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Two-dimensional Jacobians det and Det
for bounded variation functions.

Application.

Marc Briane a & Juan Casado-Díaz b

Abstract

The paper deals with the comparison in dimension two be-
tween the strong Jacobian determinant det and the weak (or dis-
tributional) Jacobian determinant Det. Restricting ourselves to
dimension two, we extend the classical results of Ball and Müller
as well as more recent ones to bounded variation vector-valued
functions, providing a sufficient condition on a vector-valued U in
BV (Ω)2 such that the equality det(∇U) = Det(∇U) holds either
in the distributional sense on Ω, or almost-everywhere in Ω when
U is in W 1,1(Ω)2. The key-assumption of the result is the reg-
ularity of the Jacobian matrix-valued ∇U along the direction of
a given non vanishing vector field b ∈ C1(Ω)2, i.e. ∇U b is as-
sumed either to belong to C0(Ω)2 with one of its coordinates in
C1(Ω), or to belong to C1(Ω)2. Two examples illustrate this new
notion of two-dimensional distributional determinant. Finally, we
prove the lower semicontinuity of a polyconvex energy defined for
vector-valued functions U in BV (Ω)2, assuming that the vector
field b and one of the coordinates of ∇U b lie in a compact set of
regular vector-valued functions.
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1 Introduction
Following the seminal work of Morrey [22, 23] Ball showed in his famous
article on nonlinearity elasticity [1, Sec. 6] (see also [10, Lemma 2.7]), that
for any mapping U = (u1, . . . , uN) : Ω → RN defined on a non-empty
bounded open set Ω of RN , the two Jacobian determinants det(DU) := ∇u1 · (∇u2 × · · · × ∇uN)

Det(DU) := div
Ä
u1 (∇u2 × · · · × ∇uN)

ä
,

(1.1)

which in dimension two with U = (u, v), reads as

det(DU) := ∇u · ∇v⊥ and Det(DU) := div (u∇v⊥), (1.2)

agree in the distributions space D ′(Ω) if U ∈ W 1,N(Ω)N . But they
may differ if U ∈ W 1,p(Ω)2 with p < N . He also conjectured that
det(DU) = Det(DU) as soon as Det(DU) ∈ L1(Ω). Müller [25] has
answered to Ball’s conjecture assuming the slightly stronger assumption
that the vector-valued function U belongs to W 1,N2/(N+1)(Ω)N . This ex-
tra condition is quite natural since it implies that Det(DU) ∈ D ′(Ω) as
a distributional divergence of a vector-valued function in L1(Ω)N .

Müller’s result has been the object of several extensions: either the
mapping U is assumed to be in W 1,N−1(Ω)N and to satisfy some Lusin
condition [20, 14], or the distributional determinant Det(DU) is based
on a current approach which provides some new properties as shown in
[26, 9, 11, 12]. Moreover, Müller [24] has proved that the non-negativity
of the Jacobian determinant implies some extra regularity of det(DU).

In the present note, we use use a radically different approach re-
stricted to dimension two. We construct a new distributional definition
of the weak Jacobian determinant Det(∇U), but also of the strong Ja-
cobian determinant det(∇U) (c) (see Definition 2.5), which hold for any
vector-valued function U ∈ BV (Ω)2 satisfying the following condition:
the Jacobian matrix-valued ∇U is assumed to be regular along the direc-
tion of some non vanishing vector field b ∈ C1(Ω)2, i.e. ∇U b is at least
continuous in Ω.

Then, we prove (see Theorem 2.6) the distributional identity

Det(DU) = det(DU) in D ′(Ω), (1.3)
cSince det(∇U) may be also distributional, det(∇U) will be called the strong

Jacobian and Det(∇U) will be called the weak Jacobian to avoid any confusion.
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for any vector-valued function U = (u, v) satisfying

∇U b ∈ C0(Ω2)2,
U ∈ BV (Ω)2 with

Ä
∇u · b ∈ C1(Ω) or ∇v · b ∈ C1(Ω)

ä
,

or
U ∈ W 1,1(Ω)2 with ∇U b = (∇u · b,∇v · b) ∈ C1(Ω)2.

(1.4)

Moreover, under the second assumption of (1.4) equality (1.3) is shown
to hold a.e. in Ω with det(DU) in L1

loc(Ω). This provides a new approach
of Ball’s conjecture, and extends Müller’s result [25] in dimension two.
In particular, contrary to [25] the weak Jacobian determinant Det(∇U)
does not need to be a priori in L1(Ω). The apparently unnatural con-
dition (1.4) has been actually motivated (see [5, Corollary 2.8] and [5,
Remark 2.9]) by the celebrated Franks-Misiurewicz ergodic theorem [17]
on the Herman rotation set [21], when the weak Jacobian determinant
Det(DU) is null.

The proof of our main result (Theorem 2.6) is based on an original lo-
cal decomposition (see Proposition 2.4 below) of any function u ∈ BV (Ω)
such that ∇u · b is regular, using to this end the ODE’s flow induced by
the vector field b.

Section 3 is devoted to examples. On the one hand, we get a counter-
example of Ball’s conjecture (see Example 3.1) for a vector-valued func-
tion U in BV (Ω)2 rather than in W 1,1(Ω)2. On the other hand, Exam-
ple 3.2 below illustrates the second condition of (1.4), and cannot be
derived from Müller’s result [25].

We conclude the paper with Section 4 by proving the lower semicon-
tinuity (see Theorem 4.1) of the polyconvex functional defined by

F (U) = |∇U |(Ω) +

ˆ
Ω

ψ
Ä
det(∇U)

ä
dx for U ∈ BV (Ω)2, (1.5)

involving the strong but distributional Jacobian determinant of Defini-
tion 2.5, and satisfying a compact set of contraints based on the regular
conditions (1.4). The implication (2.18) of Theorem 2.6 shows actu-
ally that det(∇U) = Det(∇U) in (1.5). This result is in the spirit of
the Müller-Spector minimization result [26, Theorem 4.2] (and the ref-
erences therein), replacing the delicate stability of the positive Jacobian
determinant [26, Theorem 4.2] (which is based on the global invertibility
condition INV) for vector-valued functions in W 1,1(Ω)N , by the stability
of the two-dimensional weak Jacobians of Definition 2.5 for vector-valued
functions in BV (Ω)2. At this point, we have to mention the very fine
weak continuity of the Jacobian determinant obtained by Brezis and
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Nguyen [4] for BMO functions, and partly based on the famous div-curl
approach of Coifman, Lions, Meyer and Semmens [8]. Restricting our-
selves to dimension two, we have extended the weak continuity of [4] to
BV functions [6, Theorem 3.8] using a different divergence-curl result [6,
Theorem 2.1], and assuming in addition that one of the two gradients
of the Jacobian matrix is equi-integrable in some Lorentz space. In the
proof of Theorem 4.1 this condition is replaced by the regularity condition
(1.4) satisfied by the Jacobian matrix along some vector field b.

Notation

• (e1, e2) denotes the canonical basis of R2, and 0R2 denotes the null
vector of R2.

• I2 is the unit matrix of R2×2

• R⊥ denotes the (2 × 2) rotation matrix
Å

0 1
−1 0

ã
. For any ξ ∈ R2,

ξ⊥ denotes the perpendicular vector R⊥ξ.

• “ · ” denotes the scalar product and | · | the euclidean norm in R2.

• 1A denotes the characteristic function of the set A.

• B(x,R) denotes the euclidean open ball of R2 centered on x ∈ R2

and of radius R > 0.

• dx the Lebesgue measure on R2, and |A| denotes the Lebesgue
measure of any measurable set in R2.

• D ′(Ω) denotes the space of the distributions on an open set Ω of R2.

• The Jacobian matrix of a mapping Φ ∈ L1
loc(Ω)2 is defined by the

matrix-valued distribution ∇Φ with entriesî
∇Φ
ó
i,j

:= ∂xjΦi ∈ D ′(Ω) for i, j = 1, 2.

The divergence of Φ is defined by the distribution

divΦ :=
2∑
i=1

∂xiΦi ∈ D ′(Ω).

• The abbreviation “a.e.” for almost anywhere, will be used through-
out the paper. The simple mention “a.e.” refers to the Lebesgue
measure on R2.
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• M (Ω) denotes the space of the bounded Borel measures µ on an
open set Ω of R2, and |µ|(Ω) denotes the total variation of µ on Ω.

• BV (Ω) denotes the space of the bounded variation functions on an
open set Ω of R2, i.e. the set of the functions u ∈ L1(Ω) such that
the gradient distribution ∇u is in M (Ω)2.

• o(δ) = δ oδ(1) where oδ(1) denotes a term satisfying lim
δ→0

oδ(1) = 0.

O(δ) = δ Oδ(1) where Oδ(1) denotes a bounded term with respect
to δ.

• C denotes a positive constant which may vary from line to line.

2 Jacobians Det and det for bounded varia-
tion functions

In the sequel, Ω denotes a fixed non-empty bounded open set of R2, and
b denotes a fixed non vanishing vector field in C1(Ω)2. For any vector-
valued function U = (u, v) satisfying the regularity conditions

U = (u, v) ∈ BV (Ω)2 and ∇U b = (∇u · b,∇v · b) ∈ C0(Ω)2, (2.1)

we will be able to give a suitable definition of the weak Jacobian of U .

We start by the following result about the pointwise properties of any
function in BV (a, b) where (a, b) is a non-empty bounded open interval
of R.

Lemma 2.1. Let S ∈ BV (a, b) and let (rn)n∈N be the countable set of
the discontinuity points of S. Then, for any sequence (αn)n∈N in [0, 1]N,
there exists a sequence (Sm)m∈N in W 1,∞(a, b)N such that for any m ∈ N,

sup
m∈N
‖Sm‖L∞(a,b) <∞,

lim
m→∞

‖S ′m‖M (a,b) = ‖S ′‖M (a,b),

lim
m→∞

Sm(t) = S(t), ∀ t ∈ (a, b) \ {rn},

lim
m→∞

Sm(rn) = αn S(r+
n ) + (1− αn)S(r−n ), ∀n ∈ N,

(2.2)

where S(r+
n ) and S(r−n ) denote respectively the limit from the right and

the limit from the left of S at any point rn.
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Remark 2.2. Approximating the Lipschitz functions by smooth func-
tions, it is clear that the functions Sm in Lemma 2.1 can be chosen in
C∞([a, b]).

Remark 2.3. Lemma 2.1 shows that the representative of S which con-
sists in defining

S(rn) := αn S(r+
n ) + (1− αn)S(r−n ), ∀n ∈ N,

is a bounded Borel function for any choice of (αn)∈N. Therefore, the
function S can be integrated with respect to any measure µ in (a, b), but
this integral clearly depends on the choice of αn as soon as there exists
some rn with µ({rn}) > 0.

Proof of Lemma 2.1. Let H := 1(0,∞) be the Heaviside function (which
is not well defined at the point 0). The function S can be written

S(r) = gc(r)+
∑
n∈N

Ä
S(r+

n )−S(r−n )
ä
H(r−rn), ∀ r ∈ (a, b)\{rn, n ∈ N},

where gc is a continuous function in (a, b). Then, define

Hm,n(s) =



0 if s < −αn
m

ms+ αn if −αn
m
≤ s ≤ 1− αn

m

1 if
1− αn
m

< s,

and let (ρm)m∈N be a sequence of mollifiers in C∞(R). Finally, extending
the function gc on R by the constants gc(a) and gc(b) respectively in
(−∞, a) and in (b,∞), we get that the functions Sm form ∈ N, defined by

Sm(t) := (ρm ∗ gc)(t) +
∑
n∈N

Ä
S(x+

n )− S(x−n )
ä
Hm,n(t− xn), t ∈ R,

satisfy the desired conditions (2.2).

The next result provides a decomposition for any function u in BV (Ω)
such that ∇u · b belongs to C0(Ω).

Proposition 2.4. For any point x0 ∈ Ω, there exists δ > 0 and an open
set O b Ω containing x0, such that the mapping Φ : (−δ, δ)2 → O defined
by the dynamical system

∂tΦ(t, r) = b
Ä
Φ(t, r)

ä
, Φ(0, r) = x0 + r b⊥(x0), (2.3)
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is a C1-diffeomorphism from (−δ, δ)2 onto O.
Moreover, for any function u ∈ BV (Ω) and any function f ∈ C0(O)
satisfying

∇u · b = f in O, (2.4)

there exists a function S ∈ BV (−δ, δ) such that the following decompo-
sition holds:

u = û+ ũ in O, (2.5)

where û ∈ BV (O) ∩ C0(O) defined by

û
Ä
Φ(t, r)

ä
:=

ˆ t

0

f
Ä
Φ(s, r)

ä
ds− 1

2δ

ˆ δ

−δ

Çˆ q

0

f
Ä
Φ(s, r)

ä
ds

å
dq, (2.6)

and where ũ ∈ BV (O) defined by

ũ(x) := S(Ψ2(x)), with Ψ := Φ−1, (2.7)

are solutions to

∇û · b = f and ∇ũ · b = ∇Ψ2 · b = 0 in O. (2.8)

Proof of Proposition 2.4. Since ∇Φ(x0) =
Ä
b(x0), b(x0)⊥

ä
is invertible,

the existence of δ and O is a simple consequence of the inverse function
theorem.

Next, let u ∈ BV (Ω) be a function satisfying the assumptions of
Proposition 2.4, and define the functions w, ŵ and w̃ by

w(t, r) := u
Ä
Φ(t, r)

ä
,

ŵ(t, r) :=

ˆ t

0

f(Φ(s, r)) ds− 1

2δ

ˆ δ

−δ

Çˆ q

0

f
Ä
Φ(s, r)

ä
ds

å
dq,

w̃ := w − ŵ.

The function ŵ clearly belongs to C0([−δ, δ]2), and taking into account
that ∂tw = ∂tŵ, we get that w̃ does not depend on t. Thus, w̃ = S(r)
for some function S ∈ L∞(−δ, δ). Hence, it follows that

w(t, r)− 1

2δ

ˆ δ

−δ
w(q, r) dq = ŵ(t, r) + S(r)− 1

2δ

ˆ δ

−δ

Ä
ŵ(q, r) + S(r)

ä
dq

= ŵ(t, r),

which combined with w in BV ((−δ, δ)2), implies that ŵ and w̃ = w − ŵ
belong to BV ((−δ, δ)2). Therefore, S also belongs to BV (−δ, δ).
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Finally, we easily deduce from the definition (2.6) of û that ∇û ·b = f
in O, which combined with (2.4) yields ∇ũ · b = 0 in O. Moreover,
taking the derivative with respect to the variable t of the equality r =
Ψ2

Ä
Φ(t, r)

ä
and using (2.3), we get that

0 = ∇Ψ2

Ä
Φ(t, r)

ä
· b
Ä
Φ(t, r)

ä
, ∀ (t, r) ∈ (−δ, δ)2,

which implies that ∇Ψ2 ·b = 0 in O. We have just obtained the equalities
(2.8), which concludes the proof of Proposition 2.4.

Now, consider a vector-valued U = (u, v) satisfying the regularity
condition (2.1). The classical way to define the weak Jacobian of U is to
use the distributional formula

Det(∇U) := div (u∇v⊥) on Ω, (2.9)

for which it is enough to define u∇v⊥ as a suitable distribution on Ω.
By the well-known properties of the distributions, we have only to define
u∇v⊥ locally in D ′(Ω). For this purpose, we may use the decomposition
given by (2.5) both for u and v. Take for the function S one of the
representatives given by Lemma 2.1. Then, using that û is continuous,
that S is BV and that ũ is a Borel function, we deduce that u is integrable
with respect to the vector-valued measure∇v. Therefore, we could define
u∇v⊥ as ¨

u∇v⊥, ζ
∂

=

ˆ
Ω

u ζ · d(∇v⊥) for ζ ∈ C∞c (Ω)2. (2.10)

But, as above mentioned the previous integral depends a priori on the
choice of the function S, which could make the definition (2.10) inappro-
priate.

Let us prove that div (u∇v⊥) does not actually depend on the choice
of S. To this end, consider the function Sm ∈ C∞(R) (recall Remark 2.2)
for m ∈ N, defined in Lemma 2.1. We then have

div
Ä
(û+ Sm(Ψ2))∇v⊥

ä
= div (û∇v⊥) + S ′m(Ψ2)∇Ψ2 · (∇v̂⊥ +∇ṽ⊥),

However, since by (2.8) ∇Ψ2 is parallel to b⊥ and ∇ṽ⊥ · b⊥ = ∇ṽ · b = 0,
we deduce that for any m ∈ N,

div
Ä
(û+ Sm(Ψ2))∇v⊥

ä
= div (û∇v⊥) + S ′m(Ψ2)∇Ψ2 · ∇v̂⊥

= div (û∇v⊥)− div
Ä
v̂∇(Sm(Ψ2))⊥

ä
= div (û∇v̂⊥) + div (û∇ṽ⊥)− div

Ä
v̂∇(Sm(Ψ2))⊥

ä
.

(2.11)
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Hence, passing to the limit as m→∞ in the distributional sense owing
to the properties (2.2) of the sequence (Sm)m∈N together with decompo-
sition (2.5), we obtain that

div (u∇v⊥
ä

= div (û∇v̂⊥) + div (û∇ṽ⊥)− div (v̂∇ũ⊥). (2.12)

Due to the continuity of û and v̂, the right-hand side of (2.12) is well
defined in D ′(O), and indeed does not depend on S.

Then, taking into account the existence of two measures µ and ν on
O such that

∇ũ = b⊥µ and ∇ṽ = b⊥ν in M (O), (2.13)

and using the approximation of û = S(Ψ2) by Sm(Ψ2) as in (2.11), re-
spectively for v̂, we also get the equalities div (v̂∇ũ⊥) = (∇v̂ · b)µ = (∇v · b)µ,

div (û∇ṽ⊥) = (∇û · b) ν = (∇u · b) ν.

Putting these equalities in (2.12) we thus get the alternative expression
of the weak Jacobian in D ′(O),

Det(∇U) = div (u∇v⊥) = div (û∇v̂⊥) + (∇u · b) ν − (∇v · b)µ (2.14)

The other issue that is related naturally to the weak determinant, is
to give a sense to the strong determinant for any vector field U = (u, v)
in BV (Ω)2, which is formally defined by

« det(∇U) := ∇u · ∇v⊥ ».

Using the equalities ∇ũ = b⊥µ and ∇ṽ = b⊥ν as above, we are led to the
formal definition

« ∇u · ∇v⊥ := ∇û · ∇v̂⊥ + (∇û · b) ν − (∇v̂ · b)µ ». (2.15)

The problem is now to give a sense to ∇û · ∇v̂⊥, which can be formally
defined by

« ∇û · ∇v̂⊥ = div (û∇v̂⊥) ».

For example, a sufficient condition to justify the previous definition is to
assume that ∇u · b belongs to C1(Ω), which by (2.6) (see the proof of
Theorem 2.6 below) implies that û ∈ C1(Ω).

To conclude, we have just justified the following definitions of Det
and det for BV functions.
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Definition 2.5. Let U = (u, v) be a vector-valued function satisfying
condition (2.1).
Then, the weak Jacobian Det may be defined in the distributional sense
on Ω by

Det(∇U) = div (u∇v⊥) := div (û∇v̂⊥) + div (û∇ṽ⊥)− div (v̂∇ũ⊥)
(2.16)

where the pair (û, ũ), respectively (v̂, ṽ), satisfies the local decomposition
u = û + ũ, respectively v = v̂ + ṽ, provided by Proposition 2.4. This
definition can be also written (2.14) in terms of the measures µ and ν
given by (2.13).
Moreover, if one of the two functions ∇u · b or ∇v · b belongs to C1(Ω),
the strong Jacobian det may be also defined in the distributional sense
on Ω by

det(∇U) := ∇û · ∇v̂⊥ + div (û∇ṽ⊥)− div (v̂∇ũ⊥). (2.17)

This definition can be also written (2.15) in terms of the measures µ and
ν given by (2.13).

Now, we can state the main result of the paper.

Theorem 2.6. Let Ω be a non-empty bounded open set of R2, and let b
be a non vanishing vector field in C1(Ω)2.
Then, according to Definition 2.16 any vector-valued function U = (u, v)
with regularity (2.1) satisfies the implication

∇u · b ∈ C1(Ω) or ∇v · b ∈ C1(Ω)︸ ︷︷ ︸
⇓︷ ︸︸ ︷

Det(∇U) = det(∇U) in D ′(Ω).

(2.18)

Moreover, any vector-valued function U = (u, v) in W 1,1(Ω)2 satisfies the
implication Ä

∇u · b,∇v · b
ä
∈ C1(Ω)2︸ ︷︷ ︸

⇓︷ ︸︸ ︷
Det(∇U) = det(∇U) = ∇u · ∇v⊥ ∈ L1

loc(Ω) a.e. in Ω.

(2.19)
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Proof of Theorem 2.6. We use the notations of Proposition 2.4 taking
a neighborhood O b Ω of some point x0. Assume for example that
f := ∇u · b ∈ C1(Ω). Then, the definition (2.7) of û yields for any
(t, r) ∈ (−δ, δ)2,

∂t
Ä
û
Ä
Φ(t, r)

ää
= f
Ä
Φ(t, r)

ä
∂r
Ä
û
Ä
Φ(t, r)

ää
=

ˆ t

0

∇f
Ä
Φ(s, r)

ä
· ∂rΦ(s, r) ds,

(2.20)

which implies that û ∈ C1(O) (recall that O b Ω). Hence, we deduce
the equality

div (û∇v̂⊥
ä

= ∇û · ∇v̂⊥ in O, (2.21)

where ∇v̂ is a vector-valued measure in M (O)2. Therefore, implication
(2.18) is an immediate consequence of the definition (2.16) of the weak
Jacobian Det(∇U) and of the definition (2.17) of the strong Jacobian
det(∇U) under the continuity condition (2.1) satisfied by ∇U .

On the other hand, when the vector-valued U = (u, v) is in W 1,1(Ω)2

and satisfies the left-hand side of implication (2.19), the formulas (2.20)
applied to v̂ with ∇v · b ∈ C1(Ω), imply that v̂ belongs to C1(O). Hence,
equality (2.21) holds in C0(O) ⊂ L1

loc(O). Finally, comparing (2.16) to
(2.17) and using that (û, v̂) ∈ C1(O)2 with (ũ, ṽ) ∈ W 1,1(O)2, we obtain
that

Det(∇U) = det(∇U)

= ∇û · ∇v̂⊥ + div (û∇ṽ⊥)− div (v̂∇ũ⊥)

= ∇û · ∇v̂⊥ +∇û · ∇ṽ⊥ +∇ũ · ∇v̂⊥ ∈ L1
loc(O).

(2.22)

Moreover, due to the second equality of (2.8) and to the fact that the
vector field b is non vanishing, we get that

∇ũ · ∇ṽ⊥ = 0 a.e. in Ω,

which implies that a.e. in Ω,

Det(∇U) = det(∇U) = ∇û · ∇v̂⊥ +∇û · ∇ṽ⊥ +∇ũ · ∇v̂⊥ = ∇u · ∇v⊥.

This combined (2.19) and the arbitrariness of the open sets O b Ω,
yields the right-hand side of (2.19). The proof of Theorem 2.6 is thus
complete.

Remark 2.7. We can replace in condition (2.18) and (2.19) the C1-
regularity of the function f := ∇u · b (or/and ∇v · b) by the C1-regularity
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outside a discrete set A on which ∇f may blow-up. Without loss of
generality we can assume that A is a unit set of Ω.

More precisely, assume that there exist x0 := Φ(s0, r0) in O, σ0 > 0
(which will be chosen later with respect to ε0) and a non-negative non-
increasing function h ∈ L1(0, σ0) satisfying f ∈ C0(Ω) ∩ C1(Ω \ {x0})

|∇f(x)| ≤ C h(|x− x0|), ∀x ∈ B(x0, ε0).
(2.23)

Let us prove that the function û defined by (2.6) is in C1(B(x0, ε0))
under condition (2.23). Recalling (2.20) we have

∂t
Ä
û
Ä
Φ(t, r)

ää
= f
Ä
Φ(t, r)

ä
∂r
Ä
û
Ä
Φ(t, r)

ää
=

ˆ t

0

∇f
Ä
Φ(s, r)

ä
· ∂rΦ(s, r) ds,

(2.24)

for any (t, r) ∈ (−δ, δ)×(−δ, δ)\{r0}. Since |det(∇Φ)| = |det
Ä
∂sΦ, ∂rΦ

ä
|

is bounded from below by a positive constant in any compact set of
(−δ, δ)2, by virtue of the one-order Taylor-Young expansion at the point
(s0, r0), there exists α0 > 0 such that for ε0 small enough and for any
(s, r) ∈ Φ−1

Ä
B(x0, ε0)

ä
, we get that

|Φ(s, r)− x0|

=
∣∣∣ ∂sΦ(s0, r0) (s− s0) + ∂rΦ(s0, r0) (r − r0) + o (|s− s0|+ |r − r0|)

∣∣∣
≥ α0 (|s− s0|+ |r − r0|).

It follows from (2.23) and from the decrease of h, the existence of a
constant C > 0 such that for any (s, r) ∈ Φ−1

Ä
B(x0, ε0)

ä
, r 6= r0,∣∣∣∇fÄΦ(s, r)

ä
· ∂rΦ(s, r)

∣∣∣ ≤ C h
Ä
α0 (|s−s0|+ |r−r0|)

ä
≤ C h

Ä
α0 |s−s0|

ä
,

which (choosing σ0 be such that α0 |s− s0| < σ0) implies the domination
condition∣∣∣ 1[0,t](s)∇f

Ä
Φ(s, r)

ä
· ∂rΦ(s, r)

∣∣∣ ≤ C h(|s− s0|) ∈ L1(−σ0, σ0),

for any (s, r) ∈ Φ−1
Ä
B(x0, ε0)

ä
, r 6= r0. By the Lebesgue theorem applied

to the second integral of (2.24) parametrized by the pair (t, r), it follows
that

lim
(t,r)→(s0,r0)

∂r
Ä
û
Ä
Φ(t, r)

ää
= lim

(t,r)→(s0,r0)

(
sgn(s0)

ˆ δ

−δ
1[0,t](s)∇f

Ä
Φ(s, r)

ä
· ∂rΦ(s, r) ds

)

=

ˆ s0

0

∇f
Ä
Φ(s, r0)

ä
· ∂rΦ(s, r0) ds.
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Moreover, the continuity of f in Ω yields immediately

lim
(t,r)→(s0,r0)

∂t
Ä
û
Ä
Φ(t, r)

ää
= f
Ä
Φ(s0, r0)

ä
.

Therefore, the function û belongs to C1(B(x0, ε0))2.

3 Examples
The following example shows that Ball’s conjecture cannot be extended
from mappings in W 1,1(Ω)2 to mappings in BV (Ω)2.

Example 3.1. Let Ω := (−1
2
, 1

2
)2 and let b the vector field defined by

b(x) := ∇w(x) where w(x) := x1 − cos(2π x2) for x ∈ Ω, (3.1)

which has been used in [7, Example 2.12].
The Borel measure defined by

µ(dx) := dx1 ⊗ δ0(dx2)

is invariant for the flow X associated with b (3.1). Indeed, we have for
any vector-valued function ϕ ∈ C1

c (Ω),
ˆ

Ω

∇ϕ(x) · b(x)µ(dx)

=

ˆ
Ω

Ä
∂x1ϕ(x) + 2π sin(2π x2) ∂x2ϕ(x)

ä Ä
dx1 × δ0(dx2)

ä
=

ˆ 1
2

− 1
2

∂x1ϕ(x1, 0) dx1 = 0,

or equivalently, µ b is divergence free in Ω. Then, any function u which
agrees a.e. in Ω with the characteristic function

Ä
x 7→ 1R+(x2)

ä
whose

support is (−1
2
, 1

2
) ∩ [0, 1

2
) in Ω, satisfies

µ b = µ e1 = ∇u⊥ on Ω. (3.2)

Indeed, on the one hand, we have for any vector-valued function ζ in
C1
c (Ω)2,
ˆ

Ω

ζ(x) · b(x)µ(dx) =

ˆ
Ω

Ä
ζ1(x) + 2π sin(2π x2) ζ2(x)

ä Ä
dx1 × δ0(dx2)

ä
=

ˆ 1
2

− 1
2

ζ1(x1, 0) dx1 =

ˆ
Ω

ζ(x) · e1 µ(dx),

13



and on the other hand, integrating by parts we get that
ˆ

Ω

ζ(x) · d(∇u⊥)(dx) =

ˆ
Ω

div (ζ⊥)(x)u(x) dx

=

ˆ 1
2

− 1
2

ˆ 1
2

0

Ä
∂x1ζ2(x)− ∂x2ζ1(x)

ä
dx1 dx2

=

ˆ 1
2

− 1
2

ζ1(x1, 0) dx1 =

ˆ
Ω

ζ(x) · e1 µ(dx).

Since by (3.2) we have ∇u · b = 0, the vector-valued function U
satisfies the assumptions of Theorem 2.6. Hence, from formula (2.16) we
deduce that

Det(DU) = div (u∇u⊥) = 0 in D ′(Ω). (3.3)

However, the formal identity

« det(∇U) := ∇u · ∇u⊥ = 0 »

has no sense since the product of measures µ× µ is not defined.
Note that a more regular function ũ which is solution, similarly to

u, to equation b · ∇ũ = 0 in Ω (whose existence is proved generally by
Proposition 2.4) is given explicitly by

ũ(x) := arctan
Ä
e4π2x1 tan(πx2)

ä
for x ∈ Ω.

Finally, formula (3.3) can be directly deduced from (3.2) by

u∇u⊥ = uµ e1 = µ e1 and div (µ e1) = ∂x1µ = 0 in D ′(Ω).

The next example illustrates Theorem 2.6 with functions in W 1,1(Ω).

Example 3.2. Let Ω := B(0R2 , 1
2
), let α ∈ (0, 1), let b the vector field

and let g, u, v be the functions defined for x ∈ Ω, by

b(x) := x1 e
1 − α (x2 + 2) e2,

g(x) := |x1|α−2 x1,
u(x) :=

ˆ |x|
1
2

dr

ln r

v(x) := |x1|α (x2 + 2)

(3.4)

14



Hence, we have for any x ∈ Ω,

U := (u, v) ∈ C1(Ω)×W 1,1(Ω) and g ∈ L1(Ω),

g(x) b(x) = |x1|α e1 − α |x1|α−2 x1 (x2 + 2) e2 = ∇v(x)⊥ for x1 6= 0,

(∇u · b)(x) =
x2

1 − αx2(x2 + 2)

|x| (ln |x|)2
,

∣∣∣Ä∇(∇u · b)
ä
(x)
∣∣∣ ≤ C

|x| (ln |x|)2
,

h(r) :=
C

r (ln r)2
is in L1(0R2 , 1

2
).

It follows that the function ∇u · b satisfies condition (2.23) rather the
left-hand side of (2.19). Moreover, we have ∇v · b = 0. Therefore, by
virtue of the implication (2.19) combined with Remark 2.7 we obtain
that a.e. in Ω,

Det(DU) = det(DU) =
x1

Ä
|x1|α − α |x1|α−2 x2(x2 + 2)

ä
|x| (ln |x|)2

∈ L
1

1−α (Ω).

However, for any p ∈ (1, 2), the function v does not belong to W 1,p(Ω)
when α := 1− 1/p. Finally, the present example cannot be derived from
the result of Müller [25].

4 Minimization of a polyconvex energy un-
der constraint

Let Ω be a C1-regular bounded open set of R2.
Let B be a non-empty compact set of

Ä
C1(Ω̄)2, ‖ · ‖W 1,∞(Ω)2

ä
such that

∃ β ∈ (0,∞), ∀ b ∈ B, |b| ≥ β in Ω, (4.1)

and which contains the constant vectors in R2 satisfying (4.1). Moreover,
let B be a non-empty compact set of

Ä
C0(Ω̄)2, ‖ · ‖L∞(Ω)2

ä
, and let b be a

compact set of
Ä
C1(Ω̄), ‖ · ‖W 1,∞(Ω)

ä
.

Now, define the set Bb,B,B of the admissible vector-field displacements,
which only depends on the sets b, B, B, by

Bb,B,B :=

U = (u, v) ∈ BV (Ω)2 :

∣∣∣∣∣∣∣
b ∈ B
∇U b ∈ B

∇u · b ∈ b or ∇v · b ∈ b

 . (4.2)
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Let ψ : R→ R be a convex function which satisfies the coerciveness and
the boundedness properties

∃α ∈ (0, 1), ∃ p ∈ (1,∞), ∀ t ∈ R, α |t|p ≤ ψ(t) ≤ |t|
p + 1

α
. (4.3)

Then, define the functional

F (U) :=

ˆ
Ω

|∇U | dx+

ˆ
Ω

ψ
Ä
det(∇U)

ä
dx for U ∈ Bb,B,B, (4.4)

where det(∇U) is the strong (distributional) Jacobian defined by (2.17).

Theorem 4.1. There exist Ū ∈ Bb,B,B and b̄ ∈ B such that

F (Ū) = inf
¶
F (U) , U ∈ Bb,B,B

©
with

Ū b̄ ∈ B and
Ä
∇u · b ∈ b or ∇v · b ∈ b

ä
,

(4.5)

where the strong (distributional) Jacobian det(∇Ū) belongs to Lp(Ω).

Remark 4.2. Note that by definition (4.1) and implication (2.18) we
have

det(∇U) = Det(∇U) for any U ∈ Bb,B,B,

which is generally a distribution on Ω. Theorem 4.1 shows that the func-
tional F defined by (4.4) is lower-semi continuous with respect to the
BV (Ω)2-norm under the compact constraints (4.1) satisfied by the admis-
sible set Bb,B,B (4.1). However, the Lp a priori estimate on det(∇U) in
F (U) implies that the distribution Det(∇Ū) belongs actually to Lp(Ω).

Remark 4.3. By virtue of Ascoli’s theorem, if any function in b and
each coordinate of any vector-valued B belong to C2(Ω̄), and satisfy for
some constant C ∈ (0,∞) the boundedness condition

‖f‖L∞(Ω) + ‖∇f‖L∞(Ω)2 + ‖∇2f‖L∞(Ω)2×2 ≤ C,

then b and B are compact sets respectively of C1(Ω̄) and C1(Ω̄)2. Simi-
larly, if each coordinate of any vector-valued in B belongs to C1(Ω̄), and
satisfies for some constant C ∈ (0,∞) the boundedness condition

‖f‖L∞(Ω) + ‖∇f‖L∞(Ω)2 ≤ C,

then B is a compact set of C0(Ω̄)2.
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Proof of Theorem 4.1. First of all, note that the infimum non negative
energy F (Ū) is finite, since U := ε Id for ε ∈ (0, 1) small enough, is an
admissible vector-field displacement in Bb,B,B (4.2), with for example the
admissible constant vector field b := β e1.

Let Un = (un, vn) ∈ BV (Ω)2 be a minimizing sequence of F satisfying
∇Un bn ∈ B for some vector field bn ∈ B, and for example (up to extract
a subsequence) ∇un · bn ∈ b. It is clear that Un is bounded in BV (Ω)2

and det(DUn) is bounded in Lp(Ω). Then, using (4.3), there exist two
subsequences of Un, bn, still denoted by Un, bn, a vector-valued function
Ū = (ū, v̄) ∈ BV (Ω)2, a vector field b̄ ∈ B with ∇Ū b̄ ∈ B and ∇ū · b̄ ∈ b,
and θ ∈ Lp(Ω) such that the following convergences hold

∇Un ⇀ ∇U in M (Ω)2×2 ∗ ,



bn → b̄ in C1(Ω̄)2

∇Un bn → ∇Ū b̄ in C0(Ω̄)2

∇un · bn → ∇ū · b̄ in C1(Ω̄),

det(∇Un) ⇀ θ in Lp(Ω).

(4.6)

Adapting e.g. the proof of [26, Theorem 5.4] (see also [2, Theorem 5.4])
thanks to the lower semicontinuity of the variation measure (see, e.g.,
[15, Section 5.2.1]) and to the convexity of the function ψ, and using the
three strong convergences in (4.6), we get that

|∇Ū |(Ω) +

ˆ
Ω

ψ(θ) dx ≤ lim inf
n→∞

F (Un) = F (Ū)

with

∇Ū b̄ ∈ B and ∇u · b ∈ b.

(4.7)

Moreover, by virtue of Proposition 2.4 combined with the three strong
convergences in (4.6), the sequences ûn, ũn and v̂n, ṽn respectively asso-
ciated with the sequences un = ûn + ũn and vn = v̂n + ṽn, satisfy the
following convergences (up to extract new subsequences)

(ûn, v̂n)→ (û, v̂) in C1(Ω̄)2, (∇ũn,∇ṽn) ⇀ (∇ũ,∇ṽ) in M (Ω)2×2 ∗,

which, taking into account the definition (2.17) of det and the weak
convergence of det(∇Un) in (4.6), imply that

det(∇Un) ⇀ det(∇Ū) = θ in D ′(Ω).

Therefore, putting this in (4.7) we obtain the desired equality (4.5), which
concludes the proof of Theorem 4.1.
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