inspired from the Propp-
Wilson algorithm for the generation of a random spanning tree. This algorithm does not
depend on the ordering of vertices. A similar algorithm is also introduced in [BBGJ07] to
generate a random spanning web of square lattice annuli, using a “cycle-popping” inspired
from the Propp-Wilson algorithm.

In this article, we study properties of probability measures on cycle-rooted spanning
forests depending on a weight function on oriented cycles with values smaller than 1.
We show that under an assumption on weights (Assumption 2.0.1), the weak limit of
measures on spanning forests on growing finite graphs, with cycle-weights smaller than 1,
is well-defined and sampled by an algorithm of loop-erased random walks (Theorem 3.3.1)
which does not depend on the ordering of vertices (Theorem 3.3.2). We show furthermore
that under this measure with a stronger assumption on weights (Assumption 4.0.1), all
connected components are almost surely finite (Theorem 4.1.4) and the decay of edge-
edge correlations is exponential (Theorem 4.2.2). Those properties show that under this
assumption on weights, the measure which is constructed in infinite volume corresponds
to a different “phase”, in the sense of statistical mechanics, than the uniform spanning
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forests measure studied in [BP93, BLPS01, LP16]. We also study probability measures
on cycle-rooted spanning forests of finite graphs determined by a weight function w which
can take values larger than 1. Those measures are no longer sampled by a loop-erased
random walk algorithm. Nevertheless, we show that conditional on cycles of weights larger
than 1, the measure is determined by a modified weight function w− (Definition 5.1.1)
which takes values smaller than 1 (Theorem 5.1.2). Assuming the existence of an infinite
volume measure µw, we show that when Assumption 4.0.1 is satisfied by this modified
weight function w−, every connected component with a cycle is finite (Theorem 5.2.8).
Combined with Proposition 3.1.1 which says that almost surely every finite connected
component has a cycle, this result implies that, almost surely, every connected component
is either a finite cycle-rooted tree or an infinite tree.

The paper is organized as follows. In Section 1, we define the probability measures on
cycle-rooted spanning forests of finite graphs we are concerned with and give properties on
these measures. In Section 2, we define the p-loop erased random walks which generalize
the loop-erased random walks and which are used in the third section to define a measure
in infinite volume sampled by a random walk algorithm. In Section 3, we study the
weak limit of probability measures on spanning forests on growing finite graphs, which
gives the existence of a probability measure in infinite volume. In Section 4, we study
the long-range behavior of the configurations under this probability measure, such as the
non-existence of an infinite connected component and the exponential rate of decay of edge-
to-edge correlations. In Section 5, we study properties of infinite configurations sampled
by infinite volume probability measures which are determined by unbounded weights on
cycles, provided the limit exists.

1. Measures on Cycle-Rooted Spanning Forests on finite graphs

1.1. Cycle-rooted spanning forests. Let G = (V, E) be a finite connected graph with
vertex set V and edge set E. For every subgraph F of G, let C(F ) be the set of unoriented
simple cycles of F and E(F ) be the set of edges of F . If [γ] ∈ C(F ) is a cycle of F , denote
by γ and γ−1 the two oriented cycles obtained from γ. Let C→(F ) be the set of oriented
cycles of F .

We say that a subgraph of G is a cycle-rooted spanning forest (CRSF) if it contains all
the vertices and if each of its connected components contains a unique cycle. Let U(G) be
the set of CRSFs of G.

Let w : C→(G) → R+ be a non-zero function with non-negative values, defined on
oriented cycles of G. There is a natural probability measure on U(G) associated with w,
which is denoted by µw. It is defined for every CRSF F ∈ U(G) by:

(2) µw(F ) =

∏

[γ]∈C(F )(w(γ) + w(γ−1))

Zw
,

where γ, γ−1 are both oriented cycles of the equivalence class [γ], and Zw is called the
partition function of the model

Zw =
∑

F ∈U(G)

∏

[γ]∈C(F )

(w(γ) + w(γ−1)).

We say that F is an oriented cycle-rooted spanning forest (OCRSF) if it is a CRSF
and every cycle of F is given an orientation, that is to say if every connected component
contains a unique oriented cycle. Let U→(G) be the set of OCRSFs of G. Every edge of
an OCRSF is oriented towards the cycle of its connected component.

The partition function of the model can also be written as a sum of weights over OCRSF
as follows:

Zw =
∑

F OCRSF

∏

γ∈C→(F )

w(γ),



4 H. CONSTANTIN

and it gives a natural probability measure on OCRSF.
Let W ⊂ V be a subset of vertices of G. We say that F is a wired cycle-rooted

spanning forest or essential cycle-rooted spanning forest (ECRSF) with respect to W if
every connected component of F is either a unicycle disjoint from W or an unrooted tree
which contains a unique vertex of W , called a boundary-rooted tree. Let UW (G) the set
of ECRSF with respect to W .

Definition 1.1.1 (Wired boundary conditions). We define a measure on UW (G) called
the wired measure on ECRSF of G with boundary W whose configurations have weight
proportional to the product of weights of cycles.

(3) µW
w (F ) =

∏

[γ]∈C(F )(w(γ) + w(γ−1))

ZW
w

where γ, γ−1 are both oriented cycles of the equivalence class [γ].

Notice that the measure defined in (2) corresponds to the case W = ∅.

1.2. Wilson’s algorithm. When the weight function w is identically equal to 0, this
measure µW

w has support on ECRSF all of whose connected component are boundary-
rooted trees. In particular, when W = {r} is a single vertex and the weight function w
is identically equal to 0, this measure has support on spanning trees rooted at r. Since
spanning trees on G are in 1-to-1 correspondence with spanning trees of G rooted at r,
this measure is independent of the choice of vertex r and gives to every spanning tree the
same weight. Therefore, this measure is the uniform spanning tree measure defined for
every tree T by:

(4) µ(T ) =
1

Ztree

where Ztree is the partition function, that is the number of spanning trees of the graph G.
This measure µ can be sampled by the Wilson algorithm ([Wil96]).

Assume that for every oriented cycle γ ∈ C→(G),

w(γ) ∈ [0, 1]

We will write p instead of w in the following when this assumption is satisfied.
According to [KK17], the measure µp can be sampled by an algorithm of loop-erased

random walk where we keep an oriented cycle γ, with probability p(γ).
More precisely, let x1, . . . , xn be an ordering of the vertex set V of G and let F0 = ∅. At

each step i, let (X
(xi)
n )n≥0 be a simple random walk on the graph G starting from xi. Every

time the random walk makes a loop, the oriented cycle γ is kept with probability p(γ) or

erased with probability 1 − p(γ). The random walk (X
(xi)
n )n≥0 is stopped when it reaches

the set of already explored vertices denoted by V (Fi−1) or when a cycle is kept. In the

end of the ith step, let Fi = Fi−1 ∪ L(X
(xi)
n ) where L(X

(xi)
n ) is obtained from (X

(xi)
n )n≥0

after removing all the loops except the last one if a loop is kept at the end of the ith step.
At the end, V (Fn) = V (Gn). Notice that the algorithm always finishes if and only if there
exists at least a loop γ in G such that p(γ) > 0.

The measure µW
p defined in Definition 1.1.1 can also be sampled by an algorithm. We

follow the same algorithm but every time the random walk meets W , the walk stops and
a new random walk starts from the next vertex in the ordering. At the beginning of the
algorithm, we set F0 = W instead of F0 = ∅. The algorithm always finishes if and only if
there exists at least a loop γ in G\W such that p(γ) > 0 or W 6= ∅.

Let us emphasize that when W = {r} is a single vertex and the weight function w
is equal to 0, then the sampling algorithm described just above is the classical Wilson
algorithm which samples a uniform spanning tree on G rooted at r.
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2. p-Loop erased random walks and rooting times

In the following, we will consider a countably infinite connected graph G = (V, E),
with finite degrees, exhausted by an increasing sequence (Gn)n≥1 of connected induced
subgraphs of G, with respective vertex set Vn. We denote by ∂Gn the subset of Vn of
vertices which are connected by an edge to the complement of Gn in G.

For every v ∈ V , we denote by Pv the law of a simple random walk on G starting from v.
We consider a weight function w = p ∈ [0, 1] and we make the following assumption on

the exhaustion (Gn) of the graph G and the weight function p.

Assumption 2.0.1. There exists α > 0 and β > 0, such that for every n ∈ N
∗, for

every random walk (Xn)n≥0 on G, starting from a vertex v of ∂Gn, there exists a loop γv

in Gn+1\(Gn ∪ ∂Gn+1) which satisfies p(γv) ≥ α and Pv((X1, . . . , X|γ|) = γ) > β.

2.1. Hitting times, rooting time. In the following we denote by v0 a vertex of G1.

Definition 2.1.1. If C is a subset of the vertex set V , we define for a random walk (Xn)
the hitting time of C, that is to say

TC := min{k ≥ 0|Xk ∈ C}.

Notice that in this definition, TC can be equal to 0 if the random walk starts from a vertex
of C.

Definition 2.1.2. Let (Xn) be a simple random walk starting from v0. Let (Tn) be the
sequence of random hitting times of ∂Gn for the random walk (Xn), that is to say

Tn := T∂Gn
= min{k ≥ 0|Xk ∈ ∂Gn}.

Lemma 2.1.3. The hitting-time Tn is finite almost-surely for every n ∈ N
∗. Furthermore,

lim
k→∞

Pv0(Tn ≥ k) = Pv0(Tn = ∞) = 0.

Proof. Let n ∈ N
∗. Almost surely, Tn is finite because almost surely if k ≥ 1, there

exists a time such that the random walk makes k consecutive steps in the same direction.
Therefore, the random walk exits every finite ball in finite time almost surely. Since the
events (Tn ≥ k) are decreasing in k (for a fixed n) with respect to inclusion, the monotone
convergence theorem implies

lim
k→∞

Pv0(Tn ≥ k) = Pv0(
⋂

k≥1

{Tn ≥ k}) = Pv0(Tn = ∞),

which concludes the proof. �

Let (Xn) be a simple random walk on G starting from v0 and let (Yn) be a sequence
of independent random variables of uniform law on [0, 1], which are independent of the
random variables Xn.

We want to define a p-loop erased random walk such that, if at time n, the random
walk (Xn) closes a loop γn, the loop is kept if Yn ≤ p(γn) and erased else.

Given (Xn, Yn), we construct a sequence of random walks ((Zk
n)n)k as follows. We define

recursively (Zk
n)n≥1 for k ∈ N

∗. Let (Z1
n) = (Xn) and given (Zk

n)n, let us consider the first
time nk such that Zk

n closes a loop that is to say

nk = min{j > nk−1 ∈ N
∗|Zk

j ∈ {Zk
0 , . . . , Zk

j−1}}.

Then, let n′
k be the time of the beginning of the loop, that is to say

n′
k = min{j ∈ N, Zk

j = Zk
nk

}.
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Therefore, the loop which is closed at time nk is the loop γnk
:= (Zk

n′
k
, . . . , Zk

nk
) Finally,

if Ynk
≥ p(γnk

), then define for every n ∈ N,

Zk+1
n =

{

Zk
nk

if n′
k ≤ n ≤ nk

Zk
n else.

(Zk+1
n ) is obtained from (Zk

n) erasing the loop γnk
.

Otherwise, if Ynk
≤ p(γnk

), for every m ≥ k + 1 and n ∈ N, let

Zm
n =

{

Zk
n if n ≤ nk

Zk
nk

else

(Zm
n ) is obtained from (Zk

n) stopping the random walk at time nk.

Definition 2.1.4. If (Xn) is a simple random walk on G starting from v0 and (Yn) is a
sequence of independent random variables of uniform law on [0, 1], which are independent
of the Xn, we say that (nk)n≥1 is the sequence of random times where the random walk (Xn)
closes a loop γnk

. Let Tr be called the random rooting time for (Xn, Yn) that is to say the
first time where a loop is kept:

Tr := min{nk|Ynk
≤ p(γnk

)},

where min ∅ = +∞. If k is such that Tr = nk, then let (Zn)n≤Tr = (Zk
n)n≤Tr be called

the p-loop erased random walk obtained from (Xn, Yn).

Let us emphasize that if Tr is finite, then there exists a k such that Tr = nk and then
the p-loop erased random walk (Zn)n≤Tr is well defined and is obtained from (Xn)n≤Tr ,
erasing every loop excepted the last one. Here, the loop-erased random walk is indexed
on the same time set than the random walk (Xn). Nevertheless, Zn does not depend only
on (Xk)k≤n.

2.2. The rooting time is almost surely finite. We will show in this subsection that
the rooting time Tr is a stopping time and that almost surely, it is finite.

Definition 2.2.1. Let (Fn)n be the filtration adapted to the process ((Xn, Yn))n that is
defined by

Fn = σ(X0, . . . , Xn, Y0, . . . , Yn),

which is the smallest sigma-field which makes the (Xi)0≤i≤n, (Yi)1≤i≤n measurable.

Lemma 2.2.2. For every m ∈ N
∗, the hitting time Tm is a stopping time with respect

to the filtration (Fn)n. The rooting time Tr is also a stopping time with respect to the
filtration (Fn)n. Moreover, for every n ∈ N, if we consider the σ-field adapted to the
stopping time Tn, defined by

FTn = {A ∈ F : ∀k ≥ 0, {Tn ≤ k} ∩ A ∈ Fk},

then, the event {Tn < Tr} is in FTn .

Proof. Let n ∈ N. The events {Tn ≥ k} = {X1, . . . , Xk ∈ Gn\∂Gn} are measurable with
respect to Fk and therefore Tn is a stopping time.

From the construction of the rooting time, the event {Tr ≤ k} only depends on the steps
of the random walk before time k, that is ((Xn, Yn))n≤k and therefore the event {Tr ≥ k}
is in Fk.

The event {Tn < Tr} is in FTn because if k ≥ 0,

{Tn ≤ k} ∩ {Tn < Tr} =
⋃

1≤i≤k

({Tn = i} ∩ {Tr > i}) ∈ Fk.

which concludes the proof. �
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Let us emphasize that Tr is a stopping time for the filtration (Fn) even if (Zn) is not
adapted to the filtration (Fn). Indeed, Zn depends on (Xk) for k ≥ n. Lemma 2.2.2 is a
useful tool to show that the rooting time is almost surely finite for a simple random walk
starting from v0.

Lemma 2.2.3. Under Assumption 2.0.1, the rooting time Tr for a simple random walk (Xn)
starting from v0 and (Yn) as defined in Definition 2.1.4 is finite almost surely and the
sequence (Pv0(Tr > Tn))n decays exponentially fast to 0 with n. More precisely, there
exists δ ∈]0, 1[ such that

Pv0(Tn < Tr) ≤ δn.

Proof. Let n ∈ N
∗ be fixed. The process ((Xk, Yk))k≥0 satisfies the strong Markov prop-

erty. Therefore, conditional on the event {Tn < ∞} which is almost sure by Lemma 2.1.3,
for every k ≥ 0, the pair of random variables (XTn+k, YTn+k) is independent of FTn

given (XTn , YTn).
From Assumption 2.0.1, there exists a loop γXTn

which lies inside Gn+1\(Gn ∪ ∂Gn+1)
with weight larger than α and such that the probability that a random walk (XTn+k)k

makes this loop γXTn
is greater than β.

Let us denote by AXTn
the event that the random walk (XTn+k)k makes this loop γXTn

,
and let us denote by BXTn

the event {YTn+|γXTn
| ≤ p(γXTn

)}. Conditional on XTn ,

the events AXTn
and BXTn

are independent and have probabilities PXTn
(γXTn

) ≥ β
and p(γXTn

) ≥ α.
The event AXTn

∩{YTn+|γXTn
| ≤ p(γXTn

)} for the random walk (XTn+k, YTn+k)k≥0 start-

ing from (XTn , YTn) ∈ ∂Gn has a probability greater than αβ. Conditional on (XTn , YTn),
it is independent of FTn , therefore it is independent of the event {Tn < Tr}.

Let us show that conditional on Tn < Tr, if the event AXTn
∩ {YTn+|γXTn

| ≤ p(γXTn
)}

is satisfied, then the event {Tn+1 > Tr} is satisfied. The idea is that on this event, the
random walk keeps a loop before reaching ∂Gn+1 and therefore Tn+1 > Tr.

Let i be the largest integer such that ni ≤ Tn. Then, by construction of the p-loop-
erased random walk, assuming Tr > Tn ≥ ni, (Zi+1

k ) coincides with (Xk) after time ni

and therefore after time Tn. For k ≤ Tn, Zi+1
k ∈ {X0, . . . , XTn} by construction and

therefore Zi+1
k ∈ Gn.

If the event AXTn
∩ {YTn+|γXTn

| ≤ p(γXTn
)} is satisfied, then, for k between Tn + 1

and Tn + |γXTn
|, we have Zi+1

k ∈ Gn+1\(Gn ∪ ∂Gn+1), and therefore, for such k,

Zi+1
k /∈ (Zi+1

0 , . . . , Zi+1
Tn

).

Since we have ni+1 ≥ Tn by assumption on i, we have necessarily ni+1 = Tn + |γXTn
|.

Since the event {YTn+|γXTn
| ≤ p(γXTn

)} is satisfied by assumption and Tr > ni, we

have Tr = ni+1 = Tn + |γXTn
|, and since AXTn

is satisfied, for Tn + 1 ≤ k ≤ Tn + |γXTn
|,

we have Xk ∈ Gn+1\(Gn ∪ ∂Gn+1) and therefore Tn+1 > Tn + |γXTn
| = Tr.

Therefore, denoting by δ := 1 − αβ < 1,

Pv0(Tn+1 < Tr | Tn < Tr) ≤ 1 − P(XTn ,YTn)(AXTn
∩ {YTn+|γXTn

| ≤ α} | Tn < Tr)

= 1 − P(XTn ,YTn)(AXTn
∩ {YTn+|γXTn

| ≤ α})

= 1 − PXTn
(AXTn

)P(YTn+|γXTn
| ≤ α)

≤ 1 − αβ = δ.

This inequality holds for every n ∈ N
∗ and δ does not depend on n. Then, writing

Pv0(Tn+1 < Tr) = Pv0(Tn+1 < Tr | Tn < Tr)Pv0(Tn < Tr),

we obtain by induction on n the exponential decay of the following probability :

Pv0(Tn < Tr) ≤ δn.
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Let ε > 0. For fixed n large enough, δn ≤ ε.
For k large enough, we have Pv0(Tn ≥ k) ≤ ε. Then for k large enough, we have

Pv0(Tr ≥ k) = Pv0({Tr ≥ k} ∩ {Tn ≥ k}) + Pv0({Tr ≥ k} ∩ {Tn ≤ k − 1})

≤ Pv0(Tn ≥ k) + Pv0(Tr > Tn) ≤ 2ε

Therefore we have shown that for every ε > 0, for k large enough, Pv0(Tr ≥ k) < 2ε, which
means that

lim
k→∞

Pv0(Tr ≥ k) = 0.

Therefore, from the monotone convergence theorem,

Pv0(Tr = ∞) = Pv0(
⋂

k≥1

{Tr ≥ k}) = lim
k→∞

Pv0(Tr ≥ k) = 0

This concludes the proof. �

The proof of Lemma 2.2.3 can be adapted to show that the rooting time is almost surely
finite for a random walk starting from another vertex of G, even if this vertex is not in G1,
as follows.

Lemma 2.2.4. Let (X
(x)
n )n be a random walk starting from x ∈ G and and let (Yn)n

be the process defined in Definition 2.1.4. Under Assumption 2.0.1, the rooting time Tr

for (X
(x)
n )n is finite almost surely and Px(Tr > Tn) decays exponentially fast to 0 with n.

Proof. Notice that x is not anymore in G1 and therefore the bound Px(Tn ≤ Tr) ≤ δn

does not hold.
Nevertheless, if mx is such that x ∈ Gmx , then for n ≥ mx, the proof of Lemma 2.2.3

shows that for the loop-erased random walk starting from x,

Px(Tn+1 < Tr|Tn < Tr) ≤ δ

and therefore for n ≥ mx,

Px(Tn < Tr) ≤ δn−mx

Therefore Px(Tn ≤ Tr) tends to 0 exponentially fast with n and an argument similar to
the one given in the proof of Lemma 2.2.3 gives that Tr is finite almost surely. �

Lemma 2.2.4 shows that if we start a simple random walk on G from a vertex v, almost
surely Tr is finite. It implies that almost surely the sequence ((Zk

n)n≥0)k≥0 is constant
eventually and its limit (Zn)n≥0 is well defined with (Zn)n≥0 constant for n ≥ Tr.

In the following, we define p-loop-erased random walks with wired boundary conditions
in order to adapt the usual Wilson algorithm to sample cycle-rooted spanning forests of
infinite graphs.

2.3. p-loop-erased random walk with a boundary condition. Let us briefly recall
our current notations. We still assume that (Xn) is a simple random walk on G starting
from any vertex v, (Yn) is a sequence of independent random variables of uniform law
in [0, 1], which are independent of the Xn and W ⊂ V is a deterministic set of vertices.

We define in this subsection a p-loop erased random walk obtained from (Xn, Yn)n≥0

with the boundary condition W .

Definition 2.3.1. Let TW be the hitting time of W , and let Tr be the rooting time
of (Xn, Yn)n≥0. Let Tf = min(Tr, TW ) be called the ending time of (Xn, Yn)n≥0 with
boundary condition W .
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Given (Xn, Yn)n≤TW
, we construct a p-loop erased random walk (ZW

n )n with bound-
ary conditions W as follows. We define recursively nW

k and (Zk,W
n )n≥0 for k ∈ N

∗.
Let (Z1,W

n )n≤TW
= (Xn)n≤TW

and nW
0 = 0.

Then, we define recursively a sequence ((Zi,W
n )n≤TW

)i≥1 and a sequence (ni)i≤k as

follows. Let nW
i : (X0, . . . , Xk) 7→ min{nW

i−1 < j ≤ TW |Zi,W
j ∈ {Zi,W

0 , . . . , Zi,W
j−1}} be

the i-th loop-closing time before reaching W , where min ∅ = ∞. If nW
i (X0, . . . , Xk) = ∞,

let Zi+1,W = Zi,W .
Else, let n′W

i be the first time j < nW
i such that Zi,W

nW
i

= Zi,W
n′W

i

and if YnW
i

≤ p(γnW
i

), let

for every m ≥ i + 1,

Zm,W
n =







Zi,W
n if n ≤ nW

i ,

Zi,W
nW

i

else,

and otherwise, let for n ≤ TW

Zi+1,W
n =







Zi,W
nW

i

if n′W
i ≤ n ≤ nW

i ,

Zi,W
n else.

Notice that Zi+1,W
n is obtained from Zi,W

n by erasing the first loop which ends before TW .
While i is small enough such that ni ≤ TW , we have nW

i = ni and Zi+1,W = Zi+1.

Proposition 2.3.2. Almost surely, Tf is finite and ((Zi,W
n )n≤Tf

)i≥0 is constant eventually.
We define the p-loop erased random walk (p-LERW) with boundary conditions W as

(ZW
n )n≤Tf

= lim
i→∞

(Zi,W
n )n≤Tf

.

• If Tf = TW , (ZW
n )n≤Tf

= (Z
if
n )n≤TW

where if = min{i|ni > TW }.

• If Tf = Tr, (ZW
n )n≤Tf

= (Zn)n≤Tf
where (Zn) is the p-loop erased random walk

without any boundary condition.

Proof. Recall from Lemma 2.2.4 that Tr is finite almost surely. Since Tf ≤ Tr, the ending
time Tf is almost surely finite. Assume that Tr < ∞. Recall that the sequence (ni) is
strictly increasing. If TW < Tr, then TW is finite and there exists i such that ni > TW and
then nW

i = ∞ and Zm,W = Zi,W for m ≥ i. Let if = min{i|ni > TW }. Then nif −1 ≤ TW .

Then, (Z
if ,W
n )n≤TW

= (Z
if
n )n≤TW

.
Then, for m ≥ if , nm > TW and then nW

m = ∞. Then, for every m ≥ if ,

(Zm,W
n )n≤Tf

= (Z
if ,W
n )n≤Tf

= (Z
if
n )n≤Tf

.

Else, there exists i such that Tr = ni ≤ TW . Then, nW
i = ni and YnW

i
≤ p(γnW

i
)

and for m ≥ i, (Zm,W
n )n≤Tr = (Zi,W

n )n≤Tr = (Zi
n)n≤Tr . Since ni = Tr, then we

have (Zi
n)n≤Tr = (Zn)n≤Tr and therefore, (ZW

n )n≤Tf
= (ZW

n )n≤Tf
where (Zn) is the p-

loop erased random walk without any boundary condition. �

Notice that a p-loop-erased random walk with boundary condition W is obtained
from (Xn, Yn)n≤min(Tr ,TW ) erasing every loop except the last one if Tr < TW .

Let us emphasize that when Tr > TW , the p-loop erased random walk with boundary
conditions (ZW

n )n≤TW
is not equal to the p-loop erased random walk (Zn)n≤TW

stopped
at TW .

We will define, in the next section, sequences of probability measures on CRSF on a
growing exhaustion (Gn) of a countably infinite connected graph G, with boundary con-
ditions. We will see that under some hypotheses, those sequences of probability measures
on CRSF of finite graphs Gn converge to thermodynamic limits which are probability
measures on CRSF of the infinite graph G. We will also define probability measures on
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CRSF of infinite graphs from p-loop-erased random walks and compare those probability
measures with limits of sequences of probability measures on finite graphs.

3. Measures on CRSF in infinite volume and thermodynamic limits

In the following, let G = (V, E) be a countably infinite connected graph, with finite
degrees, and let (Gn) be an exhaustion of G, in the sense of an increasing sequence of
finite subgraphs of G whose union is G. Let v0 be a vertex of G1.

3.1. Topological facts and boundary conditions. Every subgraph of G can be seen
as an element of {0, 1}E . Let us recall some topological facts about the space {0, 1}E .

Since {0, 1} is compact, Ω = {0, 1}E is compact for the product topology and this
topology is compatible with the following metric

d(w, w′) =
∑

e∈E

2−‖e−‖1{we 6=w′
e},

where ‖e−‖ is the length of the shortest path between v0 and an extremity of the edge e.
Therefore Ω is a compact metric space.

A function f : Ω → R is continuous for the product topology if for every ε > 0, there
exists a finite subset Λ ⊂ E, such that

sup
w,w′∈Ω:w|Λ=w′

|Λ

|f(w) − f(w′)| ≤ ε.

A function f : Ω → R is called local if there exists a finite set Λ ⊂ E such that f(w)
is entirely determined by w|Λ. We say that an event A ⊂ Ω has finite support if the
function 1A is a local function. The set of local functions is dense in the set of continuous
functions (C(Ω), ||.||∞) which is a Banach-space.

We consider C the smallest σ-field which makes the cylinders CΛ,η = {w ∈ Ω, wΛ = η}

measurable for every finite subset Λ ⊂ E and every finite configuration η ∈ {0, 1}Λ. We
say that a sequence of probability measures (µn) converges to the measure µ on (Ω, C) if
and only if

lim
n→∞

∫

Ω
fdµn =

∫

Ω
fdµ,

for every local function f . Since the set of local functions is dense in the set of continuous
functions, this topology on the set of measures on (Ω, C) is the weak convergence.

In this section, we are interested in the sequences of measures (µn)n≥1 on CRSF on
growing subgraphs Gn. If such a sequence of measures converges weakly towards an
infinite volume measure, we have the following result on the limit measure.

Proposition 3.1.1. Assume that a sequence (µn)n≥1 of measures on CRSF on growing
subgraphs Gn of G converges weakly towards a measure µ, and let F be distributed according
to µ. Then µ-almost surely, every finite connected component of F has exactly one cycle
and its cycle has non-trivial weight.

Proof. Let x ∈ G and let T be a finite connected subgraph of G which contains x and
which satisfies one of the following properties:

• T has strictly more than one cycle;
• T has a cycle of trivial weight;
• T has no cycle.

Let cc(x) be the connected component of x in F . Notice that the event {cc(x) = T } is
an event with finite support since its support is included in the set of edges which have at
least one extremity in T .

Let m be large enough such that T ⊂ Gm−1. Then, the event

{cc(x) = T } = {cc(x) ∩ Gm = T }
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has support in Gm. For every n ≥ m, µn is supported on CRSF whose cycles have non
trivial weight on Gn. Therefore,

µn(cc(x) ∩ Gm = T ) = µn(cc(x)Fn = T ) = 0.

We have the convergence µn → µ on configurations with finite support. Then

µn(cc(x) ∩ Gm = T ) → µ(cc(x) ∩ Gm = T ).

Finally, we obtain µ(cc(x) = T ) = 0. Since G is countable, almost surely, every finite
connected component of F has exactly one cycle and its cycle has non-trivial weight. �

We can consider sequences of measures (µn)n≥1 on CRSF on growing subgraphs Gn

of G with boundary conditions, such as free and wired boundary conditions.

Definition 3.1.2 (Free boundary conditions). We define the free measure on CRSF of Gn

as the measure on CRSF of Gn whose configurations have weight proportional to the prod-
uct of weights of cycles. This measure is denoted by µF

n .

Definition 3.1.3 (Wired boundary conditions). We define the wired measure on CRSF
on Gn as the measure on CRSF of graph Gn whose configurations are either trees connected
to ∂Gn or unicycles and have weight proportional to the product of weights of cycles. This
measure is denoted by µW

n .

3.2. Sampling algorithm for a fixed ordering on an infinite graph. In the follow-
ing, we still consider a countably infinite connected graph G, an exhaustion (Gn) and a
weight function w = p ∈ [0, 1] on cycles which satisfies Assumption 2.0.1.

We now construct a probability measure on CRSF of G for weights p which is sampled
by an algorithm determined by a fixed ordering of the vertex set V .

Let ϕ be an ordering of the vertex set V of G, in the sense of a bijection ϕ : N → V .
Let (vi)i≥1 be the sequence of vertices of G with ordering ϕ, that is (vi)i = (ϕ(i))i.

We will construct a measure on CRSF of G by means of a family of p-loop-erased
random walks with boundary conditions which are defined recursively. This family will
be obtained deterministically from a family of independent simple random walks following
results of Section 2.

We still denote by C the smallest σ-field which makes the cylinders CΛ,η measurable.

Definition 3.2.1. Let ((X
(x)
n )n≥1)x∈G, ((Y

(x)
n )n≥1)x∈G be independent random variables

such that for all x ∈ G, (X
(x)
n )n is a simple random walk on G starting from x and (Y

(x)
n )n

is a sequence of independent random variables with uniform law on [0, 1]. For a fixed x,

consider the sequence
(

(X
(x)
n , Y

(x)
n )

)

n≥1
and denote by T x

r the rooting time of the p-LERW

that is to say the first time n such that (X
(x)
n )n closes a loop γn such that the inequal-

ity p(γn) ≥ Y
(x)

n holds.

Definition 3.2.2. For a fixed random data ((X
(x)
n )n≥1)x∈G, ((Y

(x)
n )n≥1)x∈G as above, we

construct the subgraphs (Fi) recursively. Let F0 = ∅. Let i ∈ N
∗ and assume that Fi−1

is constructed. Denote by T
vi

f the ending time of ((X
(vi)
n )n≥1, (Y

(vi)
n )n≥1) with boundary

condition V (Fi−1), that is

T
vi

f = min(T vi
r , TV (Fi−1)).

Let Fi = Fi−1∪L(vi) where L(vi) is the p-LERW with boundary condition V (Fi−1) obtained

from
(

(X
(vi)
n , Y

(vi)
n )

)

n≥1
until T

vi

f .

Each step i of the algorithm finishes either if the random walk reaches a connected
component created during a previous step or if the random walk is rooted to a loop.
Notice that T

vi

f is the time where the ith-step of the algorithm with ordering ϕ finishes.
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Recall that under Assumption 2.0.1 on p, Proposition 2.3.2 implies that T
vi

f is finite
almost surely.

Lemma 3.2.3. There exists a measure µϕ on (U(G), C) which is sampled by the previous
algorithm with ordering ϕ. The measure on finite cylinders corresponds to finite random
configurations which are sampled in a finite time.

Proof. Sample a sequence ((X
(x)
n )n≥1)x∈G, ((Y

(x)
n )n≥1)x∈G such as in Definition 3.2.1.

From Definition 3.2.2, we obtain a CRSF of G by setting F = ∪i≥1Fi. The configura-
tion F is well defined since it is a deterministic function of

((X(x)
n )n≥1)x∈G, ((Y (x)

n )n≥1)x∈G.

Let µϕ be the law of F associated with a random choice of ((X
(x)
n )n≥1)x∈G, ((Y

(x)
n )n≥1)x∈G,

that is to say the push-forward by the algorithm of the measure which gives

((X(x)
n )n≥1)x∈G, ((Y (x)

n )n≥1)x∈G.

Then, µϕ is a probability measure on (U(G), C). Let B be a finite subset of size n
of E, with edges e1, . . . , en and let ε1, . . . , εn ∈ {0, 1}n. Let K be the finite set of vertices
containing all the extremities of edges of B and vertices which are preceding those vertices
for the order ϕ. Let us consider the previous algorithm for vertices v1, . . . , v|K| for the
ordering ϕ. Almost surely, the algorithm to construct F|K| finishes in a finite time. The
constructed graph F|K| is a random subgraph of G which is spanning for K and therefore it
is spanning for B. Then µϕ(Cε1,...,εn) is the probability that the random configuration F|B

obtained from the previous construction satisfies

F|B ∈ Cε1,...,εn .

The measure µϕ restricted to (2B , C) is the law of the random configuration F|B, which is
sampled in a finite time. �

In the following, we will show that the measure in infinite volume constructed from an
enumeration of the vertex set V does not depend on the choice of the enumeration. The
proof of this statement will rely on a comparison between the measure µϕ for an ordering ϕ
and a measure on CRSF on a large finite subgraph of G. We will see that, under some
hypotheses, the thermodynamic limit coincides with the measure sampled by the previous
algorithm and does not depend on the ordering of the infinite vertex set.

3.3. Thermodynamic limits of the Wilson measures. Assume that Assumption 2.0.1
on the existence of a lower bound α > 0 on the weight of a family of loops still holds.

Let n ∈ N and ϕn be an ordering of the vertex set Vn of the graph Gn. The measures µF
n

and µW
n are sampled by the algorithm described in the first section.

Let us consider the sequence of measures (µn) on CRSF of (Gn)n≥1 which are defined
by the previous algorithm but if the walk meets ∂Gn, the walk is stopped. According
to [KK17], the measure does not depend on the ordering of the vertices of Gn\∂Gn.

Theorem 3.3.1. Let ϕ be an ordering of G in the sense of a bijection ϕ : N → G. Let (Gn)
be an increasing exhaustion of G, and let (µF

n ), (µW
n ) be the corresponding sequences of

probability measures on CRSF of Gn with free and wired boundary conditions, respectively.
The sequences of probability measures (µF

n ) and (µW
n ) converges weakly to the measure µϕ.

Proof. We consider an event B ∈ 2E which depends only on finitely many edges, and we
consider K0 the set of vertices incident to the edges on which B depends. Let K be the
union of K0 and the set of vertices that precede some vertex in K0 in the ordering ϕ of
the vertices. Let n be large enough such that K ⊂ Gn.

Let us construct a coupling (F, F̃
F
n , F̃

W
n ) of random configurations, obtained from the

same random data ((X
(x)
n )n≥1)x∈G, ((Y

(x)
n )n≥1)x∈G, such that the law of F is µϕ, the law
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of F̃
F
n is µF

n and the law of F̃
W
n is µW

n and such that the three configurations coincide with
high probability on B.

We denote ϕ̃n the ordering induced by the ordering ϕ on Gn.
We follow the algorithm for every vertex of K following the ordering ϕ|K . If at one step

of the algorithm, the random walk (X
(x)
n ) starting from a vertex x ∈ Gn reaches ∂Gn, the

configuration F is obtained following the random walk in the infinite graph G until the
end of the step and F̃

F
n , F̃

W
n are obtained following the random walk with boundary con-

ditions. More precisely, F̃
W
n is obtained from p-loop erased random walks with boundary

conditions ∂Gn and F̃
F
n is obtained following the random walk on the graph Gn, until the

end of the step, that is the ending time of the process (X
(x)
n , Y

(x)
n )n.

Once every vertex of K has been explored, we complete the configuration F following the
ordering ϕ and we complete the configurations F̃

F
n , F̃

W
n on Gn following the ordering ϕ̃n,

with boundary conditions.
Let us denote by E(K) the set of edges whose vertices are in K. The configura-

tions F, F̃
F
n and F̃

W
n obtained from the algorithm are respectively subgraphs of G and Gn.

The three configurations are spanning subgraphs of Gn and in particular spanning sub-
graphs of (K, E(K)).

FE(K) is the restriction to (K, E(K)) of a random configuration following the law µϕ.

Since Gn is finite, (F̃n)W,F
E(K) is the restriction to (K, E(K)) of a random configuration

following the law µW,F
n and this law does not depend on ϕ̃n (see [KK17]).

Since B depends only on edges whose endpoints are in K0, we know that

|µϕ(B) − µF,W
n (B)| ≤ P(FE(K) 6= (F̃n)E(K))

Following the previous algorithm, while each step starting from a vertex of K finishes
before the random walk reaches ∂Gn, both configurations FE(K), (F̃n)E(K) which are ob-
tained are equal. Therefore, from the union bound,

P(FE(K) 6= (F̃n)E(K)) ≤ P





⋃

i∈[|K|]

{T vi
n ≤ T

vi

f }



 ≤
∑

i∈[|K|]

P(T vi
n ≤ T

vi

f )

≤
∑

i∈[|K|]

P(T vi
n ≤ T vi

r ) ≤ |K| max
i∈[|K|]

P(T vi
n ≤ T vi

r )

From Lemma 2.2.4, we obtain when n → ∞,

|µϕ(B) − µW,F
n (B)| ≤ |K| max

i∈[|K|]
P(T vi

n ≤ T vi
r ) → 0

which implies the weak convergence of (µW,F
n ) towards µϕ. �

Recall that for every n, the measure µW
n is sampled by an algorithm and does not depend

on the ordering of vertices of Gn chosen in the algorithm. Combined with Theorem 3.3.1,
this independence implies the following result.

Theorem 3.3.2. Let ϕ be an ordering of the vertices, that is a bijection ϕ : N → V . Let p
be a weight function satisfying Assumption 2.0.1. Let µϕ be the measure on the cycle-
rooted spanning forests of G associated with the algorithm of loop-erased random walk with
weights p(γ). The measure µϕ does not depend on ϕ.

Proof. Let ϕ, τ be two orderings, with (vi) = (ϕ(i)), (wi) = (τ(i)) let K1 and K2 be
respectively the sets of vertices that precede some vertex in K0 in the ordering ϕ (resp. τ)
and let n large enough such that K1 ∪ K2 ⊂ Gn. Then, from Theorem 3.3.1,

|µϕ(B) − µτ (B)| ≤ |K1| max
i∈[|K1|]

Pvi
(Tn ≤ Tr) + |K2| max

i∈[|K2|]
Pwi

(Tn ≤ Tr) → 0
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This shows that both distributions in infinite volume coincide on cylinders and therefore
the measure in infinite volume does not depend on the ordering of the vertices. �

For a weight function p satisfying Assumption 2.0.1, we will denote by µp the corre-
sponding probability measure on CRSFs of G, which does not depend on the ordering of
the vertices.

4. Study of the configurations sampled under the Wilson measure

In this section, we will study the asymptotic behavior of configurations and the rate
of decay of correlations with the distance for the measure µp which is sampled by the
previous algorithm of p-loop erased random walks in infinite volume and which will be
called the Wilson measure, under the following assumption.

Assumption 4.0.1. There exists α > 0, β > 0, M, M ′ > 0, C > 0, d ∈ N, a family of
loops Γ ⊂ C(G) and for every x ∈ G, an increasing sequence (Bx

n) of subgraphs of G,
exhausting G and containing x such that :

• For every γ ∈ Γ, α ≤ w(γ) ≤ 1.
• For every v ∈ ∂Bx

n, there exists a loop γv ∈ Γ ∩ (Bx
n+1\(Bn ∪ ∂Bx

n+1)) such that
the probability for a random walk starting from v of making this loop γv is greater
than β.

• For every x, for every n ∈ N, M ′n ≤ d(x, ∂Bx
n) ≤ Mn, and |∂Bx

n| ≤ Cnd.

Assumption 4.0.1 implies Assumption 2.0.1 and is satisfied in particular if the graph and
the weight function w on cycles are invariant under translations and if Assumption 2.0.1
is satisfied for an exhaustion (Gn)n such that d(0, ∂Gn) ∼ Mn when n tends to infinity,
where M > 0.

4.1. Every connected component is finite for the Wilson measure.

Definition 4.1.1. For a vertex x and a subset A ⊂ G, we denote by {x ↔ A} the
event {A∩Cx 6= ∅} where Cx is the connected component of x in the random configuration
sampled under µ. In particular, {x ↔ y} means that x and y are in the same connected
component.

We will denote by T x
m,x the hitting-time of ∂Bx

m for the random walk (X
(x)
n ). Recall

that T x
m is the hitting-time of ∂Gm for the random walk (X

(x)
n ).

Lemma 4.1.2. Under Assumption 4.0.1, there exists δ > 0 such that the following in-
equality holds for every m, for every x ∈ G

Px({T x
r ≥ T x

m,x}) ≤ δm.

Proof. Let x ∈ G. Under Assumption 4.0.1, Assumption 2.0.1 is satisfied for the vertex x,
and therefore, if we denote by T x

m,x the hitting time of ∂Bx
m for a p-loop erased random walk

starting from x, and T x
r its rooting time, Lemma 2.2.3 gives the existence of a 0 < δ < 1

such that the following inequality holds for every m,

Px({T x
r ≥ T x

m,x}) ≤ δm,

where δ = 1 − αβ for parameters α, β of 4.0.1. In particular, δ does not depend on x,
which concludes the proof. �

Lemma 4.1.3. Let δ > 0 as in Lemma 4.1.2 and M > 0 as in Assumption 4.0.1. Let x, y
be two vertices of G and denote by d(x, y) the distance between x and y, that is to say the

length of the shortest path from x to y. Then, if n ≤ d(x,y)
2M ,

µp(x ↔ y) ≤ 2δn.
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Proof. According to Theorem 3.3.2, the measure µp does not depend on the ordering of
the vertices. We may choose an ordering ϕ in which x and y are the first two vertices.

Since n ≤ d(x,y)
2M , we have d(x, ∂Bx

n) ≤ Mn ≤ d(x,y)
2 and d(y, ∂By

n) ≤ Mn ≤ d(x,y)
2 .

If x and y are in the same connected component in a configuration obtained from this
algorithm, we know that either for the p-loop erased random walk starting from x or for
the one starting from y, we have {T x

r ≥ T x
fϕ ≥ T x

n,x} or {T y
r ≥ T y

fϕ ≥ T y
n,x}. Indeed,

if T x
fϕ ≤ T x

n,x and T y
fϕ ≤ T x

n,y, then the p-loop erased random walk starting from x and
from y cannot intersect, and form two disjoint connected component in the configuration.
Therefore, from the union bound,

µp(x ↔ y) ≤ Px({T x
r ≥ T x

n,x}) + Py({T y
r ≥ T y

n,y}) ≤ 2δn

which concludes the proof. �

Theorem 4.1.4. µp-almost surely, for every vertex x ∈ V of G, the connected component
of x is finite.

Proof. Let x ∈ G. For every n ∈ N, for every y ∈ ∂Bx
n, d(x, y) ≥ M ′n. Let n′ = ⌊M ′n

2M ⌋.

Then n′ ≤ d(x,y)
2M and therefore, from Lemma 4.1.3,

µp(x ↔ y) ≤ 2δn′
.

Then, from the union bound, the following upper bound on the probability that the
connected component of x contains vertices of the boundary of Bx

n holds for every n ∈ N,

with δ′ = δ
M′

2M :

P(x ↔ ∂Bx
n) ≤

∑

y∈∂Bx
n

P(x ∼ y) ≤ 2|∂Bx
n|δ⌊ M′n

2M
⌋ ≤ 2Cndδ′n.

Then, from the monotone convergence theorem, we have

P(x ↔ ∞) = P(∩n{x ↔ ∂Bx
n}) = lim

n→∞
P(x ↔ ∂Bx

n) = 0.

Since G is countable, we know that µ-almost surely, for every x ∈ G, the connected
component of x is finite. �

4.2. Exponential decay of correlations for the Wilson measure. We still assume
that weights are in [0, 1] and satisfy Assumption 4.0.1.

Let m ∈ N and let e1 = (x1, y1) and e2 = (x2, y2) be such that d({x1, y1}, {x2, y2}) ≥ m.
If F is a CRSF following the law µp it can be sampled from the algorithm described in

Section 3.2 and from Theorem 3.3.2, it does not depend on the chosen ordering of vertices,
therefore we may assume that the first four vertices of the ordering ϕ are x1, y1, x2, y2.

Let us consider in the following, four independent couples of sequences of random vari-
ables (Xx1

n , Y x1
n ), (Xy1

n , Y y1
n ), (Xx2

n , Y x2
n ), (Xy2

n , Y y2
n ), as defined in Section 4.1.

For i ∈ {1, 2}, let us denote by Ai the event that both p-loop erased random walks
obtained from (Xxi

n , Y xi
n )n, (Xyi

n , Y yi
n )n starting from xi, yi are rooted before leaving the

subgraphs Bxi

m/2, Byi

m/2, that is to say that

Ai = {T xi
r < T xi

xi,m/2} ∩ {T yi
r < T yi

yi,m/2}

Lemma 4.2.1. Conditional on A1∩A2, the events {e1 ∈ F} and {e2 ∈ F} are independent.

Proof. Let F4 be the subgraph obtained after the first four runs of the algorithm.
Notice that, once F4 has been sampled, during every subsequent run of the algo-

rithm, the p-loop erased random walk stops if it reaches x1, y1, x2, y2 because F4 con-
tains x1, y1, x2, y2. Therefore, for F the configuration obtained following the algorithm in
infinite volume, we have the following equality of events for i ∈ [1, 2],

{ei ∈ F} = {ei ∈ F4}.
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Let (Zx1
n )n≤T

x1
r

be the p-loop erased random walk obtained from (Xx1
n , Y x1

n ) and let

W1 = V ((Zx1
n )n≤T

x1
r

)

be the set of vertices explored by this p-loop erased random walk. Let (Zy1
n )n≤min(T

y1
r ,T

y1
W1

)

be the p-loop erased random walk starting from y1 with boundary condition W1. Let F1

be the subgraph given by (Zx1
n )n≤T

x1
r

, (Zy1
n )n≤min(T

y1
r ,T

y1
W1

).

Let (Zx2
n )n≤T

x2
r

be the p-loop erased random walk obtained from (Xx2
n , Y x2

n ) and let

W2 = V ((Zx2
n )n≤T

x2
r

)

be the set of vertices explored by this p-loop erased random walk. Let (Zy2
n )n≤min(T

y2
r ,T

y2
W2

)

be the p-loop erased random walk starting from y1 with boundary condition W2. Let F2

be the subgraph given by (Zx2
n )n≤T

x2
r

, (Zy2
n )n≤min(T

y2
r ,T

y2
W2

).

Let us emphasize that the p-loop erased random walk corresponding to the third and
the fourth runs of the algorithm has boundary conditions V (F1), corresponding to the
configuration created during the first two runs of the algorithm. Therefore, in general, F1

and F2 are not disjoint and their union is not the component created after four runs of
the algorithm.

If A1 is satisfied, F1 is contained in Bx1

m/2 ∪ By1

m/2 and if A2 is satisfied,







T x2
r < T x2

x2,m/2 < TV (F1)

T y2
r < T y2

y2,m/2 < TV (F1)

and therefore, the third and the fourth runs finish before the p-loop erased random walks
reach V (F1), that is to say that the p-loop erased random walks with boundary condi-
tion V (F1) coincides with the p-loop erased random walks without this boundary condition
(see Proposition 2.3.2). Therefore, if A1 and A2 are satisfied, F1 and F2 are disjoint con-
nected components and their union is exactly the component created after four runs of
the algorithm.

In particular, if A1 ∩ A2 is satisfied, for i ∈ [1, 2], {ei ∈ F} is satisfied if and only
if {ei ∈ Fi} is satisfied.

We show that conditional on A1 ∩A2, the random configurations F1 and F2 are indepen-
dent. Recall that (Zx1

n ), (Zy1
n ) and (Zx2

n ), (Zy2
n ) are independent and F1, A1 only depends

on (Zx1
n ), (Zy1

n ) and F2, A2 only depends on (Zx2
n ), (Zy2

n ). Therefore, if F1, F2 are some
fixed configurations,

P(F1 = F1, A1,F2 = F2, A2) = P(F1 = F1, A1)P(F2 = F2, A2).

Therefore, using independence of {Fi = Fi} ∩ Ai and Aj for i 6= j, we obtain

P(F1 = F1,F2 = F2|A1, A2) =
P(F1 = F1, A1)P(F2 = F2, A2)

P(A1 ∩ A2)

= P(F1 = F1|A1)P(F2 = F2|A2)

= P(F1 = F1|A1 ∩ A2)P(F2 = F2|A1 ∩ A2).

Therefore, conditional on A1 ∩ A2, the random variables F1 and F2 are still independent.
Therefore, conditional on A1 ∩ A2, {e1 ∈ F} = {e1 ∈ F1} and {e2 ∈ F} = {e2 ∈ F2} are

independent. �

As a consequence, we obtain the following decay of correlations.

Theorem 4.2.2. There exists a parameter 0 < ι < 1 such that for every m large enough,

µp(e2 ∈ F)µp(e1 ∈ F) − ιm ≤ µp({e2 ∈ F} ∩ {e1 ∈ F}) ≤ µp(e2 ∈ F)µp(e1 ∈ F) + ιm
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Proof. Let us compute µp({e1, e2 ∈ F}) using the following decomposition :

{e1, e2 ∈ F} = ({e1, e2 ∈ F} ∩ A1 ∩ A2) ∪
(

{e1, e2 ∈ F} ∩ (A∁
1 ∪ A∁

2)
)

.

Since {e1, e2 ∈ F} ∩ (A∁
1 ∪ A∁

2) is included in A∁
1 ∪ A∁

2, it has probability less than the

quantity µp(A∁
1 ∪ A∁

2) .
From Lemma 2.2.3, there exists some δ < 1 such that from the union bound, we get

µp(A∁
1 ∪ A∁

2) ≤ 4δm/2.

For the other term, we use the independence of {e1 ∈ F} and {e2 ∈ F} conditional
on A1 ∩ A2 proved in Lemma 4.2.1, which implies

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩ A1 ∩ A2) = µp({e1 ∈ F} ∩ {e2 ∈ F}|A1 ∩ A2)µp(A1 ∩ A2)

=
µp({e1 ∈ F} ∩ A1 ∩ A2)µp({e2 ∈ F} ∩ A1 ∩ A2)

µp(A1 ∩ A2)

≤
µp({e1 ∈ F})µp({e2 ∈ F})

µp(A1 ∩ A2)
.

Using again the lower bound on µp(A1 ∩ A2) which comes from Lemma 2.2.3, we have

µp(A1 ∩ A2) ≥ 1 − 4δm/2.

Let η < 1 be such that for m large enough,

4δm/2 < ηm

Therefore, we have the following upper bound on 1
µp(A1∩A2) ,

1

µp(A1 ∩ A2)
≤

1

1 − ηm
=
∑

k≥0

ηmk = 1 +
∑

k≥1

ηmk ≤ 1 +
∑

k≥m

ηk ≤ 1 +
ηm

1 − η
.

Therefore we get

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩ A1 ∩ A2) ≤ µp(e1 ∈ F)µp(e2 ∈ F)(1 +
ηm

1 − η
).

For the other inequality, notice that

µp({e1 ∈ F} ∩ A1 ∩ A2)µp({e2 ∈ F} ∩ A1 ∩ A2)

µp(A1 ∩ A2)

≥ (µp({e1 ∈ F}µp({e2 ∈ F}) − 2µp(A∁
1 ∪ A∁

2)

≥ (µp({e1 ∈ F}µp({e2 ∈ F}) − 2ηm.

Therefore,

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩ A1 ∩ A2) ≥ (µp({e1 ∈ F}µp({e2 ∈ F}) − 2ηm,

and
µp({e2 ∈ F} ∩ {e1 ∈ F}) ≥ (µp({e1 ∈ F}µp({e2 ∈ F}) − 2ηm.

Considering ι < 1 such that for m large enough, 2ηm < ιm and ηm 1
1−η + 4δm/2 < ιm

concludes the proof. �

5. Study of the configurations sampled under an infinite volume

measure µw.

In this section, we consider a non-negative weight function w on oriented cycles of G,
which can take values larger than 1. We assume that the sequence of measures (µn)
on cycle-rooted spanning forests of Gn associated with the weight function w converges
weakly towards an infinite volume measure µ and that this measure does not depend on
the free or wired boundary conditions.
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5.1. Algorithm conditional on cycles with weights larger than 1. In this subsec-
tion, we assume that G is a finite connected graph. Let W ⊂ G be a set of vertices of G
(which can be empty). Let C+(G\W ) be the set of cycles of G of weight strictly larger
than 1, so-called positive cycles and C−(G\W ) the set of cycles of G of weight less than 1,
so-called negative cycles.

Definition 5.1.1. The weight function w− on cycles of the graph G associated with the
weight function w is defined by the following restrictions

{

w−C−(G\W ) = wC−(G\W ),

w−C+(G\W ) = 0.

The following result gives a way to sample a cycle-rooted spanning forest conditional
on its positive cycles.

Theorem 5.1.2. Let C be a subset of C+(G\W ) and let A be the set of vertices which
are extremities of edges in C. Let F a ECSRF with respect to W sampled according µW .
Conditional on C+(F) = C, F\C has the same law than a ECRSF with respect to A ∪ W
with weight function w−.

Proof. Let F0 ∈ UW (G).

µW (F = F0|C+(F ) = C) =
µ(F = F0 ∩ C+(F) = C)

µ(C+(F) = C)
.

Notice that this quantity is zero if C+(F0) 6= C. Then, if C+(F0) = C and F0 ∈ UW (G),
every connected component of F0 either contains a unique cycle in C−(G) or a unique
cycle in C or is connected to a unique point in W . Therefore, every connected component
of F0\C either contains a unique cycle in C−(G) or or is connected to a unique point
in W ∪ A which means that F0\C ∈ UW ∪A(G).

Then, the measure µW (.|C+(F ) = C) has support in

UC
W (G) = {F ∈ UW (G)|C+(F ) = C} = {F ∈ UW (G)|F = C ∪ F−, F− ∈ UW ∪A(G)},

and if F0 ∈ UC
W (G),

µW (F = F0|C+(F ) = C) =

∏

γ∈C w(γ)
∏

γ∈C−(F0) w(γ)
∑

F ∈UW (G)|C+(F )=C

∏

γ∈C w(γ)
∏

γ∈C−(F ) w(γ)

=

∏

γ∈C−(F0) w(γ)
∑

F ∈UC
W

(G)

∏

γ∈C−(F ) w(γ)
.

Writing every F ∈ UC
W (G) on a unique way as C ∪ F− with F− ∈ UW ∪A(G),

µW (F = F0|C+(F) = C) =

∏

γ∈C−(F0−) w(γ)
∑

F−∈UW ∪A(G)

∏

γ∈C−(F−) w(γ)

= µW ∪A
wC−(G\W )

(F0−) = µW ∪A
wC−(G\W )

(F0\C).

Finally,

µW (F\C = .|C+(F) = C) = µW ∪A
wC−(G\W )

(.),

which concludes the proof. �

Since wC−(G\W ) takes values in [0, 1] by definition of C−(G\W ), the measure µW ∪A
wC−(G\W )

can be sampled by the wired Wilson algorithm with boundary conditions A ∪ W .
Therefore, under the measure µW , conditional on C+(F ), a ECRSF with respect to W

has the same law as a a ECRSF with respect to W and extremities of edges in C+(F ) and
can be sampled from a loop-erased random walk algorithm.
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5.2. All connected components with a cycle are finite. We assume that Assump-
tion 4.0.1 holds for the weight function w− as defined in Definition 5.1.1 and for a family
of cycles Γ ⊂ C−(G). In particular, Assumption 2.0.1 also holds for w−, but the weight
function w can take values larger than 1.

We will show in this subsection that under this assumption, every connected component
with a cycle is finite.

We will use the following lemma on the exponential decay of the tail distribution of
ending times, which is a corollary of Section 2.

Lemma 5.2.1. Let m ∈ N, n ≥ m. Let C ⊂ Gn be a subgraph of Gn. Let Px be the law
of a w−-loop erased random walk (Xn) starting from x and Tr be the rooting time of (Xn).
Let TC and Tm,x be the hitting times of C and ∂Bx

m. Under Assumption 2.0.1 on w−, the
following inequality holds

Px(min(TC , Tr) ≥ Tm,x) ≤ δm.

Proof. Applying Lemma 2.2.3 to the random walk (Xn) with weight function w− which
satisfies Assumption 2.0.1, we get

Px(Tr ≥ Tm,x) ≤ δm.

But since min(TC , Tr) ≤ Tr, we have

Px(min(TC , Tr) ≥ T x
m) ≤ Px(Tr ≥ Tm,x) ≤ δm,

which concludes the proof. �

Let x ∈ V be a fixed vertex of G. We introduce some events with compact support
which depend on x and prove an upper bound on the probability of those events.

Definition 5.2.2. For m ∈ N, we denote by Am = {x ↔ ∂Bx
2m} the event that x and ∂Bx

2m

are connected in F , that is to say that there exists a path between x and ∂Bx
2m in Bx

2m.
If n ∈ N, we denote by Γ−

n = {x ↔ C−(FGn)} the event that x is connected to a closed
cycle in Gn of weight less than 1.

Lemma 5.2.3. Let m ∈ N. For n ≥ m large enough, if Fn is distributed according to the
free measure µn on Gn,

µn(Am ∩ Γ−
n ) ≤ (|∂Bx

m| + 1)δm.

Proof. Let n be a large enough integer such that for every y ∈ ∂Bx
2m, we have By

m ⊂ Gn.
Let C ⊂ C+(Gn). From Theorem 5.1.2, conditional on C+(Fn) = C, Fn is given by an
algorithm of w−-loop erased random walks with boundary conditions on C. The proof
relies on the same ideas as that in the proof of Lemma 4.1.3 and Theorem 4.1.4.

The event Am ∩ Γ−
n is satisfied if there exists y ∈ {x} ∪ ∂Bx

2m such that the w−-loop
erased random walk starting from y has left By

m before being rooted to a cycle in C−(Gn)
and before touching C.

From Lemma 5.2.1, for every y ∈ {x} ∪ ∂Bx
2m,

Py(min(TC , Tr) ≥ Tm,y) ≤ δm.

Then, the union bound concludes the proof. �

Lemma 5.2.4. The previous lemma implies that

µ({x ↔ C−(F )} ∩ {|cc(x)| = ∞}) = 0.

Proof. Let ε > 0. Let m ∈ N fixed, large enough such that (|∂Bx
m| + 1)δm < ε. We

consider the notations from Definition 5.2.2.
Since (Γ−

n ) is increasing, if we let Γ− := {x ↔ C−(F )} = ∪Γ−
n , then

µ(Am ∩ Γ−) = µ(Am ∩ ∪Γ−
n ) = µ(∪n(Am ∩ Γ−

n )) = lim
n

µ(Am ∩ Γ−
n ).
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Let us consider n0 large enough such that the inequality from Lemma 5.2.3 holds. Since
for n ≥ n0, µn(Am ∩ Γ−

n0
) ≤ µn(Am ∩ Γ−

n ) ≤ ε,
We obtain

µ(Am ∩ Γ−
n0

) = lim
n

µn(Am ∩ Γ−
n0

) ≤ ε.

It holds for every n0 large enough and therefore, µ(Am ∩ Γ−) ≤ ε.
Since this inequality holds for m large enough, we have when m → ∞, µ(Am ∩Γ−) → 0 .
Therefore, since (Am) is decreasing and ∩mAm = {|cc(x)| = ∞}, the monotone conver-

gence theorem concludes the proof. �

Definition 5.2.5. For l ∈ N, let Γ+
l = {x ↔Bx

l
C+(FBx

l
)} be the event that x is connected

inside Bx
l to a cycle with weight larger than 1 which is inside Bx

l , that is to say the event
that in FBx

l
, the connected component of x contains a cycle with weight larger than 1.

For m ∈ N, let Am := {x ↔ ∂Bx
m} be the event that x is connected to the boundary of Bx

m.

Lemma 5.2.6. Let m0 ∈ N. For m large enough, there exists n0 such that if n ≥ n0 and
if Fn is distributed according to µn, then,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0
|δm0 .

Proof. Let m0, m ∈ N. Assume that m is large enough such that for every y ∈ ∂Bx
m, the

equality By
m0

∩ Bx
l = ∅ holds. Let n be large enough such that for every y ∈ ∂Bx

m, the
inclusion By

m0
⊂ Gn holds.

Let C ∈ C+(Gn). Conditional on C+(Fn) = C, Fn is given by an algorithm of w−-loop
erased random walks with wired conditions on C.

The event Γ+
l ∩ Am is satisfied if the w−-loop erased random walk starting from x hits

a cycle in C+(FBx
l
) before leaving Bx

l and before being rooted to another cycle and if one
of the w−-loop erased random walks starting from points of ∂Bx

m reaches Bx
l before being

rooted to a cycle or hitting C. Therefore, from Lemma 5.2.1 and from the union bound,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0
|δm0

which concludes the proof. �

Lemma 5.2.7. For every vertex x ∈ V of G, we have

µ({x ↔ C+(F )} ∩ {|cc(x)| = ∞}) = 0.

Proof. Let x ∈ V be a fixed vertex of G and let

A := {|cc(x)| = ∞} =
⋂

m

Am

be the event that the connected component of 0 is infinite, where Am was defined in
Definition 5.2.5.

Let l ∈ N. Let ε > 0. Let m0 large enough such that |∂Bx
m0

|δm0 ≤ ε. Let m be large
enough such that for every y ∈ ∂Bx

m, By
m0

∩ Bx
l = ∅. Let n be large enough such that for

every y ∈ ∂Bx
m, By

m0
⊂ Gn.

Let Fn distributed according µn. Then, from Lemma 5.2,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0
|δm0 ≤ ε.

Since this inequality holds for every n large enough and Am ∩ Γ+
l depends on finitely

many edges,

µ(Am ∩ Γ+
l ) = lim

n
µn(Am ∩ Γ+

l ) ≤ ε.

Since this inequality holds for every ε for m large enough, we obtain when m → ∞,

µ(Am ∩ Γ+
l ) → 0.



SAMPLING RANDOM CYCLE-ROOTED SPANNING FORESTS ON INFINITE GRAPHS 21

Since the sequence of events (Am)m is decreasing,

µ(A ∩ Γ+
l ) = µ

(

⋂

m

Am ∩ Γ+
l

)

= lim
m

µ(Am ∩ Γ+
l ) = 0.

Since the sequence of events (Γ+
l )l is increasing and

Γ+ = {x ↔ C+(F )} =
⋃

l

Γ+
l ,

we have

µ(A ∩ Γ+) = µ

(

A ∩

(

⋃

l

Γ+
l

))

= µ

(

⋃

l

(A ∩ Γ+
l )

)

= lim
l

µ(A ∩ Γ+
l ) = 0.

which is precisely what we wanted to prove. �

Let us emphasize that Lemma 5.2.7 and Lemma 5.2.4 show that for every vertex x ∈ V
of G, almost surely, if x is connected to a cycle in the random configuration F , the
connected component of x is finite. Therefore, since G is countable, we immediately
deduce the following theorem.

Theorem 5.2.8. Under a measure µw such that w− satisfies Assumption 4.0.1, every
connected component with a cycle is finite.

From Proposition 3.1.1, we know that every finite connected component has a cycle
then, if a connected component does not have a cycle, it is necessarily an infinite tree.
Therefore, almost surely every connected component is either a finite cycle-rooted tree or
an infinite tree.

Conclusion and open questions

When a positive weight function on oriented cycles takes values in [0, 1] and satisfies
an assumption of minoration of weights, it gives rise to a unique infinite volume measure
on cycle-rooted spanning forests, which is sampled by an algorithm of loop-erased random
walks and which is the thermodynamic limit of finite volume measures, with respect to
free or wired boundary conditions. Under this measure, almost surely, all connected
components are finite and the edge-to-edge correlations decay is exponential.

By contrast, when the weight function is constant equal to 0, the model is the uniform
spanning tree and the thermodynamic limit in infinite volume of finite volume measures
is the free or wired uniform spanning forests measure, depending on boundary conditions.
On a large class of graphs (amenable graphs for instance), the infinite volume measure
does not depend on the boundary conditions and is sampled by the Wilson algorithm
of loop-erased random walks (see [BP93, BLPS01, LP16]). Under this measure, almost
surely, every connected component is an infinite tree and the edge-to-edge correlations
have long range (for instance, they decay polynomially for Z

d).
Considering these two cases as instances of a same model, we thus observe two qualita-

tively distinct phases, depending on the weight function on cycles.
For determinantal measures on cycle-rooted spanning forests (see [Ken11]) associated

to a unitary connection, sequences of measures on finite growing subgraphs also converge
towards infinite volume measures (see [Ken19, Sun16, KK17, KL22]). When the connection
satisfies some assumptions, the infinite volume measure does not depend on the boundary
conditions (see [KL23, Con23]).

These determinantal measures are associated to a weight function on cycles which can
take values larger than 1, like in Section 5. Under some assumptions on the connection, the
assumption of minoration of cycle weights (Assumption 4.0.1) is satisfied and therefore,
by Theorem 5.2.8, almost surely all connected components are either finite cycle-rooted
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trees or infinite trees. We also observe two phases (polynomial versus exponential decay
of edge-to-edge correlations) depending on the unitary connection (see [Con23]).

A relevant question is to know if under the assumption of minoration on the weight
function, there are infinite trees with a positive probability under the infinite volume
measure, in particular in the case where the measure is determinantal and associated to a
weight function which is provided by a unitary connection.
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