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Multi-element polynomial chaos expansion based on automatic
discontinuity detection for nonlinear systems

Juliette Dréau1, Benoit Magnain2, Alain Batailly1

Abstract
This article focuses on the stochastic modeling of nonlinear systems featuring discontinuities in their response surface.
More specifically, original developments are presented to improve the efficiency of multi-element polynomial chaos
expansion for such systems. First, an automated detection procedure of the discontinuities is proposed. It relies on an
iterative algorithm with a polynomial annihilation edge detection method and support vector machine classification
algorithms leading to the representation of the discontinuity as a B-spline curve. Based on this curve, an ad-hoc
decomposition of the variable space is considered and an original approach for the application of polynomial chaos
expansion on each subdomain yields a robust and versatile way to compute the response surface of the system of interest.
The proposed methodology is detailed and applied to several nonlinear academic systems such as a circular discontinuity
and the Duffing oscillator including one or two discontinuities in its response surface. Through these applications, it is
evidenced that, compared to the classical polynomial chaos and multi-element polynomial chaos expansions, the proposed
methodology yields an approximation of the discontinuous responses that is both more accurate and less computationally
expensive. The influence of the main parameters of the proposed methodology is also analyzed in details. This parametric
analysis underlines the robustness of the methodology and highlights the key parameters in terms of computational cost
and accuracy of the discontinuities. The proposed methodology is finally applied to an industrial application, it allows to
efficiently compute the surface response of an industrial compressor blade undergoing structural contacts.
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Polynomial Chaos Expansion, Multi-element, Discontinuity Detection, Polynomial Annihilation, Support Vector Machines,
Uncertainty quantification.
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Chaos polynomial multi-élément et détection automatique de
discontinuités pour les systèmes non linéaires

Juliette Dréau1, Benoit Magnain2, Alain Batailly1

Résumé
Cet article porte sur la modélisation stochastique de systèmes non linéaires présentant une discontinuité dans leur
surface de réponse. Plus précisément, des développements originaux sont présentés pour appliquer la méthode du
chaos polynomial multi-élément à de tels systèmes. Une procédure de détection automatique des discontinuités est
tout d’abord présentée. Elle repose sur un algorithme itératif avec détection de bords par annihilation polynomiale et
sur une classification par machines à vecteurs de support permettant de représenter la discontinuité par une courbe
paramétrique de type B-spline. Sur base de cette courbe, une décomposition ad hoc de l’espace des variables est effectuée
pour permettre une application de la méthode du chaos polynomial sur chacun des sous-domaines. La méthodologie
proposées est détaillée et appliquée à plusieurs systèmes académiques incluant une discontinuité de forme circulaire et un
oscillateur de Duffing. Ces applications permettent de mettre en évidence que, contrairement à la méthode classique du
chaos multi-élément, la méthodologie proposée aboutit à une approximation de la surface de réponse qui est à la fois
précise et peu coûteuse numériquement. L’influence de chacun des principaux paramètres de la méthode est analysée
en détails pour souligner la robustesse de l’approche proposée. Enfin, une application industrielle est proposée pour
démontrer le potentiel de la méthodologie proposée pour obtenir la surface de réponse d’une aube de compresseur soumise
à des contacts structuraux.

Mots-clés
Chaos polynomial, multi-élément, détection de discontinuité, annihilation polynomiales, machines à vecteurs de support,
quantification d’incertitude.
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Multi-element polynomial chaos expansion based on automatic discontinuity detection for nonlinear systems

1 Introduction
To a certain degree, all complex engineering systems are intrinsically nonlinear. In practice, the influence of this
nonlinearity over a system’s nominal operating range may not always be significant. However, specific design issues
arise when it becomes impossible to neglect the nonlinear behavior of a mechanical system, be it due to contact
or friction interfaces for instance. In this situation, designers are facing a theoretical roadblock as there exists no
unified theoretical framework for the analysis of nonlinear mechanical systems. As a consequence, there has been
a vast amount of research works dedicated to the development of ad-hoc predictive numerical strategies with the
intent to (1) better understand the underlying physical phenomena and (2) provide designers with the tools they
need for the a posteriori discrimination of better suited design solutions.

As the developed predictive numerical strategies become more robust, accurate and computationally efficient,
there is a drive towards their inclusion in early design stages. Should designers be able to identify key design
parameters or guidelines to mitigate nonlinear interactions, this could lead to the design of safer and more robust
mechanical systems. In the meantime, predictive numerical strategies can be used to provide essential design
data such as the system’s response surface over selected parameters’ ranges of variation. Be it for uncertainty
quantification [1, 2] or the identification of an ideal operating point, response surfaces are key in many engineering
applications. Unfortunately, for large mechanical systems featuring several nonlinear interfaces or combining distinct
types of nonlinearities, the computational effort required for these response surfaces may not be acceptable in an
industrial context.

Alternative ways to compute these response surfaces must thus be found. Spectral methods [3, 4], including
the well-known polynomial chaos expansion (PCE) [5], have therefore emerged in recent decades. In particular,
PCE has been widely applied in an industrial context [6, 7, 8, 9] and extended to a wide variety of probability
distributions under the name of generalized PCE (gPCE) [10] based on intrusive [11] or non intrusive [12] approaches.
However, in the case of nonlinear mechanical systems, it is likely that their response surfaces feature discontinuities
or localized strong variations. Because gPCE relies on smooth polynomial interpolation, it is ill-suited for capturing
such phenomena [13]. In order to mitigate this issue, a multi-element gPCE (ME-gPCE) has been developed [13],
it relies on a decomposition of the random space into several elements over which gPCE may be applied. This
method has been referred to as a piecewise gPCE [14]. ME-gPCE typically relies on a decomposition of the random
space using a tensor structure with rectangular shape [15, 16, 17]. However, using such decomposition, a very large
number of elements may be required to accurately capture discontinuities of the response surface.

Because it is of paramount importance to accurately locate such discontinuities on a response surface, the
detection of discontinuities itself has generated a large number of research works over the last years. In particular,
edge detection techniques [18, 19] have been developed to accurately represent discontinuities over a 2D response
surface. Discontinuities are commonly detected by means of the polynomial annihilation edge detection method [18]
and the discontinuity itself may be represented using support vector machine (SVM) [19]. Other methods based
on Bayesian inference techniques can be used to locate a discontinuity [20]. Recently, ME-gPCE itself has been
used to detect discontinuities [21]. Once the discontinuity has been detected, an approximation method such as
gPCE is performed to interpolate the system response on each subdomain [22, 23, 24]. These methods are mostly
multi-element probabilistic collocation methods [25] based on least orthogonal interpolation [26]. With respect to
ME-gPCE, its application relies on a regression method [12] and it has not yet been coupled with a detection of
discontinuities method.

In this paper, a new method combining multi-element generalized polynomial chaos expansion and discontinuity
detection is proposed to decompose the random space into a minimal number of subdomains over which gPCE is
then applied. An automatic discontinuity detection is proposed based on polynomial annihilation edge detection
method [18]. Discontinuity localization also relies on support vector machine classification algorithms to accurately
represent the discontinuities. The discontinuities detected are then used as element boundaries in the ME-gPCE to
propose a random space decomposition adapted to the discontinuities of the system. The ME-gPCE is therefore
used on subdomains related to the discontinuity of the model response.

This paper is divided into five sections, excluding the introduction and the conclusion. Section 2 of this article
is dedicated to the presentation of gPCE and ME-gPCE when applied to discontinuous response surfaces, and
their limitations are highlighted on academic nonlinear systems. The objective and the steps of the proposed
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two-phase methodology are also presented. The first phase of the proposed methodology is the automated detection
of discontinuities, proposed developments are detailed in the section 3. In section 4, the second phase related to the
response surface approximation is presented. The proposed methodology is applied on academic nonlinear systems
such as a benchmark function used in the literature [22] and the Duffing oscillator. In section 5, the influence of key
parameters of the proposed methodology is analyzed on an academic nonlinear system. Finally, in the last section of
the article, the proposed methodology is applied to obtain the response surface of a compressor blade undergoing
structural contacts considering two variables: the angular speed of the blade and the blade-tip/casing clearance.

2 Context
The use of spectral methods such as generalized polynomial chaos expansion is facing a roadblock when considering
mechanical systems featuring a discontinuous response surface. For such systems, the fact that gPCE relies on
polynomial interpolation yields spurious oscillations of the approximated response surface which significantly alters
its accuracy. In this section, this phenomenon is first briefly illustrated with the well-known Duffing oscillator before
an overview of the proposed methodology to tackle this issue be presented. The Duffing oscillator is used throughout
the methodology sections of the article for illustrative purposes.

2.1 Example of a discontinuous response surface: the Duffing oscillator
The Duffing oscillator is a one-degree-of-freedom nonlinear oscillator characterized by the following equation of
motion:

mü+ cu̇+ ku+ knlu
3 = F cos (ωt), (1)

where m, c, k and knl are respectively the mass, damping coefficient, linear stiffness and nonlinear stiffness. F cos (ωt)
is the excitation force of pulsation ω, and u, u̇ and ü stand for the displacement and its first and second derivatives
with respect to time. The values of the parameters considered in this study are detailed in Tab. 1.

variable description value unit

m mass 1 kg

c damping coefficient 0.25 N · s ·m−1

k linear stiffness [0, 0.5] N ·m−1

knl nonlinear stiffness 0.5 N/m3

F excitation force amplitude [0, 1] N

ω pulsation 1 rad · s−1

Table 1. Mechanical parameters of the Duffing oscillator.

The linear stiffness k and the amplitude F of the excitation force are here considered as random variables,
uniformly distributed on Ω = [0, 0.5]× [0, 1]. Assuming null initial conditions, Eq. (1) is solved for 10,000 couples of
values (k, F ) using an ordinary differential equation solver based on lsoda from the FORTRAN ODE library [27,
28]. The 10,000 samples are computed based on a regular 100× 100 grid over Ω and the corresponding response
surface—representing D(k, F ) = max(u(t)) over the last two of the twenty simulated periods T with t ∈ [0, 40π],
and which will be used here as a reference point—is shown in Fig. 1. As evidenced in Fig. 1, the response surface of
the Duffing oscillator over Ω is discontinuous.

2.2 Approximation of a discontinuous response surface
An approximation of the response surface depicted in Fig. 1 is first obtained using gPCE [10]. gPCE coefficients
are computed based on a 81-equidistant point design of experiments (a regular grid of 9× 9 equidistant point over
Ω, see ( ) in Fig. 2(a)) and a high value of the degree of interpolation (q = 7). Assuming a uniform distribution
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Figure 1. Duffing oscillator, reference response surface over Ω: (a) 3D view; (b) 2D view.

of variables, gPCE basis is composed of Legendre polynomials. The corresponding approximated response surface
is then plotted using the 10,000 couples of values (k, F ) previously drawn for the reference response surface, see
Fig. 2(a). An overview of the distribution of the error with respect to the reference response surface, denoted E,
is plotted in Fig. 2(b). Due to its very definition, gPCE cannot capture the discontinuity of the response surface
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Figure 2. Approximation of Duffing oscillator response surface by gPCE: (a) approximated response surface from points ( ) in
the design of experiments; (b) error distributions with respect to the reference response surface.

thus yielding significant errors in the approximation of the response surface. Because of spurious oscillations that
propagate throughout the response surface, non negligible errors are found throughout Ω.

Multi-Element generalized polynomial chaos expansion [13] is one of the strategies developed in order to overcome
the limitations of gPCE. It is here applied with a decomposition of the random space Ω within 16 rectangular
subdomains. Over each of these subdomains, gPCE is applied with q = 2 using a 9-point uniform design of
experiments. The a priori decomposition of the random space implies that it cannot account for the location of the
response surface discontinuity. The approximated response surface is plotted in Fig. 3(a) using the 10,000 reference
samples. Same as for gPCE, the distribution of the error E computed for each sample is shown in Fig. 3(b). For each
subdomain where the reference response surface is continuous, ME-gPCE yields excellent results. Where the reference
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Figure 3. Approximation of Duffing oscillator response surface by ME-gPCE with 16 rectangular elements ( ): (a)
approximated response surface from points ( ) in the design of experiments; (b) error distributions with respect to the

reference response surface.

response surface is discontinuous however, ME-gPCE yields significant errors. ME-gPCE thus advantageously yields
more localized errors but which remain significant. Based on similar observations, some researchers have proposed to
consider a much greater number of subdomains [15] but this may lead to very high number of required evaluations
of the response surface that may not be computationally feasible for large nonlinear mechanical systems. Adaptive
methods [29] are known to locally increase the number of subdomains in an adaptive manner which often implies a
significant computational cost. Contrary to the proposed developments, these methods typically rely on rectangular
subdomains. One may also note that ME-gPCE yields a discontinuous response surface.

2.3 Problem statement and overview of the proposed methodology
Let f be a piecewise-continuous function defined over Ω ⊂ R2 by:

f : Ω→ R,
x 7→ f(x),

(2)

A point x ∈ Ω is denoted x = [x1, x2]. By definition, f is continuous at a point x if it verifies:

lim
∆→0

f(x+∆) = f(x) ∀∆ ∈ Ω. (3)

Otherwise, it is said to be discontinuous at x. It can be shown that the function D introduced in the previous
subsection is only piecewise-continuous over Ω as it was evidenced that its response surface is discontinuous at
certain points. As illustrated above, approximating the response surface of such function is a difficult task. However,
it is of high engineering relevance considering most mechanical systems feature a certain degree of nonlinearity which
may translate into a discontinuous response surface.

Based on the ME-gPCE, this article introduces an original methodology for the approximation of a piecewise-
continuous function with an automated detection procedure of the discontinuities and an ad-hoc definition of
subdomains in order to minimize the computational cost of the approximation. It relies on two distinct phases that
are detailed in the following sections:

1. automated detection of discontinuities relying on a two-step approach, which is based on an existing
methodology [19]: (1) iterative edge detection, and (2) localized mesh refinement to accurately represent the
discontinuities by means of B-spline curves,

2. approximation of the response surface using a decomposition of the random space coherent with the
detected discontinuities, for an optimal application of ME-gPCE.
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Each phase of the proposed methodology is detailed in the following sections. While the automated discontinuity
detection method is based on existing methods [18, 19], it has several original features: (1) discontinuities are defined
by B-splines [30] used for the decomposition of the domain Ω; (2) point labeling is performed along with iterative
edge detection in order to efficiently select new points to be evaluated; (3) repeatability of the discontinuity obtained
by support vector machine is ensured by deterministic selection of the training and test sets. Moreover, compared to
existing approximation methods [22, 23, 24], ME-gPCE is applied here with coefficient computation by regression
method [12], and the decomposition of the random space is carried out by considering subdomains of any shape
defined from the previously detected discontinuities.

2.4 Academic systems
The proposed methodology is applied on three academic systems: (1) the previously introduced Duffing oscillator
with the response surface plotted in Fig. 1, (2) the Duffing oscillator to which a discontinuity is added to the response
surface as shown in Fig. 4(a), and (3) a benchmark function used in the literature [22] as represented in Fig. 4(b).
For the second test case, the quantity D(k, F ) is the response of the Duffing oscillator introduced in section 2.1 if
(k − 0.5)2 + (F − 1)2 > 0.252, otherwise:

D(k, F ) = 3− k − F +
exp ((k + F )2)

8
. (4)

The two phases of the proposed methodology are detailed in the following sections.
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Figure 4. Reference response surfaces of two academic systems: (a) Duffing oscillator with added discontinuity; (b) circular
discontinuity [22].

3 Automated detection of discontinuities
3.1 Notations and definitions
In order to assess the possible discontinuity of a function f at a given point x, one may use the jump function δf
defined as:

δf : Ω→ R,
x 7→ max

∆∈Ω

(
f(x+)− f(x−)

)
,

(5)

where f(x+) = limϵ→0 f(x + ϵ∆), f(x−) = limϵ→0 f(x − ϵ∆) and ϵ ∈ R. Should f be discontinuous at x, then
δf(x) ̸= 0.
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From a numerical standpoint, the evaluation of both f and δf relies on a discretization of the random space
Ω. Based on a set of points X (k), a Delaunay triangulation T (k) is computed at each iteration k of the proposed
methodology so that:

X (k) = {x1, . . . ,xnk
}, k ∈ N, (6)

and:

T (k) = {T(k)
j |T

(k)
j = {xj1 ,xj2 ,xj3} ⊂

(
X (k)

)3

∀j ∈ [[1, tk]]}, (7)

where T
(k)
j is the set of vertices of triangle element indexed j. The initial mesh T (0) is built from the set X (0)

which contains n0 points so that nk = n0 + k. Based on a n0-point regular grid of the random space Ω, each point
of X (0) is randomly located in a close vicinity of the regular grid points as shown in Fig. 5. This randomization
prevents potential numerical errors should a discontinuity be perfectly aligned with the regular grid. It should be

x1

x
2

Figure 5. Example of initial mesh T (0) with 36 points ( ) alongside the base regular grid ( ).

underlined that, from a numerical standpoint, because f may only be evaluated at a given set of points, the notion
of discontinuity is here extended so as to include functions that may locally feature very strong variations. For
the sake of simplicity, the term discontinuous will be used in the remainder to refer to both actual discontinuous
functions and functions that locally feature very strong variations. As a consequence, the term discontinuity will be
employed to refer to both actual discontinuous areas on the response surface as well as areas with strong variations.

3.2 Step 1: iterative edge detection
In this article, edge detection over Ω relies on a previously published procedure based on polynomial annihilation [18].
Key aspects of this methodology are recalled in the first subsection for the sake of completeness, the reader may
refer to the original publication [18] for more details. The following subsections focus on the first contribution of
this article: an iterative algorithm developed to get a finer approximation of discontinuities’ locations.

3.2.1 Edge detection through polynomial annihilation
The principle behind the employed edge detection procedure is to approximate the jump function δf defined in
Eq. (5) using polynomial annihilation [18]. The notation Πm is used to refer to the space of all polynomials of 2
variables and of degree less or equal to m. The dimension of Πm is m2 = (m+ 2)!/(m!2!). For a given point y ∈ Ω,
a set S(k) of m2 neighboring points is first selected among X (k):

S(k) = {xβ1 , . . . ,xβm2
}, β1, . . . , βm2 ∈ [[1, nk]]. (8)

The following linear system is considered [18]:∑
xβi

∈S(k)

ci(y)pl(xβi
) =

∑
∥α∥1=m

pl,α(y), ∀l ∈ [[1,m2]], (9)
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where α is a multivariate nonnegative integer, pl, l = 1, . . . ,m2, is a basis of Πm and the pl,α refers to the α
derivative of pl. The solution of the linear system (9) yields the values of the coefficients ci(y), i = 1, . . . ,m2. It is
then possible to compute the value of the edge detector function [18] Lmf(y):

Lmf(y) =
1

qm(y)

∑
xβi

∈S(k)

ci(y)f(xβi
), (10)

where qm is a normalization factor depending on S(k) [18]. In practice, the performance of polynomial annihilation
is improved by means of the minmod function:

LMf(y) =


min
m∈M

Lmf(y) if Lmf(y) > 0 ∀m ∈M,

max
m∈M

Lmf(y) if Lmf(y) < 0 ∀m ∈M,

0 otherwise,

(11)

where the finite set of positive integers M ⊂ N is equal to M = {1, 2, 3, 4} in this study. In the following, it is
assumed that LMf(y) provides a good approximation of δf(y):

δf(y) ≃ LMf(y). (12)

3.2.2 Iterative algorithm
In order to increase the accuracy of the computation of δf(y), it is here proposed to encompass polynomial
annihilation edge detection within an iterative algorithm featuring an automated update of the mesh. An overview
of the algorithm is given in Fig. 6. This algorithm yields a refinement of the initial mesh specifically in the areas
where the jump function takes its highest values and where may lie a discontinuity, it relies on four substeps:
initialization the random space is meshed (resulting in T (0)) from an initial set of n0 points X (0) where the

system’s response is computed,
mesh analysis the edge detector function LMf(y

(k)
j ) is computed at the barycenter y

(k)
j of all elements of the

current mesh T (k). One may note that from an iteration to another, many elements of T (k) are not changed
so that these computations only need to be performed on a limited number of elements,

identification of a suitable element the element T
(k)
i for which the edge detector function LMf(y

(k)
j )

is maximal is where a point may be added. The new point xn0+k+1 is selected half way between the two
vertices xi+ and xi− of the element which verifies that their evaluation f(xi+) and f(xi−) are respectively the
highest and the lowest among the three vertices of the element T

(k)
i .

remeshing when a new point xn0+k+1 has been added, it yields a local remeshing that modifies T (k).
There are three distinct stopping criteria relating to: (1) a minimal value of the edge detector function λLLMfmax,
(2) a minimal distance λdist between two points in X (k) in order to prevent point clustering, and (3) a maximal
number of iterations kmax for which the procedure is stopped. At the end of the procedure, the number of iterations
ked is stored.

3.2.3 Point labeling
Within the algorithm presented in Fig. 6, between the substeps of identification of a suitable element and
remeshing, a labeling procedure is employed to discriminate each point depending on its position with respect to
the discontinuity. This labeling procedure has been implemented within the iterative algorithm but could also be
carried out as a post-processing operation since labeling does not affect the definition of X (k). This is the reason
why it is here presented separately. More specifically, two classes of points, +1 or −1 are considered based on the
evaluation of f . At each iteration k, it is first checked if points xi− and xi+ belong to X (0):

label(xi−) = −1 if xi− ∈ X (0),

label(xi+) = +1 if xi+ ∈ X (0),

no label is assigned ortherwise.
(13)
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• initialization:
– define a regular grid of n0 points {xi}, i = 1, . . . , n0 over Ω where f is evaluated X (0) ←− {x1, . . . ,xn0},
– build the Delaunay triangulation of Ω, it contains t0 elements T

(0)
j , j = 1, . . . , t0

T (0) ←− {T(0)
1 , . . . ,T

(0)
t0 },

– set the iteration counter k ←− 0.
• mesh analysis:

– ∀j ∈ [[1, tk]], compute y
(k)
j as the barycenter of T(k)

j ,
– ∀j ∈ [[1, tk]], compute LMf(y

(k)
j ) as described in Sec. 3.2.1,

– if k = 0, compute LMfmax = maxj∈[[1,t0]](LMf(y
(0)
j )),

– define the set of suitable indices I(k) = [[1, tk]].
• identification of a suitable element:

– find i ∈ I(k) such that LMf(y
(k)
i ) = maxj∈I(k)(LMf(y

(k)
j )), vertices of the element T

(k)
i are denoted

{xi1 ,xi2 ,xi3} with i1, i2, i3 ∈ [[1, nk]],
– if LMf(y

(k)
i ) ≤ λLLMfmax, a stopping criterion is met: end of the procedure and ked ←− k,

– find i+, i− ∈ {i1, i2, i3} such that: f(xi+) = max{i1,i2,i3} f(xi) and
f(xi−) = min{i1,i2,i3} f(xi),

– compute the new point xn0+k+1 = (xi+ + xi−)/2,
– if ∃q ∈ [[1, nk]], ∥xq − xn0+k+1∥2 ≤ λdist then I(k) = I(k)\{i},

∗ if I(k) = {∅} a stopping criterion is met: end of the procedure and ked ←− k,
∗ otherwise, go back to identification of a suitable element,

– otherwise, add point xn0+k+1 to the set of points X (k):
X (k+1) ←− X (k) ∪ {xn0+k+1}.

• remeshing:
– compute T (k+1) by means of a Delaunay triangulation based on X (k+1),
– increment the iteration counter: k ←− k + 1,
– if k < kmax, go to mesh analysis,
– otherwise, end the procedure and ked ←− kmax.

Figure 6. Iterative edge detection algorithm.

The label of the newly defined point xn0+k+1 = xnk+1
is then assigned depending on the following criterion:

label(xnk+1
) = −1 if |f(xnk+1

)− f(xi−)| < 1
2 (1− γ)|f(xi+)− f(xi−)|,

label(xnk+1
) = +1 if |f(xnk+1

)− f(xi+)| < 1
2 (1− γ)|f(xi+)− f(xi−)|,

no label is assigned to xnk+1
ortherwise,

(14)

with γ ∈ [0, 1]. Parameter γ prevents the labeling of areas of high variations of f . In the end, the proposed iterative
algorithm relies on four numerical parameters: λL, λdist, kmax and γ.

3.2.4 Area of discontinuity
At the end of the iterative edge detection procedure, the mesh of Ω has been refined in the vicinity of the predicted
discontinuities. At this stage, each element T

(k)
j ∈ T (k) is sorted depending on the labels assigned to its vertices.

The elements T
(k)
j ∈ T (k) with at least one vertex of class +1 and one vertex of class −1 are then sorted as:

∃ (l,m) ∈ {j1, j2, j3}, label(xl) = −1 and label(xm) = +1. (15)
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To target only the elements containing discontinuities, elements are also selected based on their jump value such
that it verifies the following condition for the barycenter y

(k)
j of element T

(k)
j ∈ T (k):

LMf(y
(k)
j ) ≥ LMfmin, (16)

where LMfmin = mink∈[[0,ked]](LMf(y
(k)
i )), i ∈ I(k), is the smallest value of LMf(y

(k)
i ) obtained during the iterative

algorithm. The set E(k) including all elements containing discontinuities is thus defined by the elements T
(k)
j ∈ T (k)

satisfying Eqs. (15) and (16). Elements of E(k) are then separated in nd subsets E(k)p , p = 1, . . . , nd, such that E(k)p

only contains elements of E(k) having at least one vertex in common following the procedure described in Fig. 7. The
number nd of subsets corresponds to the number of discontinuities detected by the iterative edge detection procedure
over the random space. For the following steps, vertices of elements in each subset E(k)p are sorted depending on their
label. Two subsets of points are thus created G(k)p+ and G(k)p− , for each vertex x of all elements T(k)

j ∈ E(k)p , such that:{
x ∈ G(k)p+ ⇔ label(x) = +1,

x ∈ G(k)p− ⇔ label(x) = −1.
(17)

In order to assign all vertices of the elements of E(k)p , if a vertex has the default label 0, then its label becomes same
as the vertex of the elements of E(k)p in its close vicinity whose label is different from 0 and whose evaluation of f is
closest to that of point to be labelled. Eq. (17) can then be applied.

• initialization:
– identify E(k), set F (k) ←− E(k),
– set the discontinuity index p←− 0.

• selection of a discontinuity:
– increment the discontinuity index: p←− p+ 1,
– select one element T

(k)
j in F (k)

F (k) ←− F (k) \ {T(k)
j } and E(k)p ←− {T(k)

j },
– identify neighboring elements of T(k)

j :
V ←− {T(k)

i ∈ F (k)|T(k)
j

⋂
T

(k)
i ̸= {∅}}.

• concatenation of the set E(k)p :
– concatenate V and E(k)p :
E(k)p ←− E(k)p

⋃V and F (k) ←− F (k) \ V,
– update the set of neighboring elements:
V ←− {T(k)

i ∈ F (k)|∃T(k)
n ∈ V, T(k)

n

⋂
T

(k)
i ̸= {∅}},

– if V = {∅}, go to iteration,
– otherwise, go back to concatenation of the set E(k)p .

• iteration:
– if F (k) ̸= {∅}, go to selection of a discontinuity,
– otherwise, end the procedure and nd ←− p.

Figure 7. Algorithm for the definition of the set E(k)
p .

An illustration of the application of the proposed algorithm to the function D(k, F ) introduced above on the
mesh depicted in Fig. 5 is shown in Fig. 8. For this application, a single discontinuity (nd = 1) is predicted over the
random space.
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0 0.5
0

1

x1
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Figure 8. Result of the iterative edge detection procedure on the Duffing oscillator: point of edge detection labeled −1 ( ) and
+1 ( ), identification of the area of discontinuity ( ), with the points of initial mesh ( ), labeled +1 ( ) or -1 ( ).

3.3 Discontinuity description with support vector machine

For each area of discontinuity, support vector machine (SVM) is used to separate points of G(k)p+ and G(k)p− . The
SVM steps are not detailed in this article for the sake of conciseness, the reader is referred to the description of
C-Support Vector Classification widely detailed in the literature [31, 32, 33]. The result of the application of SVM is
a B-spline ( ), see Fig. 9. In this figure, points of G(k)p+

⋃G(k)p− are split into a training set ( ) and ( ), and a test
set ( ) and ( ), before obtaining the the classification boundary represented by the B-spline ( ). The definition of
the test and training sets from the points of G(k)p+

⋃G(k)p− are detailed in the next subsection. The accuracy of the

x1

x
2

Figure 9. Application of SVM: training ( ) ( ) and test ( ) ( ) sets to obtain the classification boundary ( ), with the points
of initial mesh or edge detection ( ), labeled +1 ( ) or -1 ( ).

discontinuity is quantified by a scalar value ssvm computed as follows:

ssvm(G(k)p+

⋃
G(k)p− ) =

#correctly predicted data
#testing data

× 100 [%], (18)

where the testing data consists of the unselected points of G(k)p+

⋃G(k)p− in the the training data.

3.4 Step 2: localized mesh refinement
The localized mesh refinement step intends to increase the fidelity of the B-spline obtained by means of the
aforementioned SVM procedure at the end of the iterative edge detection step. Building on a previously published
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unstructured approach [19], the proposed algorithm prioritarily focuses on the least dense areas all along the
discontinuity. As detailed in Fig. 10, for each of the p discontinuities, the algorithm relies on a discretization of the
B-spline in nu points whose closest counterparts in G(k)p+

⋃G(k)p− are identified at each iteration. The vicinity of the
point ui0 of the B-spline for which this counterpart—denoted xj0 in Fig. 10—is the furthest is where a point is added.
By default, the added point xn0+k+1 is located half way between ui0 and xj0 . However, in order to avoid point
clustering, it is checked that there is no other point of G(k)p+

⋃G(k)p− close to xn0+k+1: should a point of G(k)p+

⋃G(k)p− be
found within a circle around xn0+k+1, the orthogonal search procedure is activated, see Fig. 11. Contrary to

• initialization:
– set the iteration counter k ←− ked,
– set n

(k)
p ←− #

(
G(k)p+

⋃G(k)p−
)
.

• discontinuity modeling:
– compute a set of points along the spline obtained with Sec. 3.3:
U (k)
p ←− {u(k)

i , i ∈ [[0, nu]]},
– compute the distance matrix D:
∀u(k)

i ∈ U (k)
p ,∀xj ∈ G(k)p+

⋃G(k)p− , Dji = ∥xj − ui∥2,
– define the set J (k)

p = {argmin
j∈[[1,n

(k)
p ]]

Dji,∀i ∈ [[0, nu]]},
• identification of a suitable point:

– find Dj0i0 = max
j∈J (k)

p ,i∈[[0,nu]]
(Dji) and compute ssvm(G(k)p+

⋃G(k)p− ) with Eq. (18),

– if Dj0i0 ≤ λD and ssvm(G(k)p+

⋃G(k)p− ) ≥ λsvm, a the stopping criterion is met k ←− kmr,
– otherwise compute the new point xn0+k+1 =

(xj0
+ui0

)

2 ,
– if ∃xj ∈ G(k)p+

⋃G(k)p− , ∥xn0+k+1 − xj∥2 ≤ 0.25Dj0i0 then orthogonal search
– otherwise, go to labeling.

• labeling:
– find xj+ = min

xj∈G(k)
p+
∥xj − xn0+k+1∥2 and xj− = min

xj∈G(k)
p−
∥xj − xn0+k+1∥2,

– if |f(xj+)− f(xn0+k+1)| < |f(xj−)− f(xn0+k+1)|, then
G(k+1)
p+ ←− G(k)p+ ∪ {xn0+k+1},

– otherwise:
G(k+1)
p− ←− G(k)p− ∪ {xn0+k+1},

– go to update
• update:

– increment the iteration counter: k ←− k + 1,
– if k < kmax, go to discontinuity modeling,
– otherwise, kmr ←− kmax and end the procedure.

Figure 10. Localized mesh refinement for the p-th discontinuity.

the iterative edge detection procedure, point labeling is here embedded within the localized mesh refinement as it is
necessary to identify if the added point belongs to G(k)p− or G(k)p+ .

The localized mesh refinement procedure yields a more uniformly spread set of labeled points around the
discontinuity thus minimizing the discrepancy between the B-spline and the actual discontinuity. Beside of a
maximum number of evaluations kmax, there are two stopping criteria related to: (1) a minimal distance λD between
ui0 and xj0 to prevent excessive mesh refinement similarly to the original algorithm [19], and (2) a threshold λsvm
above which the accuracy of the SVM is considered sufficient.

For the sake of clarity, key aspects of the proposed algorithm are illustrated in Fig. 12, including the conditional
orthogonal search procedure, for the Duffing reference system. At the end of the localized mesh refinement
procedure, the number of iterations kmr is stored and the set of all points evaluated in the proposed automated
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• orthogonal search, see Fig. 12(b)
– compute the tangent vector ti0 to the spline at ui0 and define x•

n0+k+1 such that:,
∥∥x•

n0+k+1 − xn0+k+1

∥∥
2
= ∥xj0 − xn0+k+1∥2 ,

(x•
n0+k+1 − xn0+k+1) · (xj0 − xn0+k+1) = 0,

sign((x•
n0+k+1 − xn0+k+1) · ti0) = • sign((xj0 − xn0+k+1) · ti0),

where • = {+,−},

– if ∄xj ∈ G(k)p+

⋃G(k)p− ,
∥∥x−

n0+k+1 − xj

∥∥
2
≤ 0.25Dj0i0 and x−

n0+k+1 ∈ Ω, then
xn0+k+1 = x−

n0+k+1, and go to labeling,
– otherwise, if ∄xj ∈ G(k)p+

⋃G(k)p− ,
∥∥x+

n0+k+1 − xj

∥∥
2
≤ 0.25Dj0i0 and x+

n0+k+1 ∈ Ω, then xn0+k+1 =

x+
n0+k+1, and go to labeling,

– otherwise, J (k)
p = J (k)

p \{j0}, if J (k)
p = ∅, then end the procedure k ←− kmr,

– go to identification of a suitable point.

Figure 11. Details of the orthogonal search procedure.

detection of discontinuities is noted X(kad) of size nkad .

Fig. 12(b)

x1

x
2

(a)

xj0

ui0

ti0

Dj 0
i 0

xn0+k+1

x
+
n0+k+1

x
−
n0+k+1

x1

x
2

(b)

Figure 12. First step of the localized mesh refinement procedure: (a) view over Ω; (b) zoom and depiction of the possible
point of the orthogonal search procedure from points of initial mesh or edge detection ( ), labeled +1 ( ) or -1 ( ), points

of G(k)
p+ ( ) and G(k)

p− ( ), spline ( ) and new point xn0+k+1 ( ).

3.5 Application to academic systems
In this subsection, the proposed automated detection of discontinuities is applied on three distinct academic systems,
introduced in subsection 2.4, in order to illustrate its robustness. The considered numerical parameters, obtained
after a sensitivity analysis not detailed here for the sake of brevity, are listed in Tab. 2. For all the presented test
cases, the initial mesh is built from 36 points and a maximum number of evaluations kmax = 164 is imposed so that
the maximum number of evaluations of the system’s response is 200.

The discontinuity detection is first applied on the Duffing oscillator, see Fig. 1. Following the iterative edge
detection and the localized mesh refinement procedures, the detected discontinuity ( ) is depicted in Fig. 13(a).
An approximation of the discontinuity ( ) based on a brute force evaluation of the system’s response surface using
a regular grid of 100× 100 points over Ω is also depicted in order to assess the accuracy of the automated detection
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kmax γ λdist λL λD λsvm

164 0.2 0.25 0.2 0.1 0.8

Table 2. Numerical parameters used for the academic systems.

procedure. The detected discontinuity shown in Fig. 13(a) yields good agreement with the reference discontinuity.
For this first test case, using the numerical parameters given in Tab. 2, the total number of evaluations of the
system’s response is 85, split as follows: 36 evaluations for the initial mesh, 39 evaluations made during the iterative
edge detection step and 10 additional evaluations during the localized mesh refinement step.

0 0.5
0

1

k

F

(a)

0 0.5
0

1

k

F

(b)

−1 1
−1

1

x1

x
2

(c)

Figure 13. Automated discontinuity detection for academic systems: (a) Duffing oscillator; (b) Duffing oscillator with added
discontinuity; (c) circular discontinuity [22] from initial mesh ( ), points of G(ked)

p+ ( ) and G(ked)
p− ( ), points added during the

localized mesh refinement step ( ) with label +1 ( ) or −1 ( ). Detected ( ) and reference ( ) discontinuities.

The second test case relies on the Duffing oscillator with added discontinuity. The second discontinuity is
imposed on the response surface as shown in Fig. 4(a). The two discontinuities are correctly identified by the
proposed procedure, see Fig. 13(b) where the detected discontinuities ( ) are superimposed with a brute force
approximation ( ) obtained with regular 100× 100 grid over Ω. A total number of 111 evaluations of the system’s
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response are here required: 36 evaluations for the initial mesh, 50 evaluations made during the iterative edge
detection step and 25 additional evaluations during the localized mesh refinement step.

Finally, the last test case relies on a benchmark function previously used in the literature [22], for which the
discontinuity has a perfectly circular shape ( ). As shown in Fig. 13(c), the proposed methodology yields an
accurate approximation of the discontinuity ( ) using 112 evaluations of the system’s response: 36 evaluations for
the initial mesh, 59 evaluations made during the iterative edge detection step and 17 additional evaluations during
the localized mesh refinement step.

4 Approximation of the response surface
Once the discontinuities of the response surface have been detected, it becomes possible to decompose the random
space into a set of relevant subdomains well-suited for the application of gPCE. In particular, in order to avoid
spurious oscillations of the approximated response surface shown in Figs. 2 and 3, boundaries of the subdomains are
here defined so that they are coincident with the detected discontinuities. This allows to define an optimal number
of subdomains over which the system’s response is smooth thus lowering the computational cost associated with the
evaluation of the system’s response surface while preventing spurious oscillations.

In the following subsections, the proposed approach is detailed from a theoretical standpoint: key notations
related to the domain decomposition, fundamental aspects of the mapping between random spaces as well as the
management of the Design of Experiments (DoE) are each presented in a dedicated subsection.

4.1 Domain decomposition
One may distinguish different types of discontinuities depending on their number of intersections with the boundary
∂Ω of the random space Ω. If a discontinuity has two intersections with ∂Ω, which is the case for the Duffing
oscillator, see Fig. 14(a), it splits the random space into two subdomains Ω1 and Ω2, see Fig. 14(c), that may be
directly considered for the next steps of the proposed methodology. However, in the case where the discontinuity has
only one (or possibly no) intersection with ∂Ω as depicted in Fig. 14(b), a specific post-processing step is required to
define the subdomains. As an example, one may consider extending the mathematical definition of the discontinuity
until it intersects ∂Ω as depicted in Fig. 14(d).

In the following, it is assumed that the random space Ω is decomposed into N non-overlapping subdomains such
as:  Ω =

N⋃
i=1

Ωi,

∀i, j ∈ [[1, N ]], i ̸= j ⇔ Ωi ∩ Ωj = ∅.
(19)

A versatile representation is considered for the boundaries of the subdomain Ωi that are simply assumed to be
parametric curves denoted ss(η), sn(η), sw(µ) and se(µ), where the variable [η, µ] is defined on the parametric space
[0, 1]2. The output of each parametric curves is defined on the subdomain Ωi. To better distinguish the two directions
of the subdomain, the notation sk is introduced with k = {1, 2} for any parametric curves s.

4.2 Key equations of gPCE
First introduced by Wiener [5], polynomial chaos expansion is based on an expansion of a stochastic system’s
response, which is assumed to be of finite variance, into a series of orthogonal polynomials. Generalized PCE refers
to the generalization of PCE to a large variety of probability distributions through the Askey scheme [10]. Following
the Askey scheme, a transformation T defined by:

T : [−1, 1]2 → Ω,

ξ 7→ x = T (ξ),
(20)
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is applied for the change of the variable x into a centered random variable ξ. Considering a finite number of terms
in the expansion, the approximation of the system’s response Y by the gPCE is written as:

Y (ξ) ≈
p∑

j=0

ajΨj(ξ), (21)

where aj and Ψj are the gPCE coefficients to be determined and the gPCE basis, respectively. In this paper, the
random variables follow a uniform distribution, accordingly the gPCE basis is composed of Legendre polynomials in
agreement with the Askey scheme. The two-dimensional orthogonal polynomials Ψj are limited to degrees lower or
equal to a maximum degree q. The gPCE basis is thus composed of:

p+ 1 =
(q + 2)!

q!2!
, (22)

terms. The gPCE coefficients aj may be calculated by an intrusive method, such as Galerkin methods [3, 11], or a
non-intrusive method, through projection or regression methods [12, 34]. In this paper, a regression method, based
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(a)
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x
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(b)
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x
2
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Ω2
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x
2

(d)

Figure 14. Domain decomposition for different types of discontinuities: (a) discontinuity detected for the Duffing oscillator; (b)
example of discontinuity with a single intersection with ∂Ω; (c) domain decomposition for the Duffing oscillator; (d) domain

decomposition for the example of discontinuity with a single intersection with ∂Ω.
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ss(η)sw(µ)

sn(η) se(µ)

Ωi

x1

x
2

Figure 15. Subdomain Ωi bounded by four parametric curves ( ).

on least squares approach, is selected as it is well-suited for many types of systems [1, 8]. Coefficients aj are then
obtained from solving the linear system [7]:

∑n
i=1 Ψ0(ξ̃

(i)
)Ψ0(ξ̃

(i)
) · · · ∑n

i=1 Ψ0(ξ̃
(i)
)Ψp(ξ̃

(i)
)

...
. . .

...∑n
i=1 Ψp(ξ̃

(i)
)Ψ0(ξ̃

(i)
) · · · ∑n

i=1 Ψp(ξ̃
(i)
)Ψp(ξ̃

(i)
)




a0
...

ap

 =


∑n

i=1 Y (ξ̃
(i)
)Ψ0(ξ̃

(i)
)

...∑n
i=1 Y (ξ̃

(i)
)Ψp(ξ̃

(i)
)

 , (23)

where the n points ξ̃
(i)

constitute the design of experiments on which the system’s response Y (ξ̃
(i)
) is evaluated.

4.3 Application of gPCE on ad-hoc subdomains
In order to efficiently apply gPCE on the subdomain Ωi depicted in Fig. 15, one must locally define the transformation
T mentioned in Eq. (20) using a transformation Ti related to the subdomain Ωi as follows:

Ti : [−1, 1]2 → Ωi,

ξ 7→ x = Ti(ξ).
(24)

It is thus necessary to map the subdomain Ωi with the centered random space [−1, 1]2, as mentioned in Eq. (24). In
this study, this mapping is made by means of a transfinite transformation which provides an explicit transformation
adapted to parametric curves.

4.3.1 Transfinite mapping
The transfinite mapping [35, 36] is based on a transfinite interpolation defined by the boundaries of the subdomain
Ωi in order to map the parametric space [0, 1]2 into Ωi. The transfinite mapping [37] yields a smooth mapping
from a boundary to another, it is defined by a transfinite bilinear Lagrange interpolation obtained from a linear
interpolation in η:

xsn
k = (1− µ)ssk(η) + µsnk (η), k = {1, 2}, (25)

and a linear interpolation in µ:

xwe
k = (1− η)swk (µ) + ηsek(µ), k = {1, 2}, (26)

to which the bilinear surface is subtracted by:[
xbil
1

xbil
2

]
=

[
(1− η) η

] [ ss(0) sn(0)

ss(1) sn(1)

][
(1− µ)

µ

]
. (27)
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In summary, the transformation Ti used in Eq. (24) is here explicitly written as:

xk =(1− µ)ssk(η) + µsnk (η) + (1− η)swk (µ) + ηsek(µ)

− (1− η)(1− µ)ssk(0)− µ(1− η)snk (0)− (1− µ)ηssk(1)− ηµsnk (1), k = {1, 2}, (28)

where η = (ξ1 + 1)/2 and µ = (ξ2 + 1)/2. In the context of gPCE, the transfinite transformation Ti easily allows to
map the DoE from the centered random space to the random space so that the value of the system at each point of
the DoE may be computed.

4.3.2 Design of experiments
In the context of the proposed methodology, defining the DoE in the centered random space must be prevented
for the sake of computational efficacy. Indeed, for sophisticated nonlinear engineering systems, the evaluation of
the system’s response at each point of the DoE can be costly. This is the reason why it is here proposed to define
the DoE based on points of X (kad) that also belong to the subdomain Ωi, and for which the system’s response has
already been evaluated during the first phase: automated detection of discontinuities. The set of points in the DoE
of the subdomain Ωi, i ∈ [[1, N ]], is defined as follows:

X (kad)
i = {xj ∈ X (kad) | xj ∈ Ωi,∀j ∈ [[1, nkad ]]}. (29)

For each point of X (kad)
i , it then becomes necessary to compute its coordinates in the centered random space through

the inverse transformation T−1
i .

Finding the coordinates in the centered random space [−1, 1]2 of a point xj ∈ X (kad)
i through the inverse

transformation T−1
i constitutes a nonlinear problem that may be solved iteratively using, for instance, a Newton-

Raphson based procedure. Depending on the shape of the boundaries of the subdomain Ωi, solving this problem
may be numerically sensitive. In order to mitigate potential numerical issues at this stage, the nonlinear problem is
solved sequentially over X (kad)

i . For each point xj the solution of the problem for its closest counterpart is here
chosen as the initial guess used for the Newton-Raphson solver. The numerical cost of this algorithm is minimized
thanks to a minimum spanning tree [38] built with the Kruskal algorithm [39] and a nearest neighbor search [40] in
order to provide the sequence of nonlinear problems to solve and ensure an optimal selection of the initial guess.
The starting point of this procedure is arbitrarily chosen at the center of the centered random space, see Fig. 16.

ss(η)sw(µ)

sn(η) se(µ)

x1

x
2

(a)

−1 1

−1

1

ξ1

ξ 2

(b)

Figure 16. Schematic representation of the inverse transformation with minimum spanning tree ( ), starting point ( ) and
DoE ( ) based on: (a) points of X (kad)

i in subdomain Ωi; (b) mapping of the points of X (kad)
i in the centered random space.

Since discontinuities are approximations, one must also ensure that the points of X (kad)
i are correctly on the

right side of the discontinuity to avoid spurious oscillations in the gPC approximation as observed in Figs. 2 and 3.
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The labels of the points of X (kad)
i are here checked in the vicinity of the detected discontinuity: if the label of the

point and the one predicted by SVM are different, then the point is excluded from the DoE of the subdomain Ωi.

4.3.3 Response surface of the system
The approximation of the response surface of the investigated system over Ω is obtained by reprensenting the
response surface obtained by gPCE over each subdomain Ωi determined in Eq. (19). In summary, the response
surface approximation by the proposed ME-gPCE-based approach is a four step procedure:

1. decomposition of the random space Ω based on the detected discontinuities,
2. definition of the design of experiments on each subdomain according to section 4.3.2,
3. application of gPCE on each subdomain,
4. representation of the response surface obtained on each subdomain Ωi.

4.4 Discussion on the proposed methodology
4.4.1 Limitations
The proposed methodology has been tested on a variety of configurations with both analytical functions and actual
nonlinear engineering systems, as detailed in the next subsection. Based on these tests, the methodology appears
robust and versatile. However, should a subdomain feature a high degree of non-convexity, it is possible that the
transfinite mapping fail in the sense that points within the parametric space [0, 1]2 can be mapped outside the
subdomain Ωi. Strongly distorted boundaries of Ωi would be required to observe this phenomenon but it remains
a possibility and thus may call for a human intervention in the process for specific non-convex subdomains. In
order to overcome this issue, the Winslow functional [41, 42] may be used, at the expense of a more sophisticated
implementation.

4.4.2 Alternative
Through the transfinite mapping, the proposed methodology advantageously allows to use classical gPCE on each
subdomain, each with a distinct centered random space. From a practical standpoint however, there exists an
alternative that does not require the transfinite mapping. Indeed, in order to approximate the response surface
over each subdomain, one could consider applying gPCE on the full random space while restricting the DoE to the
considered subdomain only. By doing so for each subdomain, it is theoretically possible to obtain the response
surface of the system over the full random space as a juxtaposition of cropped response surfaces obtained for each
subdomain.

There is however a major drawback to this alternative. As a matter of fact, an accurate approximation of the
response surface of the system requires, for each point where it is computed—a set potentially orders of magnitude
larger than the number of points in the DoE—, to know exactly which subdomain it belongs to. While this may not
be an issue far from the discontinuities, a nonlinear problem similar to the one solved in the proposed methodology
with the inverse transform would have to be solved for each point close to the discontinuities. Failing to do so
would unavoidably lead to an inaccurate approximation of the system’s response close to its discontinuities, in direct
contradiction with the emphasis put in their careful description.

4.4.3 Partial conclusion
Because the proposed methodology only relies on the transfinite mapping for points of the DoE, it is assumed to be
an efficient strategy for the problem at hand. It also advantageously relies on a classical application of gPCE on
each subdomain.

4.5 Application to academic systems
The proposed ME-gPCE-based approach is here applied on the three test cases previously introduced in subsection 2.4.
For each application, the gPCE degree q is selected as the maximum value for which the basis size p+ 1 verifies that
the number of points in DoE is higher or equal to 2(p+ 1).
Duffing oscillator: as shown in Fig. 17(a), the detected discontinuity ( ) cuts the random space, thus separating

two subdomains of Ω. From the 85 points evaluated, the design of experiments as defined in subsection 4.3.2
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is respectively composed of 40 and 44 points for subdomains Ω1 and Ω2. A gPCE approximation is then
performed on these two subdomains considering a degree of 4 and 5, respectively. The response obtained by
the proposed methodology is depicted in Fig. 18(a). The Pearson correlation coefficient between this response
and the reference response on the 10,000 reference samples is equal to 0.9961. The response obtained by the
proposed methodology thus shows good agreement with the reference response while only 85 evaluations of the
system’s response are required.

Duffing oscillator with added discontinuity: the two detected discontinuities ( ), plotted in Fig. 17(b), split
the random space in three subdomains. The specificity of the subdomain Ω3 is that the parametric curves
sn(η) is defined by the only coordinate (0.5, 1) for all η ∈ [0, 1]. gPCE is applied with DoE composed of 40,
49 and 17 points on the subdomains Ω1, Ω2 and Ω3, respectively. The proposed ME-gPCE approach yields
the response surface plotted in Fig. 18(b) and the Pearson correlation coefficient obtained is equal to 0.9962.
Good agreement between the obtained response and the reference response, shown in Fig. 4(a), is observed.

Circular discontinuity: [22] the detected discontinuity ( ) is completely included in the random space Ω as
shown in Fig. 17(c). The detected discontinuity is here splitted into four parametric curves so as to define the
subdomain Ω1, as well as the rest of Ω, decomposed into four subdomains. Thus, the decomposition of the
random space represented in Fig. 17(c) features 5 subdomains. The 112 evaluations already performed are
splitted according to the subdomains: the DoE are respectively composed of 35, 21, 18, 18 and 21 points. gPCE
is applied with a degree 4 on subdomain Ω1, degree 3 on subdomains Ω2 and Ω5, and degree 2 on subdomains
Ω3 and Ω4. The response obtained by the proposed ME-gPCE approach is depicted in Fig. 18(c). The Pearson
correlation coefficient obtained is equal to 0.9840. The obtained response surface shows a good agreement with
the reference response over Ω. One may note that the quality of the approximation on subdomains Ω2 and Ω5

is lower, due to the lower value of the degree considered on these subdomains. Adding a few random points in
the DoE over these subdomains would lead to better results.

In conclusion, in the three test cases, the response surface obtained by the proposed methodology is found to be
accurate while requiring a limited number of evaluations of the system response.

5 Sensitivity analysis of key parameters
The influence of three parameters of interest are analyzed in this section: the initial mesh size n0 and the two
stopping criteria of the automatic detection of discontinuities, λdist and λD. The initial value of the parameters are
detailed in Tab. 3. The analysis is performed for the Duffing oscillator with added discontinuity. The quantities of
interest are (1) the computational cost of the methodology and (2) the accuracy of the approximation results. The
latter is assessed by comparison to a reference response surface computed with 10,000 evaluations of the system’s
response. In the following, the degree of the polynomial chaos approximations on each subdomain is at most 4.

kmax n0 γ λdist λL λD λsvm

400 36 0.2 0.25 0.10 0.05 0.85

Table 3. Initial values of the discontinuity detection parameters.

5.1 Influence of the initial mesh size n0

Considered values of the initial mesh size n0 are
√
n0 ∈ [[4, 15]]. The evolution of the number of evaluations and

the correlation coefficient of the obtained results are plotted in Fig. 19. As observed in Fig. 19(a), the increase of
the initial mesh size yields an increase in the total number of evaluations of the system and consequently of the
computational costs of the methodology. More precisely, the increase of the initial mesh size n0 leads to a finer
triangulation implying a greater computational cost for the iterative edge detection step. The iterative edge detection
step also provides a very satisfactory first estimate of the discontinuity with respect to the stopping criterion of the
localized mesh refinement step which computational cost is then reduced. The results obtained by the methodology
are compared in Fig. 19(b) using the correlation coefficient. The increase of the initial mesh size n0 yields a small
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Figure 17. Domain decomposition for academic systems: (a) Duffing oscillator; (b) Duffing oscillator with added discontinuity;
(c) circular discontinuity [22] from detected discontinuities ( ).

increase of the correlation coefficient. All the Pearson correlation coefficients obtained are higher than 0.99 and
reflect the good agreement with the reference response. The increase of the initial mesh size thus allows to improve
the quality of the approximations obtained by the proposed methodology.

5.2 Influence of the λdist criterion of the iterative edge detection
The criterion of the iterative edge detection λdist is defined for values between 0 and 1. In this analysis, the upper
bound of the tested values, set to 0.55, is the value for which the discontinuity location procedure did not converge
due to a poor representation of the discontinuity zones for the initial 36 points mesh. The lower bound is set to 0.15
which is the minimum value for which the proposed methodology can obtain two discontinuities intersecting the
boundary of the random space Ω.

Depending on the value of λdist, the number of evaluations and the correlation coefficient of the obtained
results are depicted in Figs. 20(a) and 20(b) respectively. While several values of the criterion λdist are tested, the
results obtained by the proposed methodology are similar: both in terms of computational costs with an average
of 213 evaluations, and of accuracy with very high values of the Pearson correlation coefficients. With a similar
computational cost between the simulations run for different values of λdist, it is noticeable that the split of the
evaluations carried out between the two steps of the discontinuity detection procedure evolves according to the tested
values. For a high λdist value, a high proportion of the evaluations are performed for localized mesh refinement ( ).
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Figure 18. Response surface approximation by the proposed methodology for academic systems: (a) Duffing oscillator; (b)
Duffing oscillator with added discontinuity; (c) circular discontinuity [22] from detected discontinuities ( ) and points ( ) ( )

in DoE.

For a low λdist value, most of the evaluations are performed during the iterative edge detection ( ). This observation
highlights the complementarity of the two steps of the automated detection of discontinuities. In the end, the λdist
criterion of the iterative edge detection does not influence the approximation quality nor the total computational
cost of the methodology but mostly the distribution of the evaluations between the steps of the automated detection
of discontinuities.

5.3 Influence of the point density criterion λD of the localized mesh refinement
The point density criterion λD of the localized mesh refinement, defined in R, is studied here for values between 0.05
and 0.16. The maximal value is the upper bound where no points have been added in the localized mesh refinement.
The minimal value is the lowest bound where the detection procedure converges to two discontinuities intersecting
the boundary ∂Ω for the initial 36 points mesh.

The obtained results are depicted in Fig. 21, with (a) the number of evaluations and (b) the correlation coefficient.
An increase in the number of evaluations is observed as λD decreases. Moreover, when this parameter decreases, the
correlation coefficient increases. These observations highlight that the computational cost and the accuracy of the
proposed approach both increase when the criterion λD decreases.
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Figure 19. Results of the proposed methodology as a function of the parameter n0: (a) number of evaluations per step, initial
mesh ( ), iterative edge detection ( ) and localized mesh refinement ( ); (b) Pearson correlation coefficients.
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Figure 20. Results of the proposed methodology as a function of the criterion λdist: (a) number of evaluations per step, initial
mesh ( ), iterative edge detection ( ) and localized mesh refinement ( ); (b) correlation coefficient.

6 Industrial application: blade-tip/casing contact
This last section intends to illustrate how the proposed methodology can be applied to industrial problems. The
investigated system is a compressor blade undergoing structural contacts. Contrary to other types of applications
for which transient phenomena could be of interest—and for which specific numerical developments are required
when considering the application of PCE-based techniques [43, 44]—the analysis of rotating machine components is
typically focused on steady states, assuming a periodic forcing, which is propitious to the application of the proposed
methodology.

6.1 Nonlinear mechanical system
The compressor blade of interest is NASA rotor 37 [45], a transsonic compressor blade which is publicly available [46].
The casing is assumed perfectly rigid and the equation of motion of the blade reads [47]:

Mẍ+Dẋ+Kx+ fnl(x, ẋ) = fex(ω, t), (30)
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Figure 21. Results of the proposed methodology as a function of the criterion λD: (a) number of evaluations per step, initial
mesh ( ), iterative edge detection ( ) and localized mesh refinement ( ); (b) correlation coefficient.

where M,D and K are mass, damping and stiffness matrices, respectively. fex(ω, t) is the excitation force of angular
frequency ω at a time t, fnl(x, ẋ) denotes the nonlinear forces and x, ẋ and ẍ stand for the displacement and its
first and second derivatives with respect to time.

The equation of motion is solved with an explicit time integration scheme using a Lagrange multipliers-based
algorithm for contact treatment. The Craig-Bampton model reduction technique [48] is employed to reduce the
dimension of the system. A modal damping is considered, centrifugal effects are neglected and the blade is clamped
at its root. Eight evenly spaced nodes are considered along the blade-tip where contact forces may be applied. To
initiate contact with the blade, the casing is progressively ovalized. In order to illustrate the blade response to such
contact event, the time response of the blade’s leading edge radial displacement with respect to time is depicted
in Fig. 22(a). In this figure, transient and steady state parts of the time response are represented by markers 2

and 3 , respectively. The same quantity is depicted over the last period in Fig. 22(b) where the maximal radial
displacement ( ) is highlighted. The steady state maximal radial displacement, denoted D(ω, c), is a quantity of
interest because the blade’s response is mostly associated to its first bending mode. For that reasons, instants for
which the radial displacement is maximal correspond to instants where stresses within the blade (in the vicinity of
its root) will be maximal.

When looking at the evolution of D(ω, c) with respect to key parameters of the system such as the blade
angular velocity ω and the blade-tip/casing clearance c, it is evidenced that the response surface of the system
is discontinuous, see Fig. 23. The reference response surface pictured in Fig. 23 has been obtained considering a
sampling of 2 rad · s−1 in ω and 10−5 m in c which represents a total of 6666 evaluations, requiring about 192 hours
of computation time (104 s of computation time on average per evaluation).

6.2 gPCE and ME-gPCE approximations
Considering the computational cost of the response surface depicted in Fig. 23, gPCE is first used to approximate it.
gPCE coefficients are computed based on a 81 point design of experiments, with a regular grid of 9× 9 equidistant
points over the domain see ( ) in Fig. 24(a). A high value of the gPCE degree is considered: q = 7. The corresponding
approximated response surface is plotted in Fig. 24(a). The distribution of the error with respect to the reference
response surface noted E is plotted in Fig. 24(b). As observed for the Duffing system, gPCE cannot capture the
discontinuity of the response surface thus yielding significant errors in the approximation of the response surface.

ME-gPCE is then used to overcome the limitations of gPCE. A decomposition of the random space within 16
rectangular subdomains is performed. Over each of subdomains, gPCE is applied with q = 2 using a 9-point uniform
DoE. The approximated response surface is shown in Fig. 25(a) using the 6666 reference samples, and the error
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Figure 22. Leading edge radial displacement of the blade: (a) full time response over 125 blade revolutions, contact
deformation before contact 1 transient response 2 and steady state 3 ; (b) zoom over the last period, maximal radial

displacement ( ).
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Figure 23. Response surface of the blade-tip/casing system.

distribution is plotted in Fig. 25(b). Same as for Duffing system, ME-gPCE yields: (1) excellent results for each
subdomain where the reference response surface is continuous, and (2) significant errors where the reference response
surface is discontinuous. ME-gPCE therefore yields more localized errors but still significant errors.

6.3 Application of the proposed methodology
The proposed methodology is used to automatically identify the discontinuity of the response surface before it
can be approximated. Using the numerical parameters given in Tab. 2, the number of evaluations of the system’s
response required to obtain the approximation of the response surface is 94 (split into 36 evaluations on initial
mesh, 47 evaluations for the iterative edge detection step and 11 evaluations during the localized mesh refinement
step). The detected discontinuity ( ) is shown in Fig. 26(a). It is in very good agreement with the reference
discontinuity ( ). A decomposition of the random space within 2 subdomains is then performed, see Fig. 26(b).
From the 94 evaluations, gPCE is applied with DoE composed of 51 and 43 on each subdomain respectively. A
degree 4 is considered on each subdomain. The response surface thus obtained is depicted in Fig. 26(c), and the
error distribution with respect to the reference response surface is shown in Fig. 26(d).

Overall, the presented results underline that the proposed methodology provides a very accurate representation
of the system’s response surface. While the associated computational gain is difficult to estimate as it is directly
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Figure 24. Results of the gPCE for the blade-tip/casing system: (a) response surface approximation from DoE ( ); (b) error
distributions with respect to the reference response surface (sum of all the columns on the histogram: 97.49 %).
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Figure 25. Results of the ME-gPCE for the blade-tip/casing system: (a) response surface approximation from DoE ( ); (b)
error distributions with respect to the reference response surface (sum of all the columns on the histogram: 97.22 %).

related to the resolution needed by designers for the reference response surface, it is patent that the 94 evaluations
needed for the proposed methodology could not lead to an accurate description of the system’s response surface.

7 Conclusion
This study focuses on the application of Multi-Element generalized Polynomial Chaos Expansion combined with
automatic discontinuity detection to analyze nonlinear systems. The proposed methodology includes an automated
detection of discontinuities in order to apply a gPCE approximation on each subdomain. These subdomains are
delimited by the detected discontinuities. The decomposition of the random space proposed by the methodology
tracks the discontinuities of the discontinuous response surface. gPCE approximations are then performed on each
subdomain.

The proposed methodology is applied to a circular discontinuity and to the academic Duffing system including one
or two discontinuities. These applications yield accurate results on both phases of the methodology: discontinuities
detection and response surface approximation. It highlights that the accurately detected discontinuities then allows
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Figure 26. Results of the proposed methodology for the blade-tip/casing system: (a) automated discontinuity detection; (b)
domain decomposition; (c) response surface approximation; (d) error distributions with respect to the reference response

surface (sum of all the columns on the histogram: 99.55 %). Initial mesh ( ), points of G(ked)
p+ ( ) and G(ked)

p− ( ), points added
during the localized mesh refinement step ( ) with label +1 ( ) or −1 ( ). Detected ( ) and reference ( ) discontinuities.

a good agreement of the response approximation compared to reference response surface. Moreover, the proposed
methodology requires no additional evaluations for the ME-gPC approximation, only the evaluations performed in
the first phase are used. An analysis of the influence of the methodology’s parameters is carried out, it shows the
robustness of the methodology and the effect of the parameters on the computational cost and the quality of the
discontinuities and approximations. Finally, while the proposed methodology is currently limited to two-dimensional
problems, its successfull application to an industrial system relating to turbomachinery underlines its applicability
to complex engineering systems.
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