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ABSTRACT

The present study proposes to explore a sound corpus in
VR, in which audio data is sliced and analysed in Flu-
CoMa in order obtain relatively large collections of sam-
ples clustered by timbre similarity in a 3d room. The recent
implementation of the multiplayer feature in PatchXR lets
envisage wide variety of gesture-based control interfaces
querying those corpora, and in which performers can in-
teract remotely in order to simulate a chamber music situ-
ation.

1. INTRODUCTION

The recent emergence of multiplayer capabilities of a VR
software such as patchXR [1] urges to find meaningful in-
strument design in order to remotely and collaboratively
interact musically with a digital instrument, in multiplayer
VR (or metaverse). In search of experiences that would
relate to those found in traditional chamber music, the so-
lution proposed here focuses on the exploration of a sound
corpus projected on a 3d space, which the users can then
navigate with his hand controllers (see Fig. 1): in an etude
for piano and saxophone for instance 1 , one musician plays
blue buttons (the saxophone samples), and the other the
yellow buttons (the piano samples).

An important reason here for using VR to explore a 3D
dataset is that it allows users to interact with the data in a
more natural and immersive way compared to a 2d plane
(Chapter 3 will show how the present study derives from
the CataRT 2d interface project), using the experience both
as a tool for performance as well as data visualisation and
analysis. Users can move around and explore the data from
different angles, which can help them to better understand
the relationships between different data points and identify
patterns, which becomes more evident as the number of
points increases. The use of machine learning (dimension-
ality reduction in our case) renders a world in which the
absolute coordinates of each point has no more link to the
descriptor space (the high sounds cannot be mapped to the
y axis for instance), but offers compelling results for clus-
tering information relating to the different playing styles
of the instrument that is being analysed: as an example, in
this extract 2 based on flute sounds, the opening shows a

1 https://youtu.be/kIi7YdzP2Nw?t=89
2 https://youtu.be/777fqIIJCY4
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Figure 1. A VR interface in which each button in the world corresponds
to a slice of the sound file. Machine learning helps bringing closer sounds
that share common spectral characteristics.

Figure 2. The implementation of the FM algorithm 1/ in Pure Data (left)
2/ in PatchXR (right).

clear opposition between two types of gestures: 1/ (0’00)
staccato notes and 2/ (0’05) legato scale-like type of ma-
terial. This contrast in timbral quality is made explicit by
a movement of the avatar which jumps from a cluster of
buttons to another.

2. VIRTUAL REALITY

2.1 Musical Metaverse

Turchet conducted a thorough study on what the musical
metaverse means today [2], although the realm still is in its
infancy. Berthaut [3] reviewed 3D interaction techniques
and examined how they can be used for musical control.
A survey of the emerging field of networked music perfor-
mances in VR was offered by Loveridge [4]. Atherton and
Wang [18] provided an overview of recent musical works
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in VR, while Çamcı and Hamilton [5] identified research
trends in the Musical XR field through a set of workshops
focusing on Audio-first VR.

Amongst a plethora of tools available today, PatchXR has
caught our attention primarily because its ressemblance to
Max/Pure Data environments (see Fig. 2).

2.2 PatchXR

PatchXR [1] is a tool for creating immersive virtual reality
experiences in which users can design and build interac-
tive worlds, games, and music experiences. At its core,
Patch is a modular synthesis platform that allows users to
create and connect different building blocks, or “patches”
together to create complex systems. These building blocks
can include everything from 3D models and textures to
physics simulations, lighting controls, and, most impor-
tantly, audio digital signal processing.

One of the key features of Patch is its ability to enable
collaboration between users. Patches can be shared and
remixed, allowing multiple users to work together on a
single project or create something entirely new. In addi-
tion, Patch has a robust library of resources for users to
draw from, including tutorials, documentation, and sample
patches. The community around Patch is also very active,
with regular competitions, events, and meet ups happening
around the world.

One of the most exciting aspects of Patch is its poten-
tial for use in music performance and composition. The
modular design of the platform allows users to create com-
plex audio and visual environments that can be controlled
in real-time, opening up new possibilities for live music
and audiovisual performances. Patch has been used in a va-
riety of contexts, from creating interactive installations and
exhibits to developing VR training simulations and games.
Its flexibility and modular design make it a powerful tool
for anyone interested in exploring the creative possibilities
of VR.

3. CORPUS-BASED CONCATENATIVE SOUND
SYNTHESIS (CBCS)

Corpus-Based Concatenative Sound Synthesis (CBCS) is a
technique used in computer music that involves construct-
ing a sound or music piece by concatenating (joining to-
gether) smaller units of sound, such as phonemes in speech
synthesis or musical phrases in music synthesis. It is used
in our case to model an improvising instrumental musician
by creating a database of recorded musical phrases or seg-
ments that can be combined and rearranged in real-time to
create a musical performance that sounds like it is being
improvised.

Today nearly 20 years old if one refers to the first CataRT
publications [6], CBCS today enjoys an increasing pop-
ularity. Various apps today are based on similar princi-
pals (AudioStellar, Audioguide, LjudMAP or XO). The
democratisation of audio analysis and machine learning
tools such as the FluCoMa package (for Max, SuperCol-
lider and Pure Data) encourages computer music practi-
tioners to engage in this field at the crux between music
creation and data science/machine learning.

3.1 Timbre Space

In spite of promising advances in the domain of deep learn-
ing applied to sound synthesis [7] [8], CBCS tools may
earn their popularity from a metaphor which leads back
to the early days of computer music: the notion of timbre
space, developed by Wessel [9] and Grey [10], according
to which the multi-dimentional qualities of timbre may be
better understood using spatial metaphors (e.g. the tim-
bre of the English horn being closer to basson than is it of
trumpet).

Figure 3. Multidimensional perceptual scaling of mu-
sical timbres (John M. Grey[10]). Sounds available at:
https://muwiserver.synology.me/timbrespaces/grey.htm.

Pioneers in the perception of timbre studies such as Grey
[10], J.C. Risset, D. Wessel, [11] or Stephen McAdams
[12] [13] most often define timbre by underline what it is
not. Risset and Wessel, for instance, define it as follow:
It is the perceptual attribute that enables us to distinguish
among orchestral instruments that are playing the same
pitch and are equally loud. The co-variance such parame-
ters (pitch, loudness and timbre), however, leads Schwarz
to distinguish timbre space and CBCS notions: ‘Note that
this concept is similar but not equivalent to that of the tim-
bre space put forward by Wessel and Grey [7, 24], since
timbre is defined as those characteristics that serve to dis-
tinguish one sound from another, that remain after remov-
ing differences in loudness and pitch. Our sound space ex-
plicitly includes those differences that are very important
to musical expression.” [14]

The workflow described in Chapter 5 gave in practice
strong evidence of inter-dependance between register, tim-
bre and dynamics, particularly when the analysis run over a
single instrument sound file (e.g. 30 minutes of solo flute),
and chopped in short samples. The system will then pre-
cisely be able to find similarity between instrumental pas-
sages played in the same register, same dynamic, and same
playing technique (e.g. a flute playing fast trills mezzo
forte, in mid-low register, with air).

https://muwiserver.synology.me/timbrespaces/grey.htm


3.2 Corpus-Based Concatenative Synthesis - State of
the art

A wide array of technologies today can be called corpus-
based concatenative synthesis, in the sense that they allow,
through segmentation and analysis, to explore large quanti-
ties of sound. Some of them are presented as “ready-made”
solutions, such as the recent Audiostellar [15], or SCMIR
3 for SuperCollider. Hackbarth’s AudioGuide [16] of-
fers a slightly different focus because it uses the morphol-
ogy/timeline of a soundfile to produce a concatenated out-
put. Within the Max world finally, two environments ap-
pear as highly customizable: IRCAM’s MuBu [17] and the
more recent EU funded FluCoMa [18] project. CataRT
is now fully integrated in MuBu, whose purpose encom-
passes multimodal audio analysis as well as machine for
movement and gesture recognition [19]. This makes MuBu
extremely general purpose, but also difficult to grasp. The
data processing tools in MuBu are mostly exposed in the
pipo plugin framework [20], which can compute for in-
stance mfcc analysis on a given audio buffer 4 by embed-
ding the pipo.mfcc plugin inside the mubu.process object.

FluComa also aims to be general purpose, but seems par-
ticularly suited to perform two popular specific tasks. With
only limited knowledge of the framework nor of theory
laying behind the algorithms it uses (such as those dimen-
tionality reduction, mfcc analysis, or neural network train-
ing), the framework allows: 1/ to segment, analyse and
represent/playback a sound corpus 2/ to train a neural net-
work to control a synthesizer, in a manner reminiscent of
Fiebrink’s Wekinator [21].

Only the tools for segmentation, analysis, representation
and playback (described in detail in Chapter 5) were used
here, for they precisely fit the needs of corpus-based syn-
thesis.

4. CONNECTING PATCHXR AND FLUCOMA

Porting analysis made in Max/FluCoMa to PatchXR con-
sists in generating a world in which each sonic fragment’s
3d position follows coordinates delivered by FluCoMa.

The structure of a .patch file (a patchXR world) follows
the syntax of a .maxpat (for Max) or .pd file (for pure
data) in the sense that it first declares the objects used, and
then the connexions between them. This simple structure
helped to generate a javascript routine generating a tem-
plate world, taking as input 1/ dictionaries (json files) with
each segment’s 3d coordinates and 2/ each segment’s tem-
poral position in the sound file, and as output a new .patch
file (a world accessible in VR, see general workflow on
Fig. 4).

3 A demo is available at: https://youtu.be/jxo4StjV0Cg
4 MFCC stands for Mel-Frequency Cepstral Coefficients. It is a type

of feature extraction method that is commonly used in speech and speaker
recognition systems. MFCCs are used to represent the spectral character-
istics of a sound in a compact form that is easier to analyze and process
than the raw waveform. They are calculated by applying a series of trans-
formations to the power spectrum of a sound signal, including a Mel-scale
warping of the frequency axis, taking the logarithm of the power spec-
trum, and applying a discrete cosine transform (DCT) to the resulting
coefficients. The resulting coefficients, which are called MFCCs, cap-
ture the spectral characteristics of the sound and are commonly used as
features for training machine learning models for tasks such as speech
recognition and speaker identification.

Figure 4. General workflow: from an input audio file to its .patch 3d
representation in PatchXR.

After a few trials in which the x y z coordinates of a
world directly represented audio descriptors such as loud-
ness, pitch and centroid 5 , I more systematically used mfcc
analysis and dimensionality reduction, as will be shown in
section 5.

Section 6 will present different javascript programs and
Max patches that were developed in order to diversify the
ways in which FluCoMa analysis is represented in PatchXR,
and how the user can interact with it.

5. WORKFLOW - ANALYSIS IN FLUCOMA

My experiments have focussed on musical instrument cor-
pora almost exclusively 6 . The tools presented here can
efficiently generate plausible virtuosic instrumental music
but recent uses found more satisfying results in slower,
quieter, “Feldman-like” types of textures. Various limi-
tations on the playback side (either in standalone VR, or
on a Pure Data sampler for RaspberryPi described in Sec-
tion 6.2) have imposed restrictions in the first stages on
the amount of data it could handle (less than 5 minutes in
AIFF in PatchXR) or the number of slice the sample could
be chunked into (256 because of limitation of lists in Max,
a limitation that has also been surpassed since). Both lim-
itations were later overcome (use of the compressed ogg
format in PatchXR, and taking advantage of longer sound
files since version 672, increase of internal buffer size in
fluid.buf2list in FluCoMa), thus allowing for far more con-
vincing models.

Using concatenative synthesis to model an improvising
instrumental musician typically involves several steps:

1. Segmentation of a large soundfile: This involves di-
viding a large audio recording of the musician’s per-
formance into smaller units or segments.

2. Analysis: These segments are then organised in a
database according to various descriptor data (mfcc
in our case).

3. Scaling/pre-processing: scaling is applied for better
visualisation.

4. Dimension reduction: Based on mfcc descriptors,
the dimensionality of the data is reduced in order to

5 https://youtu.be/1LHcbYh2KCI?t=19
6 For cello: https://youtu.be/L-MiKmsIzjM For various instruments:

https://www.youtube.com/playlist?list=PLc WX6wY4JtnNqu4Lwe2YzEUq9S1IMvUk
For flute: https://www.youtube.com/playlist?list=PLc WX6wY4JtlbjLuLHDZhlx78sTDm aqs
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https://www.youtube.com/playlist?list=PLc_WX6wY4JtnNqu4Lwe2YzEUq9S1IMvUk
https://www.youtube.com/playlist?list=PLc_WX6wY4JtnNqu4Lwe2YzEUq9S1IMvUk
https://www.youtube.com/playlist?list=PLc_WX6wY4JtlbjLuLHDZhlx78sTDm_aqs


make it more manageable and easier to work with.
This can be done using techniques such as principal
component analysis (PCA) singular value decompo-
sition (SVD), or Uniform Manifold Approximation
and Projection (UMAP, preferred in our case).

5. Near neighbours sequencing: Once the segments have
been organised and analysed, the algorythm selects
and combines them in real-time based on certain in-
put parameters or rules to create a simulated musical
performance that sounds like it is being improvised
by the musician. We use here a near neighbours al-
gorithm, which selects segments that are similar in
some way (e.g., in terms of pitch, loudness, or timbre
- thanks to similarities revealed by umap on mfccs in
our case) to the current segment being played.

We will now describe these steps in further detail:

5.1 Slicing

Slicing a sound file musically allow various possible ex-
ploitations in the realm of CBCS. In MuBu onset detection
is done with pipo.onseg or pipo.gate. FluCoMa expose five
different onset detection algorithms:

1. fluid.ampslice: Amplitude-based detrending slicer

2. fluid.ampgate: Gate detection on a signal

3. fluid.onsetslice: Spectral difference-based audio buffer
slicer

4. fluid.noveltyslice: Based on self-similarity matrix
(SSM)

5. fluid.transcientslice: Implements a de-clicking algo-
rithm

Onsetslice only was extensively tested. The only tweaked
parameters were a straight-forward “threshold” as well as a
“minslicelength” argument, determining the shortest slice
allowed (or minimum duration of a slice) in hopSize. This
introduce a common limitation in CBCS: the system strongly
biases the user to choose short samples for better anal-
ysis results, and more interactivity, when controlling the
database with a gesture follower. Aaron Einbond remarks
in the use of CataRT how short samples most suited his in-
tention: “Short samples containing rapid, dry attacks, such
as close-miked key-clicks, were especially suitable for a
convincing impression of motion of the single WFS source.
The effect is that of a virtual instrument moving through the
concert hall in tandem with changes in its timbral content,
realizing Wessel’s initial proposal.”[22]

A related limitation of concatenative synthesis lies in the
fact that short samples will demonstrate the efficiency of
the algorithm 7 , but at the same time moves away from
the “plausible simulation” sought in the present study. A
balance therefore must be found between the freedom im-
posed by large samples, and the refined control one can
obtain with short samples.

A direct concatenation of slices clicks in most cases on
the edit point, which can be avoided through the use of
ramps. The second most noticeable glitch on concatena-
tion concerns the interruption of low register resonances,

7 e.g. https://youtu.be/LD0ivjyuqMA?t=3032

which even a large reverb fails making sound plausible.
Having a low threshold and large “minslicelenght” results
in equidistant slices, all of identical durations, as would do
the pipo.onseg object in MuBu.

Because we listen to sound in time, this parameter re-
sponsible for the duration of samples is of prior impor-
tance.

5.2 MFCC on each slice - across one whole
slice/segment

Multidimensional MFCC analysis: MFCC (Mel-Frequency
Cepstral Coefficient) analysis is a technique used to extract
features from audio signals that are relevant for speech and
music recognition. It involves calculating a set of coeffi-
cients that represent the spectral envelope of the audio sig-
nal, or decomposing a sound signal into a set of frequency
bands and representing the power spectrum of each band
with a set of coefficients. The resulting MFCC coefficients
capture important spectral characteristics of the sound sig-
nal (albeit hardly interpretable by the novice user), such
as the frequency and magnitude of the spectral peaks. We
will see that combines with umap, it is able to capture the
spectral characteristics of the musician’s playing style.

5.3 Statistical Analysis Over Each Slice

BufStats is used to calculate statistical measures on data
stored in a buffer channel. BufStats calculates seven statis-
tics on the data in the buffer channel: mean, standard de-
viation, skewness, kurtosis, low, middle, and high values.
These statistics provide information about the central ten-
dency of the data and how it is distributed around that ten-
dency. In addition to calculating statistics on the original
buffer channel, BufStats can also calculate statistics on up
to two derivatives of the original data, apply weights to the
data using a weights buffer, and identify and remove out-
lier frames. These statistical measures can be useful for
comparing different time-series data, even if they have dif-
ferent length, and may provide better distinction between
data points when used in training or analysis. The output
of BufStats is a buffer with the same number of channels as
the original data, with each channel containing the statis-
tics for its corresponding data in the original buffer.

5.4 Normalization

The FluCoMa package proposes several scaling or prepro-
cessing tools, amongst which normalization and standard-
ization were used. Standardization and normalization are
techniques used to transform variables so that they can be
compared or combined in statistical analyses. Both tech-
niques are used to make data more comparable, but they
work in slightly different ways.

Standardization scales a variable to have a mean of 0 and
a standard deviation of 1, while normalization scales a vari-
able to have a minimum value of 0 and a maximum value
of 1. Normalization ccaling was found easier to use both
in 2-D (in FluCoMa, the fluid.plotter object), as well as
in the VR 3D world in which the origin corresponds to a
corner of the world. The fluid.nomalize object features an
“@max” attribute (1 by default), which then maps directly
to the dimensions of the VR world.

https://youtu.be/LD0ivjyuqMA?t=3032


5.5 Dimensionality Reduction - UMAP

Dimensionality reduction is a technique used in machine
learning to reduce the number of features (dimensions) in
a dataset. The goal of dimensionality reduction is to sim-
plify the data without losing too much information. Var-
ious dimensionality reduction algorithms are presented in
an early FluCoMa study [23], with interestingly no men-
tion of UMAP, later favoured.

UMAP (Uniform Manifold Approximation and Projec-
tion) is a non-linear dimensionality reduction technique
that is based on the principles of topological data analy-
sis. It can be used to visualize high-dimensional data in
a lower-dimensional space. When applied to sound data
analysed with MFCC (Mel-Frequency Cepstral Coefficients),
UMAP reduces the dimensionality of the data and creates a
visual representation of the sound in a 2- or 3-dimensional
space.

By applying UMAP to the MFCC coefficients of a sound
signal, it is possible to create a visual representation of the
sound that preserves the relationships between the different
MFCC coefficients (see Fig. 5).

Figure 5. Dimensionality reduction of MFCCs help revealing spectral
similarities. UMAP outputs coordinates in 2d or 3d.

UMAP is therefore used for its clustering abilities in the
first place, helping for classification purposes. It helps
identifying patterns or trends that may not be evident from
the raw data. This can be useful for tasks such as explor-
ing the structure of a sound dataset, identifying patterns or
trends in the data, and comparing different sounds.

Most importantly, the non-linear dimensions proposed by
UMAP (whether in 2d in Max or in 3 dimensions in PatchXR,
and when compared to linear analyses in which, for in-
stance, x, y and z correspond to pitch, loudness and cen-
troid) gave far more “intelligent” clustering than more con-
ventional parameter-consistent types of representations.

5.6 Neighbourhood queries

The neighbourhood retrieval function is based in FluCoMa
on K-d trees and the knn algorythm. In MuBu, the mubu.knn
object serves similar tasks. The ml.kdtree object in the
ml.star library [24] gives comparable results.

K-d trees (short for ”k-dimensional trees”) and k-nearest
neighbours (k-NN) are two algorithms that are related to
each other, but serve different purposes, a k-d tree is a data
structure that is used to store and efficiently query a set of
points in a k-dimensional space, while the k-NN algorithm
is a machine learning algorithm that is used for classifi-
cation or regression. Both algorithms are often used in ap-
plications such as pattern recognition, image classification,
and data mining.

6. WORKFLOW IN PATCHXR

I have most often used FluCoMa and PatchXR to generate
monophonic instruments (one performer plays one instru-
ment at a time), most typically in experiences where play-
ers the players face one another 8 . In the case of ”button
worlds” such as this one or those described in section 6.1,
there is no need of nearest neighbour retrieval since the
performer clicks exactly on the data point, and he (medi-
ated by his avatar) reproduces what knn would do with an
automated instrument: he will privilege in his choice the
samples he can reach at hand, rather than constantly jump
large distances between items (see Fig. 1).

In the worlds developed in Sections 6.2 and 6.3 on the
other hand, data points are not explicitely represented and
some near neighbour strategies need to be implemented.
PatchXR exposes a wide range of blocks (a block corre-
sponds to an object in Max or Pure Data) making it simple
to access gesture data such as:

• The position/distance between hands/controllers and
a reference.

• The rotation angles (x y z) of both hands’ controllers

• 2-d touchscreen-like controllers, where the user moves
the xy position of a selector across a plane by man-
ually grabbing it.

• 2-d lazer-like controllers, where the user moves the
xy position of a selector remotely, as if using a lazer
pointer towards a remote screen or board.

• 2-d pads, which allow to access the velocity at which
the pad is hit

• 3-d slider or theremine like controllers, where the
user moves the xyz position of a selector across a
plane by manually grabbing it.

• A block called “interaction box” similar to 3-d slider,
with the main difference that the user does not grab
the selector, but instead comes in and out of the in-
teractive zone

• 1-d sliders, knobs, buttons...

One of the current challenges consists in diversifying the
ways in which the corpus is queried.

8 https://youtu.be/WhuqOOuzzBw

https://youtu.be/WhuqOOuzzBw


One to one mapping of UMAP results such as those of
section 6.1 use buttons facing each other, in order to prompt
the players to face each other 9 .

When playing alone and controlling at the same time many
instruments (the one-man-orchestra), encourages to use higher
level type of control over automata, i.e. to implement the
simple ability to concatenate automatically: play the next
sample as soon as the previous one has stopped (see section
6.2).

6.1 One to one mapping between data points and
buttons

The first javascript routine developed was designed to sim-
ply map a data point in the sonic space to a button in the
virtual 3d space. By iterating over an array, the routine
generates a world in which each button’s coordinates are
dictated by the FluCoMa umap analysis descripbed in sec-
tion 5.5. Albeit simpler than the method that will be ex-
posed later, this simple one to one to one mapping has
several advantages, most importantly the haptic and visual
feedback the performer gets when hitting each button.

6.2 Max/pd dependence

The second stage investigated the possibility to render the
sounds on an array of raspberry pi computers [25]. While
this method shows advantages in terms of patching (be-
cause of the convenience of using max and pure data), the
main drawback is that patches designed in this way cannot
be accessed by the PatchXR community. Documentation,
similarly is harder to record since the sound is produced
outside of PatchXR. The haptic and visual feedback is very
different here in the sense that the user controls primarily
the region of the space to be played, and when to start and
stop playing (when his hand touches the interface or not).
The way he plays is less rhythmical than in the button in-
terface where the player “hits” 10 each sample (section6.1).
Here on the contrary, the automat simply keeps playing as
long as he touches the interface 11

Flucoma exposes the fluid.kdtree that is able to find the
k nearest number once it is given as input the coordinates
of each data point (see Fig. 6). This method proved more
suitable to control automata in which the player selects a
region of a 2d plane together with the number of neigh-
bours he wants the automate to improvise with.

Most satisfying results were achieved by sending mes-
sages to each RaspberriPi independently, according to its
specific (static) IP address, with a simple syntax of a 2-
integer list corresponding to: 1/which buffer to lookup 2/
which slice in this buffer to play, each Pi/speaker thus be-
ing able to play each sound in a pure data patch, in which
each slice looks up an array with the corresponding slice
points.

6.3 Nearest neighbour in PatchXR

The currently most frequently used program is a javascript
routine that generates a world (a .patch file) in which the x
y z coordinates of each data point are stored in a “knob

9 https://youtu.be/
10 the opening of this video aptly conveys how the energy transfers form

the player’s gesture https://www.youtube.com/watch?v=glFdzbAJVRU
11 https://youtu.be/vtob96F9cQw

Figure 6. The fluid.kdtree object is used here to retrieve the 8 nearest
neighbours of a point in a 2-d space.

board” block (the long rectangle in Fig.7). To measure
the distance in 3D using Thales’ theorem (or so called dis-
tance formula), we need to find the distance between two
points in three-dimensional space, i.e find the diameter of
the sphere that passes through both points.

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Fig. 8 shows the corresponding implementation in patchXR.
This fragment of visual program (called “abstraction” or

“subpatch” in Max, and called “group” in PatchXR) is then
used in a more complex patch which iterates (100 times per
second, for instance) over an array (the rectangular “knob-
board” object in Fig.7, so as to output the index (the value
234 in the figure) of the point situated the closest to the
controller.

https://youtu.be/LP1g79BdIpY
https://www.youtube.com/watch?v=glFdzbAJVRU
https://youtu.be/vtob96F9cQw


Figure 7. The coordinates of the player’s controller (here 0.01, 0.06,
0.13) yield as a result index 234 as nearest neighbour (read from left to
right).

Figure 8. The implementation of Thales’ theorem in patchXR (read from
right to left).

7. NETWORKED MUSIC PERFORMANCE

The concept of online virtual collaboration has gained sig-
nificant attention, notably through Meta’s promotion in 2021.
The application of this concept within the realm of “tele-
improvisations” [26], most commonly referred to as Net-
worked Music Performance (NMP) or holds the potential
to overcome what was hitherto viewed as intrinsic limita-
tion of the field, both from practitioners and from an audi-
ence point of view.

NMPs have indeed stimulated considerable research and
experimentation whilst facing resistance at the same time.
In his article “Not Being There”, Miller Puckette argues
that he finds “Having seen a lot of networked performances
of one sort or another, I find myself most excited by the po-
tential of networked “telepresence” as an aid to rehearsal,
not performance.” [27]. In Embodiment and Disembodi-
ment in NMP [28], Georg Hajdu identifies an issue with
a lack of readability from an audience perspective, who
cannot perceive the gesture to sound relationship as would
be the case in a normal concert situation: “These perfor-
mances take machine–performer–spectator interactions into
consideration, which, to a great deal, rely on embodied
cognition and the sense of causality[...]. Classical cause-
and-effect relationships (which also permeate the ‘genuine’
musical sign of the index) are replaced by plausibility, that
is the amount to which performers and spectators are ca-
pable of ‘buying’ the outcome of a performance by build-
ing mental maps of the interaction.” Performances of lap-
top orchestras, along with various other experiments using
technology collaboratively, wether in local or distributed
settings, have reported similar concerns, most commonly

expressing a lack of embodiment in the performance. Al-
though in its infancy, a first live performance staged/composed
by the author in Paris, with participants distributed across
Europe, showed a promising potential for tackling these is-
sues, most importantly through its attempt at dramatising
the use of avatars.

• JIM 23: https://youtu.be/npyfwqN02qE

A lot remains to be improved in order to give the audi-
ence an experience aesthetically comparable to that of the
concert hall. Carefully orchestrated movements of cam-
eras around the avatars, and faithful translation the headset
experience of spatial audio with immersive visuals need
further exploration, but would go beyond the scope of the
present article.

8. CONCLUSIONS

We’ve proposed a workflow for corpus-based concatena-
tive synthesis CBCS in multiplayer VR (or metaverse), ar-
guing that machine learning tools for data visualisation of-
fer revealing and exploitable information about the timbral
quality of the material that is being analysed. In a wider
sense, the present approach can be understood as reflexive
practice on new media, according to which the notion of
data-base may be considered an art form [29]).

The discussed tools for “machine listening” (FluCoMa,
MuBu) help building intelligent instruments with relatively
small amounts of data, the duration of samples appear cru-
cial in CBCS. A balance must be found between 1/ short
duration sample analysis which are easier to process and
categorise and 2/ long samples which sound more natural
in the context instrument-based simulations.
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