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    Two-dimensional Jacobians det and Det for bounded variation functions.

Introduction

Following the seminal work of Morrey [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF][START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF] Ball showed in his famous article on nonlinearity elasticity [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]Sec. 6] (see also [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF]Lemma 2.7]), that for any mapping U = (u 1 , . . . , u N ) : Ω → R N defined on a non-empty bounded open set Ω of R N , the two Jacobian determinants

   det(DU ) := ∇u 1 • (∇u 2 × • • • × ∇u N ) Det(DU ) := div Ä u 1 (∇u 2 × • • • × ∇u N ) ä , (1.1) 
which in dimension two with U = (u, v), reads as det(DU ) := ∇u • ∇v ⊥ and Det(DU

) := div (u ∇v ⊥ ), (1.2) 
agree in the distributions space D (Ω) if U ∈ W 1,N (Ω) N . But they may differ if U ∈ W 1,p (Ω) 2 with p < N . He also conjectured that det(DU ) = Det(DU ) as soon as Det(DU ) ∈ L 1 (Ω). Müller [START_REF] Müller | Det=det. A remark on the distributional determinant[END_REF] has answered to Ball's conjecture assuming the slightly stronger assumption that the vector-valued function U belongs to W 1,N 2 /(N +1) (Ω) N . This extra condition is quite natural since it implies that Det(DU ) ∈ D (Ω) as a distributional divergence of a vector-valued function in L 1 (Ω) N . Müller's result has been the object of several extensions: either the mapping U is assumed to be in W 1,N -1 (Ω) N and to satisfy some Lusin condition [START_REF] Henao | Lusin's condition and the distributional determinant for deformations with finite energy[END_REF][START_REF] Onofrio | Note on Lusin (N) condition and the distributional determinant[END_REF], or the distributional determinant Det(DU ) is based on a current approach which provides some new properties as shown in [START_REF] Müller | An existence theory for nonlinear elasticity that allows for cavitation[END_REF][START_REF] Conti | Some remarks on the theory of elasticity for compressible Neohookean materials[END_REF][START_REF] Lellis | Some fine properties of currents and applications to distributional Jacobians[END_REF][START_REF] De Lellis | An extension of the identity Det=det[END_REF]. Moreover, Müller [START_REF] Müller | A surprising higher integrability property of mappings with positive determinant[END_REF] has proved that the non-negativity of the Jacobian determinant implies some extra regularity of det(DU ).

In the present note, we use use a radically different approach restricted to dimension two. We construct a new distributional definition of the weak Jacobian determinant Det(∇U ), but also of the strong Jacobian determinant det(∇U ) ( c ) (see Definition 2.5), which hold for any vector-valued function U ∈ BV (Ω) 2 satisfying the following condition: the Jacobian matrix-valued ∇U is assumed to be regular along the direction of some non vanishing vector field b ∈ C 1 (Ω) 2 , i.e. ∇U b is at least continuous in Ω.

Then, we prove (see Theorem 2.6) the distributional identity

Det(DU ) = det(DU ) in D (Ω), (1.3) 
for any vector-valued function U = (u, v) satisfying

∇U b ∈ C 0 (Ω 2 ) 2 ,      U ∈ BV (Ω) 2 with Ä ∇u • b ∈ C 1 (Ω) or ∇v • b ∈ C 1 (Ω) ä , or U ∈ W 1,1 (Ω) 2 with ∇U b = (∇u • b, ∇v • b) ∈ C 1 (Ω) 2 .
(1.4) Moreover, under the second assumption of (1.4) equality (1.3) is shown to hold a.e. in Ω with det(DU ) in L 1 loc (Ω). This provides a new approach of Ball's conjecture, and extends Müller's result [START_REF] Müller | Det=det. A remark on the distributional determinant[END_REF] in dimension two. In particular, contrary to [START_REF] Müller | Det=det. A remark on the distributional determinant[END_REF] the weak Jacobian determinant Det(∇U ) does not need to be a priori in L 1 (Ω). The apparently unnatural condition (1.4) has been actually motivated (see [START_REF] Briane | A divergence-curl result for measures[END_REF]Corollary 2.8] and [5, Remark 2.9]) by the celebrated Franks-Misiurewicz ergodic theorem [START_REF] Franks | Rotation sets of toral flows[END_REF] on the Herman rotation set [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF], when the weak Jacobian determinant Det(DU ) is null.

The proof of our main result (Theorem 2.6) is based on an original local decomposition (see Proposition 2.4 below) of any function u ∈ BV (Ω) such that ∇u • b is regular, using to this end the ODE's flow induced by the vector field b.

Section 3 is devoted to examples. On the one hand, we get a counterexample of Ball's conjecture (see Example 3.1) for a vector-valued function U in BV (Ω) 2 rather than in W 1,1 (Ω) 2 . On the other hand, Example 3.2 below illustrates the second condition of (1.4), and cannot be derived from Müller's result [START_REF] Müller | Det=det. A remark on the distributional determinant[END_REF].

We conclude the paper with Section 4 by proving the lower semicontinuity (see Theorem 4.1) of the polyconvex functional defined by Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] for BM O functions, and partly based on the famous div-curl approach of Coifman, Lions, Meyer and Semmens [START_REF] Coifman | Compensated compactness and Hardy spaces[END_REF]. Restricting ourselves to dimension two, we have extended the weak continuity of [START_REF] Brezis | The Jacobian determinant revisited[END_REF] to BV functions [6, Theorem 3.8] using a different divergence-curl result [6, Theorem 2.1], and assuming in addition that one of the two gradients of the Jacobian matrix is equi-integrable in some Lorentz space. In the proof of Theorem 4.1 this condition is replaced by the regularity condition (1.4) satisfied by the Jacobian matrix along some vector field b.

F (U ) = |∇U |(Ω) + ˆΩ ψ Ä det(∇U ) ä dx for U ∈ BV (Ω)

Notation

• (e 1 , e 2 ) denotes the canonical basis of R 2 , and 0 R 2 denotes the null vector of R 2 .

• I 2 is the unit matrix of R 2×2

• R ⊥ denotes the (2 × 2) rotation matrix

Å 0 1 -1 0 ã . For any ξ ∈ R 2 ,
ξ ⊥ denotes the perpendicular vector R ⊥ ξ.

• " • " denotes the scalar product and | • | the euclidean norm in R 2 .

• 1 A denotes the characteristic function of the set A.

• B(x, R) denotes the euclidean open ball of R 2 centered on x ∈ R 2 and of radius R > 0.

• dx the Lebesgue measure on R 2 , and |A| denotes the Lebesgue measure of any measurable set in R 2 .

• D (Ω) denotes the space of the distributions on an open set Ω of R 2 .

• The Jacobian matrix of a mapping Φ ∈ L 1 loc (Ω) 2 is defined by the matrix-valued distribution ∇Φ with entries

î ∇Φ ó i,j := ∂ x j Φ i ∈ D (Ω) for i, j = 1, 2.
The divergence of Φ is defined by the distribution div Φ :=

2 i=1 ∂ x i Φ i ∈ D (Ω).
• The abbreviation "a.e." for almost anywhere, will be used throughout the paper. The simple mention "a.e." refers to the Lebesgue measure on R 2 .

• M (Ω) denotes the space of the bounded Borel measures µ on an open set Ω of R 2 , and |µ|(Ω) denotes the total variation of µ on Ω.

• BV (Ω) denotes the space of the bounded variation functions on an open set Ω of R 2 , i.e. the set of the functions u ∈ L 1 (Ω) such that the gradient distribution ∇u is in M (Ω) 2 .

• o(δ) = δ o δ (1) where o δ (1) denotes a term satisfying lim

δ→0 o δ (1) = 0. O(δ) = δ O δ (1)
where O δ (1) denotes a bounded term with respect to δ.

• C denotes a positive constant which may vary from line to line.

2 Jacobians Det and det for bounded variation functions

In the sequel, Ω denotes a fixed non-empty bounded open set of R 2 , and b denotes a fixed non vanishing vector field in C 1 (Ω) 2 . For any vectorvalued function U = (u, v) satisfying the regularity conditions

U = (u, v) ∈ BV (Ω) 2 and ∇U b = (∇u • b, ∇v • b) ∈ C 0 (Ω) 2 , (2.1)
we will be able to give a suitable definition of the weak Jacobian of U .

We start by the following result about the pointwise properties of any function in BV (a, b) where (a, b) is a non-empty bounded open interval of R.

Lemma 2.1. Let S ∈ BV (a, b) and let (r n ) n∈N be the countable set of the discontinuity points of S. Then, for any sequence

(α n ) n∈N in [0, 1] N , there exists a sequence (S m ) m∈N in W 1,∞ (a, b) N such that for any m ∈ N,                      sup m∈N S m L ∞ (a,b) < ∞, lim m→∞ S m M (a,b) = S M (a,b) , lim m→∞ S m (t) = S(t), ∀ t ∈ (a, b) \ {r n }, lim m→∞ S m (r n ) = α n S(r + n ) + (1 -α n ) S(r - n ), ∀ n ∈ N, (2.2) 
where S(r + n ) and S(r - n ) denote respectively the limit from the right and the limit from the left of S at any point r n . Remark 2.2. Approximating the Lipschitz functions by smooth functions, it is clear that the functions S m in Lemma 2.1 can be chosen in

C ∞ ([a, b]).
Remark 2.3. Lemma 2.1 shows that the representative of S which consists in defining

S(r n ) := α n S(r + n ) + (1 -α n ) S(r - n ), ∀ n ∈ N,
is a bounded Borel function for any choice of (α n ) ∈N . Therefore, the function S can be integrated with respect to any measure µ in (a, b), but this integral clearly depends on the choice of α n as soon as there exists some r n with µ({r n }) > 0.

Proof of Lemma 2.1. Let H := 1 (0,∞) be the Heaviside function (which is not well defined at the point 0). The function S can be written

S(r) = g c (r) + n∈N Ä S(r + n ) -S(r - n ) ä H(r -r n ), ∀ r ∈ (a, b) \ {r n , n ∈ N},
where g c is a continuous function in (a, b). Then, define

H m,n (s) =                  0 if s < - α n m ms + α n if - α n m ≤ s ≤ 1 -α n m 1 if 1 -α n m < s,
and let (ρ m ) m∈N be a sequence of mollifiers in C ∞ (R). Finally, extending the function g c on R by the constants g c (a) and g c (b) respectively in (-∞, a) and in (b, ∞), we get that the functions S m for m ∈ N, defined by

S m (t) := (ρ m * g c )(t) + n∈N Ä S(x + n ) -S(x - n ) ä H m,n (t -x n ), t ∈ R,
satisfy the desired conditions (2.2).

The next result provides a decomposition for any function u in BV (Ω) such that ∇u • b belongs to C 0 (Ω).

Proposition 2.4. For any point x 0 ∈ Ω, there exists δ > 0 and an open set O Ω containing x 0 , such that the mapping Φ : (-δ, δ) 2 → O defined by the dynamical system

∂ t Φ(t, r) = b Ä Φ(t, r) ä , Φ(0, r) = x 0 + r b ⊥ (x 0 ), (2.3) is a C 1 -diffeomorphism from (-δ, δ) 2 onto O.
Moreover, for any function u ∈ BV (Ω) and any function f

∈ C 0 (O) satisfying ∇u • b = f in O, (2.4) 
there exists a function S ∈ BV (-δ, δ) such that the following decomposition holds:

u = û + ũ in O, (2.5 
)

where û ∈ BV (O) ∩ C 0 (O) defined by ûÄ Φ(t, r) ä := ˆt 0 f Ä Φ(s, r) ä ds - 1 2δ ˆδ -δ Ljq 0 f Ä Φ(s, r) ä ds å dq, (2.6)
and where ũ ∈ BV (O) defined by

ũ(x) := S(Ψ 2 (x)), with Ψ := Φ -1 , (2.7) 
are solutions to

∇û • b = f and ∇ũ • b = ∇Ψ 2 • b = 0 in O. (2.8) Proof of Proposition 2.4. Since ∇Φ(x 0 ) = Ä b(x 0 ), b(x 0 ) ⊥ ä
is invertible, the existence of δ and O is a simple consequence of the inverse function theorem.

Next, let u ∈ BV (Ω) be a function satisfying the assumptions of Proposition 2.4, and define the functions w, ŵ and w by

               w(t, r) := u Ä Φ(t, r) ä , ŵ(t, r) := ˆt 0 f (Φ(s, r)) ds - 1 2δ ˆδ -δ Ljq 0 f Ä Φ(s, r) ä ds å dq, w := w -ŵ.
The function ŵ clearly belongs to C 0 ([-δ, δ] 2 ), and taking into account that ∂ t w = ∂ t ŵ, we get that w does not depend on t. Thus, w = S(r) for some function S ∈ L ∞ (-δ, δ). Hence, it follows that

w(t, r) - 1 2δ ˆδ -δ w(q, r) dq = ŵ(t, r) + S(r) - 1 2δ ˆδ -δ Ä ŵ(q, r) + S(r) ä dq = ŵ(t, r),
which combined with w in BV ((-δ, δ) 2 ), implies that ŵ and w = w -ŵ belong to BV ((-δ, δ) 2 ). Therefore, S also belongs to BV (-δ, δ). 

0 = ∇Ψ 2 Ä Φ(t, r) ä • b Ä Φ(t, r) ä , ∀ (t, r) ∈ (-δ, δ) 2 , which implies that ∇Ψ 2 •b = 0 in O.
We have just obtained the equalities (2.8), which concludes the proof of Proposition 2.4. Now, consider a vector-valued U = (u, v) satisfying the regularity condition (2.1). The classical way to define the weak Jacobian of U is to use the distributional formula

Det(∇U ) := div (u ∇v ⊥ ) on Ω, (2.9) 
for which it is enough to define u ∇v ⊥ as a suitable distribution on Ω.

By the well-known properties of the distributions, we have only to define u ∇v ⊥ locally in D (Ω). For this purpose, we may use the decomposition given by (2.5) both for u and v. Take for the function S one of the representatives given by Lemma 2.1. Then, using that û is continuous, that S is BV and that ũ is a Borel function, we deduce that u is integrable with respect to the vector-valued measure ∇v. Therefore, we could define u ∇v ⊥ as

¨u ∇v ⊥ , ζ ∂ = ˆΩ u ζ • d(∇v ⊥ ) for ζ ∈ C ∞ c (Ω) 2 .
(2.10) But, as above mentioned the previous integral depends a priori on the choice of the function S, which could make the definition (2.10) inappropriate.

Let us prove that div (u ∇v ⊥ ) does not actually depend on the choice of S. To this end, consider the function S m ∈ C ∞ (R) (recall Remark 2.2) for m ∈ N, defined in Lemma 2.1. We then have div

Ä (û + S m (Ψ 2 )) ∇v ⊥ ä = div (û ∇v ⊥ ) + S m (Ψ 2 ) ∇Ψ 2 • (∇v ⊥ + ∇ṽ ⊥ ),
However, since by (2.8) ∇Ψ 2 is parallel to b ⊥ and ∇ṽ ⊥ • b ⊥ = ∇ṽ • b = 0, we deduce that for any m ∈ N,

div Ä (û + S m (Ψ 2 )) ∇v ⊥ ä = div (û ∇v ⊥ ) + S m (Ψ 2 ) ∇Ψ 2 • ∇v ⊥ = div (û ∇v ⊥ ) -div Ä v ∇(S m (Ψ 2 )) ⊥ ä = div (û ∇v ⊥ ) + div (û ∇ṽ ⊥ ) -div Ä v ∇(S m (Ψ 2 )) ⊥ ä .
(2.11) Hence, passing to the limit as m → ∞ in the distributional sense owing to the properties (2.2) of the sequence (S m ) m∈N together with decomposition (2.5), we obtain that div (u ∇v ⊥ ä = div (û ∇v ⊥ ) + div (û ∇ṽ ⊥ ) -div (v ∇ũ ⊥ ).

(2.12)

Due to the continuity of û and v, the right-hand side of (2.12) is well defined in D (O), and indeed does not depend on S.

Then, taking into account the existence of two measures µ and ν on O such that

∇ũ = b ⊥ µ and ∇ṽ = b ⊥ ν in M (O), (2.13) 
and using the approximation of û = S(Ψ 2 ) by S m (Ψ 2 ) as in (2.11), respectively for v, we also get the equalities

   div (v ∇ũ ⊥ ) = (∇v • b) µ = (∇v • b) µ, div (û ∇ṽ ⊥ ) = (∇û • b) ν = (∇u • b) ν.
Putting these equalities in (2.12) we thus get the alternative expression of the weak Jacobian in D (O),

Det(∇U ) = div (u ∇v ⊥ ) = div (û ∇v ⊥ ) + (∇u • b) ν -(∇v • b) µ (2.14)
The other issue that is related naturally to the weak determinant, is to give a sense to the strong determinant for any vector field U = (u, v) in BV (Ω) 2 , which is formally defined by « det(∇U ) := ∇u • ∇v ⊥ ».

Using the equalities ∇ũ = b ⊥ µ and ∇ṽ = b ⊥ ν as above, we are led to the formal definition

« ∇u • ∇v ⊥ := ∇û • ∇v ⊥ + (∇û • b) ν -(∇v • b) µ ».
(2.15)

The problem is now to give a sense to ∇û • ∇v ⊥ , which can be formally defined by « ∇û • ∇v ⊥ = div (û ∇v ⊥ ) ».

For example, a sufficient condition to justify the previous definition is to assume that ∇u • b belongs to C 1 (Ω), which by (2.6) (see the proof of Theorem 2.6 below) implies that û ∈ C 1 (Ω).

To conclude, we have just justified the following definitions of Det and det for BV functions. Definition 2.5. Let U = (u, v) be a vector-valued function satisfying condition (2.1). Then, the weak Jacobian Det may be defined in the distributional sense on Ω by

Det(∇U ) = div (u ∇v ⊥ ) := div (û ∇v ⊥ ) + div (û ∇ṽ ⊥ ) -div (v ∇ũ ⊥ )
(2.16) where the pair (û, ũ), respectively (v, ṽ), satisfies the local decomposition u = û + ũ, respectively v = v + ṽ, provided by Proposition 2.4. This definition can be also written (2.14) in terms of the measures µ and ν given by (2.13). Moreover, if one of the two functions ∇u • b or ∇v • b belongs to C 1 (Ω), the strong Jacobian det may be also defined in the distributional sense on Ω by det(∇U ) := ∇û • ∇v ⊥ + div (û ∇ṽ ⊥ ) -div (v ∇ũ ⊥ ).

(2.17)

This definition can be also written (2.15) in terms of the measures µ and ν given by (2.13). Now, we can state the main result of the paper.

Theorem 2.6. Let Ω be a non-empty bounded open set of R 2 , and let b be a non vanishing vector field in C 1 (Ω) 2 . Then, according to Definition 2.16 any vector-valued function U = (u, v) with regularity (2.1) satisfies the implication

∇u • b ∈ C 1 (Ω) or ∇v • b ∈ C 1 (Ω) ⇓ Det(∇U ) = det(∇U ) in D (Ω).
(2.18)

Moreover, any vector-valued function

U = (u, v) in W 1,1 (Ω) 2 satisfies the implication Ä ∇u • b, ∇v • b ä ∈ C 1 (Ω) 2 ⇓ Det(∇U ) = det(∇U ) = ∇u • ∇v ⊥ ∈ L 1 loc (Ω) a.e. in Ω. (2.19)
Proof of Theorem 2.6. We use the notations of Proposition 2.4 taking a neighborhood O Ω of some point x 0 . Assume for example that f := ∇u • b ∈ C 1 (Ω). Then, the definition (2.7) of û yields for any On the other hand, when the vector-valued U = (u, v) is in W 1,1 (Ω) 2 and satisfies the left-hand side of implication (2.19), the formulas (2.20) applied to v with ∇v • b ∈ C 1 (Ω), imply that v belongs to C 1 (O). Hence, equality (2.21) holds in C 0 (O) ⊂ L 1 loc (O). Finally, comparing (2.16) to (2.17) and using that (û, v) ∈ C 1 (O) 2 with (ũ, ṽ) ∈ W 1,1 (O) 2 , we obtain that

(t, r) ∈ (-δ, δ) 2 ,        ∂ t Ä ûÄ Φ(t, r) ää = f Ä Φ(t, r) ä ∂ r Ä ûÄ Φ(t, r) ää = ˆt 0 ∇f Ä Φ(s, r) ä • ∂ r Φ(s,
Det(∇U ) = det(∇U ) = ∇û • ∇v ⊥ + div (û ∇ṽ ⊥ ) -div (v ∇ũ ⊥ ) = ∇û • ∇v ⊥ + ∇û • ∇ṽ ⊥ + ∇ũ • ∇v ⊥ ∈ L 1 loc (O).
(2.22)

Moreover, due to the second equality of (2.8) and to the fact that the vector field b is non vanishing, we get that ∇ũ • ∇ṽ ⊥ = 0 a.e. in Ω, which implies that a.e. in Ω,

Det(∇U ) = det(∇U ) = ∇û • ∇v ⊥ + ∇û • ∇ṽ ⊥ + ∇ũ • ∇v ⊥ = ∇u • ∇v ⊥ .
This combined (2.19) and the arbitrariness of the open sets O Ω, yields the right-hand side of (2.19). The proof of Theorem 2.6 is thus complete.

Remark 2.7. We can replace in condition (2.18) and (2.19) the C 1regularity of the function f := ∇u • b (or/and ∇v • b) by the C 1 -regularity outside a discrete set A on which ∇f may blow-up. Without loss of generality we can assume that A is a unit set of Ω.

More precisely, assume that there exist x 0 := Φ(s 0 , r 0 ) in O, σ 0 > 0 (which will be chosen later with respect to ε 0 ) and a non-negative nonincreasing function h ∈ L 1 (0, σ 0 ) satisfying

   f ∈ C 0 (Ω) ∩ C 1 (Ω \ {x 0 }) |∇f (x)| ≤ C h(|x -x 0 |), ∀ x ∈ B(x 0 , ε 0 ). (2.23)
Let us prove that the function û defined by (2.6) is in C 1 (B(x 0 , ε 0 )) under condition (2.23). Recalling (2.20) we have

       ∂ t Ä ûÄ Φ(t, r) ää = f Ä Φ(t, r) ä ∂ r Ä ûÄ Φ(t, r) ää = ˆt 0 ∇f Ä Φ(s, r) ä • ∂ r Φ(s, r) ds, (2.24) 
for any

(t, r) ∈ (-δ, δ)×(-δ, δ)\{r 0 }. Since |det(∇Φ)| = |det Ä ∂ s Φ, ∂ r Φ ä
| is bounded from below by a positive constant in any compact set of (-δ, δ) 2 , by virtue of the one-order Taylor-Young expansion at the point (s 0 , r 0 ), there exists α 0 > 0 such that for ε 0 small enough and for any

(s, r) ∈ Φ -1 Ä B(x 0 , ε 0 ) ä , we get that |Φ(s, r) -x 0 | = ∂ s Φ(s 0 , r 0 ) (s -s 0 ) + ∂ r Φ(s 0 , r 0 ) (r -r 0 ) + o (|s -s 0 | + |r -r 0 |) ≥ α 0 (|s -s 0 | + |r -r 0 |).
It follows from (2.23) and from the decrease of h, the existence of a constant C > 0 such that for any (s, r)

∈ Φ -1 Ä B(x 0 , ε 0 ) ä , r = r 0 , ∇f Ä Φ(s, r) ä • ∂ r Φ(s, r) ≤ C h Ä α 0 (|s-s 0 |+|r -r 0 |) ä ≤ C h Ä α 0 |s-s 0 | ä ,
which (choosing σ 0 be such that α 0 |s -s 0 | < σ 0 ) implies the domination condition

1 [0,t] (s) ∇f Ä Φ(s, r) ä • ∂ r Φ(s, r) ≤ C h(|s -s 0 |) ∈ L 1 (-σ 0 , σ 0 ), for any (s, r) ∈ Φ -1 Ä B(x 0 , ε 0 ) ä , r = r 0 .
By the Lebesgue theorem applied to the second integral of (2.24) parametrized by the pair (t, r), it follows that lim

(t,r)→(s 0 ,r 0 ) ∂ r Ä ûÄ Φ(t, r) ää = lim (t,r)→(s 0 ,r 0 ) sgn(s 0 ) ˆδ -δ 1 [0,t] (s) ∇f Ä Φ(s, r) ä • ∂ r Φ(s, r) ds = ˆs0 0 ∇f Ä Φ(s, r 0 ) ä • ∂ r Φ(s, r 0 ) ds.
Moreover, the continuity of f in Ω yields immediately

lim (t,r)→(s 0 ,r 0 ) ∂ t Ä ûÄ Φ(t, r) ää = f Ä Φ(s 0 , r 0 ) ä .
Therefore, the function û belongs to C 1 (B(x 0 , ε 0 )) 2 .

Examples

The following example shows that Ball's conjecture cannot be extended from mappings in W 1,1 (Ω) 2 to mappings in BV (Ω) 2 .

Example 3.1. Let Ω := (-1 2 , 1 2 ) 2 and let b the vector field defined by b(x) := ∇w(x) where w(x

) := x 1 -cos(2π x 2 ) for x ∈ Ω, (3.1) 
which has been used in [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]Example 2.12]. The Borel measure defined by

µ(dx) := dx 1 ⊗ δ 0 (dx 2 )
is invariant for the flow X associated with b (3.1). Indeed, we have for any vector-valued function

ϕ ∈ C 1 c (Ω), ˆΩ ∇ϕ(x) • b(x) µ(dx) = ˆΩ Ä ∂ x 1 ϕ(x) + 2π sin(2π x 2 ) ∂ x 2 ϕ(x) ä Ä dx 1 × δ 0 (dx 2 ) ä = ˆ1 2 -1 2 ∂ x 1 ϕ(x 1 , 0) dx 1 = 0,
or equivalently, µ b is divergence free in Ω. Then, any function u which agrees a.e. in Ω with the characteristic function

Ä x → 1 R + (x 2 ) ä whose support is (-1 2 , 1 2 ) ∩ [0, 1 2 ) in Ω, satisfies µ b = µ e 1 = ∇u ⊥ on Ω. (3.2)
Indeed, on the one hand, we have for any vector-valued function

ζ in C 1 c (Ω) 2 , ˆΩ ζ(x) • b(x) µ(dx) = ˆΩ Ä ζ 1 (x) + 2π sin(2π x 2 ) ζ 2 (x) ä Ä dx 1 × δ 0 (dx 2 ) ä = ˆ1 2 -1 2 ζ 1 (x 1 , 0) dx 1 = ˆΩ ζ(x) • e 1 µ(dx),
and on the other hand, integrating by parts we get that

ˆΩ ζ(x) • d(∇u ⊥ )(dx) = ˆΩ div (ζ ⊥ )(x) u(x) dx = ˆ1 2 -1 2 ˆ1 2 0 Ä ∂ x 1 ζ 2 (x) -∂ x 2 ζ 1 (x) ä dx 1 dx 2 = ˆ1 2 -1 2 ζ 1 (x 1 , 0) dx 1 = ˆΩ ζ(x) • e 1 µ(dx).
Since by (3.2) we have ∇u • b = 0, the vector-valued function U satisfies the assumptions of Theorem 2.6. Hence, from formula (2.16) we deduce that Det(DU ) = div (u ∇u ⊥ ) = 0 in D (Ω). The next example illustrates Theorem 2.6 with functions in W 1,1 (Ω).

Example 3.2. Let Ω := B(0 R 2 , 1
2 ), let α ∈ (0, 1), let b the vector field and let g, u, v be the functions defined for x ∈ Ω, by b(x

) := x 1 e 1 -α (x 2 + 2) e 2 , g(x) := |x 1 | α-2 x 1 ,          u(x) := ˆ|x| 1 2 dr ln r v(x) := |x 1 | α (x 2 + 2) (3.4)
Hence, we have for any x ∈ Ω,

U := (u, v) ∈ C 1 (Ω) × W 1,1 (Ω) and g ∈ L 1 (Ω), g(x) b(x) = |x 1 | α e 1 -α |x 1 | α-2 x 1 (x 2 + 2) e 2 = ∇v(x) ⊥ for x 1 = 0, (∇u • b)(x) = x 2 1 -α x 2 (x 2 + 2) |x| (ln |x|) 2 , Ä ∇(∇u • b) ä (x) ≤ C |x| (ln |x|) 2 , h(r) := C r (ln r) 2 is in L 1 (0 R 2 , 1 2 ).
It 

Det(DU ) = det(DU ) = x 1 Ä |x 1 | α -α |x 1 | α-2 x 2 (x 2 + 2) ä |x| (ln |x|) 2 ∈ L 1 1-α (Ω).
However, for any p ∈ (1, 2), the function v does not belong to W 1,p (Ω) when α := 1 -1/p. Finally, the present example cannot be derived from the result of Müller [START_REF] Müller | Det=det. A remark on the distributional determinant[END_REF].

Minimization of a polyconvex energy under constraint

Let Ω be a C 1 -regular bounded open set of R 2 . Let B be a non-empty compact set of

Ä C 1 ( Ω) 2 , • W 1,∞ (Ω) 2 ä such that ∃ β ∈ (0, ∞), ∀ b ∈ B, |b| ≥ β in Ω, (4.1) 
and which contains the constant vectors in R 2 satisfying (4.1). Moreover, let B be a non-empty compact set of

Ä C 0 ( Ω) 2 , • L ∞ (Ω) 2 ä
, and let b be a compact set of

Ä C 1 ( Ω), • W 1,∞ (Ω)
ä . Now, define the set B b,B,B of the admissible vector-field displacements, which only depends on the sets b, B, B, by

B b,B,B :=      U = (u, v) ∈ BV (Ω) 2 : b ∈ B ∇U b ∈ B ∇u • b ∈ b or ∇v • b ∈ b      . (4.2)
Let ψ : R → R be a convex function which satisfies the coerciveness and the boundedness properties

∃ α ∈ (0, 1), ∃ p ∈ (1, ∞), ∀ t ∈ R, α |t| p ≤ ψ(t) ≤ |t| p + 1 α . (4.3) 
Then, define the functional

F (U ) := ˆΩ |∇U | dx + ˆΩ ψ Ä det(∇U ) ä dx for U ∈ B b,B,B , (4.4) 
where det(∇U ) is the strong (distributional) Jacobian defined by (2.17). 

F ( Ū ) = inf ¶ F (U ) , U ∈ B b,B,B © with Ū b ∈ B and Ä ∇u • b ∈ b or ∇v • b ∈ b ä , (4.5) 
where the strong (distributional) Jacobian det(∇ Ū ) belongs to L p (Ω). Therefore, putting this in (4.7) we obtain the desired equality (4.5), which concludes the proof of Theorem 4.1.

∇U n ∇U in M (Ω) 2×2 * ,                b n → b in C 1 ( Ω) 2 ∇U n b n → ∇ Ū b in C 0 ( Ω) 2 ∇u n • b n → ∇ū • b in C 1 ( Ω), det(∇U n ) θ in L p (Ω).

Finally 2 Ä

 2 , we easily deduce from the definition (2.6) of û that ∇û • b = f in O, which combined with (2.4) yields ∇ũ • b = 0 in O. Moreover, taking the derivative with respect to the variable t of the equality r = Ψ Φ(t, r) ä and using (2.3), we get that

(3. 3 )

 3 However, the formal identity « det(∇U ) := ∇u • ∇u ⊥ = 0 » has no sense since the product of measures µ × µ is not defined.Note that a more regular function ũ which is solution, similarly to u, to equation b • ∇ũ = 0 in Ω (whose existence is proved generally by Proposition 2.4) is given explicitly byũ(x) := arctan Ä e 4π 2 x 1 tan(πx 2 ) ä for x ∈ Ω.Finally, formula (3.3) can be directly deduced from (3.2) by u ∇u ⊥ = u µ e 1 = µ e 1 and div (µ e 1 ) = ∂ x 1 µ = 0 in D (Ω).

Theorem 4 . 1 .

 41 There exist Ū ∈ B b,B,B and b ∈ B such that

Remark 4 . 2 .

 42 Note that by definition (4.1) and implication (2.18) we have det(∇U ) = Det(∇U ) for any U ∈ B b,B,B ,which is generally a distribution on Ω. Theorem 4.1 shows that the functional F defined by (4.4) is lower-semi continuous with respect to the BV (Ω) 2 -norm under the compact constraints (4.1) satisfied by the admissible set B b,B,B (4.1). However, the L p a priori estimate on det(∇U ) in F (U ) implies that the distribution Det(∇ Ū ) belongs actually to L p (Ω).

Remark 4 . 3 .

 43 By virtue of Ascoli's theorem, if any function in b and each coordinate of any vector-valued B belong to C 2 ( Ω), and satisfy for some constant C ∈ (0, ∞) the boundedness conditionf L ∞ (Ω) + ∇f L ∞ (Ω) 2 + ∇ 2 f L ∞ (Ω) 2×2 ≤ C,then b and B are compact sets respectively of C 1 ( Ω) and C 1 ( Ω) 2 . Similarly, if each coordinate of any vector-valued in B belongs to C 1 ( Ω), and satisfies for some constant C ∈ (0, ∞) the boundedness conditionf L ∞ (Ω) + ∇f L ∞ (Ω) 2 ≤ C, then B is a compact set of C 0 ( Ω) 2 .Proof of Theorem 4.1. First of all, note that the infimum non negative energy F ( Ū ) is finite, since U := ε Id for ε ∈ (0, 1) small enough, is an admissible vector-field displacement in B b,B,B (4.2), with for example the admissible constant vector field b := β e 1 .Let U n = (u n , v n ) ∈ BV (Ω) 2 be a minimizing sequence of F satisfying ∇U n b n ∈ B for some vector field b n ∈ B, and for example (up to extract a subsequence)∇u n • b n ∈ b. It is clear that U n is bounded in BV (Ω)2 and det(DU n ) is bounded in L p (Ω). Then, using (4.3), there exist two subsequences of U n , b n , still denoted by U n , b n , a vector-valued function Ū = (ū, v) ∈ BV (Ω) 2 , a vector field b ∈ B with ∇ Ū b ∈ B and ∇ū • b ∈ b, and θ ∈ L p (Ω) such that the following convergences hold

(4. 6 )

 6 Adapting e.g. the proof of[START_REF] Müller | An existence theory for nonlinear elasticity that allows for cavitation[END_REF] Theorem 5.4] (see also[START_REF] Ball | Null Lagrangians, weak continuity, and variational problems of arbitrary order[END_REF] Theorem 5.4]) thanks to the lower semicontinuity of the variation measure (see, e.g., [15, Section 5.2.1]) and to the convexity of the function ψ, and using the three strong convergences in (4.6), we get that|∇ Ū |(Ω) + ˆΩ ψ(θ) dx ≤ lim inf n→∞ F (U n ) = F ( Ū )with ∇ Ū b ∈ B and ∇u • b ∈ b.

(4. 7 )

 7 Moreover, by virtue of Proposition 2.4 combined with the three strong convergences in (4.6), the sequences ûn , ũn and vn , ṽn respectively associated with the sequences u n = ûn + ũn and v n = vn + ṽn , satisfy the following convergences (up to extract new subsequences)(û n , vn ) → (û, v) in C 1 ( Ω) 2 , (∇ũ n , ∇ṽ n ) (∇ũ, ∇ṽ) in M (Ω) 2×2 * ,which, taking into account the definition (2.17) of det and the weak convergence of det(∇U n ) in (4.6), imply that det(∇U n ) det(∇ Ū ) = θ in D (Ω).

  follows that the function ∇u • b satisfies condition (2.23) rather the left-hand side of (2.19). Moreover, we have ∇v • b = 0. Therefore, by virtue of the implication (2.19) combined with Remark 2.7 we obtain that a.e. in Ω,
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