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Abstract. We present a novel sub-stroke level transformer approach to
convert offline images of handwriting to online. We start by extracting
sub-strokes from the offline images by inferring a skeleton with a CNN
and applying a basic cutting algorithm. We introduce sub-stroke em-
beddings by encoding the sub-stroke point sequence with a Sub-stroke
Encoding Transformer (SET). The embeddings are then fed to the Sub-
strokes ORdering Transformer (SORT) which predicts the discrete sub-
strokes ordering and the pen state. By constraining the Transformer in-
put and output to the inferred sub-strokes, the recovered online is highly
precise. We evaluate our method on Latin words from the IRONOFF
dataset and on maths expressions from CROHME dataset. We measure
the performance with two criteria: fidelity with Dynamic Time Warp-
ing (DTW) and semantic coherence using recognition rate. Our method
outperforms the state-of-the-art in both datasets, achieving a word recog-
nition rate of 81.06% and a 2.41 DTW on IRONOFF and an expression
recognition rate of 62.00% and a DTW of 13.93 on CROHME 2019. This
work constitutes an important milestone toward full offline document
conversion to online.

Keywords: offline handwriting · transformer · online recovery.

1 Introduction

In today’s highly virtual and automated world, note-taking is still a manual
procedure. It is a ground to express our volatile thoughts and ideas, allow-
ing their organization and the emergence of our creativity afterward. While
pen and paper still offer unmatched comfort and efficient input methods for
handwritten notes, it disables their exploitation to their full potential. They
are usually digitized as offline documents by capturing images with a scanner
or camera. This is an inconvenient step for most users and it also adds noise
that affects offline processing systems. Online documents - the offline counter-
part - are recorded on touch-sensitive surface devices with an e-pen, enabling
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a more powerful machine-automated organization and edition of handwritten
documents, with intuitive pen gestures. Many commercial software specializing
in note-taking exists, proposing a plethora of functionalities such as recognition,
note indexing, collaborative note-taking, etc. The online domain is ever-evolving
as the offline is already far behind. By developing an offline-to-online conversion
system we allow the users to take to their advantage the best of the two modal-
ities: ergonomic note-taking with a pen and paper and powerful editing and
processing of the digital ink. Recently, attractive hybrid devices are surfacing.
Their hardware closely mimics a pencil offering a more ergonomic input method
while still proposing online processing tools. However, in the quest for paper-like
hardware, the devices are still today limited in computational resources com-
pared to other touch devices. Research efforts [17] have been conducted in the
document analysis domain to automatically recover online from offline docu-
ments by retrieving the pen trajectory. Thus allowing for the direct exploitation
of paper and pen notes in the existing online processing systems.

However, as datasets coupling online with offline are scarce [20,18], the ap-
plications of data-driven approaches remain limited. To overcome this issue,
rasterization or online data to offline conversion is commonly used for training
multi-modal systems. Converting online signals to realistic raster images often
involves adding noise and simulating pen tip width and movement speed [7].
Other advanced applications use generative adversarial networks [11] to gener-
ate artificial papyrus and other historic documents. Multi-modal systems utilize
both online and offline, combining temporality with spatial clues for better per-
formances. For instance, handwriting recognition is typically classified into two
types: offline and online systems. Multi-modal Handwriting recognition systems
[21,22] are shown to outperform their mono-modal counterparts. In this paper,
we focus on the reverse problem, which is offline to online conversion. Vectoriza-
tion similarly tries to model a line drawing image as a set of geometric primitives
(polygons, parametric curves, etc.) corresponding to elements found in Scalable
Vector Graphic (SVG) format. It is mainly applied to technical drawing [6] and
2D animation sketching [7]. In this particular application, retrieving temporal
ordering between the extracted vector elements is less relevant.

For handwriting applications, we are more involved in the recovery of pen
trajectory from images. The availability of temporal information in online sys-
tems often makes them better performing than their offline analog [16]. In 2019,
the Competition on Recognition of Online Handwritten Mathematical Expres-
sions (CROHME) [12] included for the first time an offline recognition task. It
has since sparked a great interest in offline to online conversion [4] in this specific
domain. Classical approaches are rule-based systems. They usually operate on a
topology to detect regions where the drawing direction is ambiguous (e.g . junc-
tions) and employ a set of handcrafted heuristics to simplify and resolve them.
However, they are very hard to maintain and do not generalize to different lan-
guages or content. Recently, many data-driven approaches have been proposed
in the literature to recover online from offline. However, CRNNs models [3,2]
rely on fixed-size feature maps of the whole offline image, regardless of the ink
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density, to predict all the underlying intricacies in the temporality of the differ-
ent strokes resulting in the partial or full omission of strokes. In this paper, we
propose the following contributions:

– We propose novel sub-stroke level Transformers (SET and SORT) to recover
the online from offline (see fig.1) instead of CRNNs architectures [3,2].

– We move from the image to sequence framework to operate on the sub-stroke
level to perform a local and global analysis of the different junctions as is
adopted in classical approaches [4].

– Our SET and SORT approach outperforms prior online recovery work on
the handwritten text of the IRONOFF dataset. We also extend our work to
more complex maths equations of the CROHME dataset.

(a) Input offline image. (b) Extracted sub-strokes from the CNN in-
ferred skeleton. A sub-stroke can be drawn
in both directions.

start

end

start

end

(c) Network online prediction. start and end nodes are annotated. The zoom box shows
the predicted sub-stroke direction and ordering as illustrated by arrows. The edge color
is the destination node. For double-traced sub-strokes, edges are read in the clockwise
orientation as in [9].

Fig. 1: Given an input offline image (a), sub-strokes incident on the same junc-
tions are extracted (b). Our Network predicts the sub-stroke’s order and direc-
tions (c). The trivial longest path obtained by following the outgoing edges from
start node to end node is the predicted online signal.
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2 RELATED WORKS

Line drawing vectorization is a crucial step in the creation of 2D animations
and sketches. It involves converting drawing images into vector graphics. Artists
often begin by sketching their work on paper and then manually vectorizing
it digitally for finalization. However, vectorizing rough and complex real-world
sketches can be challenging, as multiple overlapping lines need to be combined
into a single line and extraneous lines and background noise need to be removed.
[19] proposed a fully convolutional simplification network with a discriminator
network to clean high-resolution sketches. [7] developed a two-step system em-
ploying two neural networks to vectorize clean line drawings. The first multi-task
CNN predicts skeleton and junction images, and the second CNN resolves the
segment connectivity around the junctions. They demonstrate state-of-the-art
results on the public Quick, Draw! [8] dataset. However, their method is re-
stricted to relatively small junctions of degrees 3 to 6 that fit in a 32 × 32
window.

Pen trajectory recovery Throughout the years, numerous methods have been
proposed by researchers to tackle the task of pen trajectory recovery from offline
images. The steps involved in these methods typically include extraction of topol-
ogy and detection of local ambiguous regions such as junctions and double-traced
strokes. These ambiguities are then resolved using hand-designed rules. The ex-
isting methods can be broadly categorized into three types: recognition-based,
topology-based, and tracking-based. Recognition-based [5] methods, which were
first introduced for drawings composed of regular shapes such as diagrams and
engineering drawings, detect these shapes by fitting geometric primitives. This
approach is not ideal for handwritten text due to limitations in the possible
graphical representation. Topology-based methods [10] construct a representa-
tion using topological information from the image (skeleton, contour, etc.) and
view pen trajectory recovery as a global or local optimization problem. [17] de-
veloped a weighted graph approach that finds the best matching paths for pen
trajectory recovery and demonstrated good performance on English characters.
The tracking-based approach estimates the pen’s relative direction iteratively.
[24] proposed an image-to-sequence framework to generate pen trajectories using
a CNN and fully connected layers without any RNN. This approach showed good
results on Chinese and English handwriting datasets but the model’s complexity
is directly proportional to the image resolution. Moreover, their method requires
a skeleton as input and inferred skeletons can be noisy and very different from
the perfect skeletons their network was trained on, leading to unexpected fail-
ures at test time. [14] investigated the generalization of the previous approach to
arbitrary-size images of math equations. They suggest using a fully convolutional
neural network trained on noisy offline images. The network learns to predict
both a skeleton and the next pen positions. However, the lack of temporal mod-
eling causes over-segmentation of long strokes. Other lines of research followed
a sequence modeling approach with CRNNs. In [3] a CNN-BLSTM network was
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proposed. They obtain good results on Tamil, Telugu, and Devanagari charac-
ters. However, this approach is limited to single isolated characters and requires
separate models for each script. [2] extended the same CRNNs network to the
text line scale [13] by applying a variety of data-augmentation techniques and an
adaptive ground-truth loss to counter pathological strokes impact on the model
learning. Their system is shown to recover a great portion of the online signal
but still tends to omit some small strokes or even to over-simplify complex long
strokes. Moreover, this approach is not well suited for 2D content such as math
equations. In fact, resizing larger images of equations to a small fixed height (61
pixels) can lead to illegible content.

Stroke embeddings and Transformers Most of the proposed aforementioned
approaches rely on the sequence-based networks to recognize drawing [8] or hand-
written text [3]. [1] propose stroke-level Transformers to embed strokes into fixed
lengths representations that are used to generate auto-completion of diagrams
drawings. They show that Transformers outperform the sequential RNN ap-
proach [8]. However, they conclude that cursive handwriting strokes are chal-
lenging and longer strokes can’t be correctly encoded in a fixed-size embedding.
In this work, we model sub-stroke as embedding. Sub-strokes are much simpler
shapes (straight lines, short open curves, etc.) that are far easier to model.

3 SET, SORT: Sub-Stroke Level Transformers

After an overview of the proposed system, we present the sub-stroke extraction
algorithm, the Sub-stroke Encoding Transformer (SET) and the Sub-strokes
ORdering Transformer (SORT).

3.1 Overview

We propose a novel sub-stroke ordering Transformer model to reconstruct the
online signal from offline images. We start by using the FCNN from [14] to extract
a skeleton (1-pixel thick outline) from the input offline image. A sub-stroke
cutting algorithm based on junction detection is then applied to the extracted
skeleton. We use a Transformer auto-encoder to learn sub-stroke embedding [1].
Finally, an auto-regressive Transformer decoder is used to predict the sub-strokes
ordering using their embeddings. Fig. 2 shows an overview of our pipeline. More
formally, given a set of sub-strokes V = {ss1, ss2, . . . , ssN}, with a sub-stroke
defined as a sequence of coordinates ssi = (xk, yk)mk=1. Each sub-stroke from the
skeleton appears twice, in both directions. The goal is to predict the sequence
indicating the writing order of the different sub-strokes S = (o1, oi, . . . , oM ) oi ∈
{1, . . . , N} and how they should be merged to form strokes. This is achieved by
predicting a pen-up to indicate the end of the stroke. We note that V and S can
be of unequal lengths, for instance, sub-strokes can be ignored (as noise), used
several times (redrawing), and most of the time sub-strokes are drawn in one
direction only, therefore the opposite sub-stroke is omitted.
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Fig. 2: Overview of our approach for the generation of the first three sub-strokes.
After sub-stroke extraction, the SET encoder provides embedding for each sub-
stroke. The SORT network uses the memory and the history to predict the next
sub-stroke and the pen state. The sequence begins with a bos token and will end
after M tokens with the eos token. Here we show the first three timesteps.

3.2 Sub-strokes extraction

After extracting a skeleton using an already trained FCNN [14], we apply a
thinning algorithm [23] to remove the few small remaining ambiguities in the
skeleton, obtaining Ithin. We cut the skeleton into sub-strokes by removing the
different junctions pixels and computing the resulting connected components. A
junction pixel is defined as a skeleton pixel with 3 or more 8-connected skeleton
pixels. Each connected component will have two extremities, the skeleton pixels
with exactly one 8-connected skeleton neighbor (see fig. 3). We compute the
path from one extremity to another to define a sub-stroke. The opposite traver-
sal path is also included as a distinct sub-stroke. Using this simple heuristic-free
algorithm allows us to generalize to any handwritten content. Our sub-stroke
cutting algorithm results in a normalization of stroke drawing. Partial incon-
spicuous stroke retracing is removed.

3.3 SET: Sub-stroke Embedding Transformer

We adapt the stroke embedding from [1] to the lower level of a sub-stroke. In
fact, learning meaningful fixed-size vector representation for a stroke of arbitrary
size and complexity can prove to be especially difficult for cursive handwriting.
Sub-strokes are usually much simpler geometric primitives that are far easier to
model. We define the sub-stroke auto-encoder as a Transformer followed by a
sub-stroke reconstruction MLP, as shown in fig. 4. Before being embedded by
the encoder, the input sub-stroke points are shifted to start at the origin and
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(a) Skeleton pixels 8-
connectivity, in yellow
and blue junction pixels.

(b) Junctions pixels are
removed, splitting the
skeleton into segments.
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x

x

x

x

x

(c) Connected compo-
nents are labeled to
obtain the sub-strokes.
Extremities are marked
by a cross.

Fig. 3: Illustration of the sub-strokes cutting algorithm.

normalized w.r.t. to the offline image dimensions. This ensures that embedding
only captures important local geometric features.

Encoder Given an input sub-stroke defined as a sequence of points ssi =
((x1, y1), . . . , (xm, ym)), the points are first linearly projected to vectors of size
64 and summed with a sinusoidal positional encoding of each timestep. The in-
put embedding is then fed through a Transformer with a stack of 6 layers, and
4 attention heads, with a model dimension of 64 and a feed-forward size of 256.
The decoder output vector for the last timestep n of ssi is projected linearly to
a vector of size 8 corresponding to the sub-stroke embedding Ei.

Decoder The sub-stroke reconstruction F (Ei, t) ∈ R2, t ∈ [0, 1] is a paramet-
ric approximation of the sub-stroke curve using a two-layer MLP. It estimates
the coordinates of the sub-stroke curve at every timestamp t. It’s composed
of a hidden layer of size 512 followed by ReLU and an output layer of size 2
corresponding to the coordinates (xt, yt) of a point. The auto-encoder stroke
embedding network objective is to reconstruct accurately the input sub-stroke.

3.4 SORT: Sub-stroke Ordering Transformer

We present a novel sub-stroke ordering auto-regressive transformer based on
the sub-stroke embedding. Each sub-stroke embedding is concatenated with the
positional embedding of its starting point [f(ssi[0]);Ei] to add global information
of the sub-stroke spatial arrangement in the offline image. We use a stack of
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Fig. 4: Sub-stroke encoding transformer.

nlayers encoder-decoder Transformer with a model size of dm and nheads attention
heads. The last transformer decoder layer employs a single attention head to
compute the cross-attention between the encoder’s output keys K and values V
and the decoder self-attention output queries Q. This layer’s output attention
scores Âi over the sub-strokes set are used as predictions for the next sub-stroke
ssi+1 probability distribution. As we can see in equation 1, the SORT outputs
two decisions. On one hand, the attention scores over the sub-strokes set are
used as predictions for the next sub-stroke ssi+1 probability distribution Âi. On
the other hand, the values Oi are used to predict the pen up state P̂i with a
small classification MLP.

Qi,Ki,Vi = QWQ
i ,KWK

i ,VWV
i

Âi = softmax

(
QiK

>
i√

dk

)
∈ RT×L

Oi = ÂiVi

P̂i = MLP (Oi)

with WQ
i ∈ Rdm×dk ,WK

i ∈ Rdm×dk ,WV
i ∈ Rdm×dv

(1)

To alleviate the lack of coverage we employ the Attention Refinement Module
(ARM) [25].

3.5 Training

The SET network is trained separately from the SORT. We sample five points at
random t ∈ [0, 1] from the sub-stroke latent representation Ei by using F (Ei, t).
The network is trained with an MSE loss between the reconstructed points and
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the ground-truth sub-stroke points as in eq. 2.

LMSE =
1

5

5∑
n=1

(F (Essi , tn)− ssitn )2 (2)

We use teacher forcing to train the SORT network, it predicts the i + 1 sub-
stroke probability distribution with Âi and the associated pen state P̂i given
the i sub-stroke. The network is trained with a multi-task loss L combining a
cross-entropy classification loss for sub-stroke ordering LO and a binary cross
entropy loss for pen state classification LP .

L = λ1LO + λ2LP ,

LO(Â, A) =
1

|V |

|V |∑
y=0

−Ay log
(
Ây

)
,

LP (P̂ , P ) =
1

2

∑
y∈{ down,up }

−
(
Py log

(
P̂y

)
+ (1− Py) log

(
1− P̂y

))
,

(3)

where λ1, λ2 ∈ R and P,A are respectively the ground-truth pen-state and sub-
stroke successor. Sub-strokes are extracted from an accurate but still not perfect
inferred skeleton. They are ordered using the ground-truth online signal to obtain
A used to train our network. This ordering is defined as the oracle machine’s
solution to the sub-strokes ordering problem. The oracle ordering is obtained
by using the original online to map each extracted sub-stroke from the offline
image independently to a sub-section of the online. They are then ordered using
their time of apparition in the online signal. We note that this oracle answer is a
satisfying approximation of the original online. However, it can still introduce a
small disparity from the original online, particularly in cases of invisible pen-ups
or erroneous skeletons.

3.6 Inference

At inference time, we follow the same pipeline to extract sub-strokes from an
offline image as explained in section 3.2. Sub-stroke embeddings are then pro-
duced using the SET network. The SORT network then iteratively predicts the
next sub-stroke and corresponding pen state. We select the sub-stroke with the
highest predicted probability as the next one which will be fed as input for the
next timestep. Inference ends when a special eos token is predicted as the next
sub-stroke. The result is a sequence of sub-strokes that we linearly interpolate
to fill in the void left between two consecutive sub-stroke extremities (see fig.3),
only when the pen state is “down” (i.e. P̂i < 0.5).

4 Evaluation

The goal of our method is to reconstruct accurately the pen trajectory reflected
by a user’s offline drawing. To quantitatively evaluate the quality of the online
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reconstructions, we employ two evaluation metrics DTW and handwriting recog-
nition rate. While the DTW strictly measures geometric reconstruction fidelity,
the recognition rate is a more lenient metric that measures semantic coherence.

4.1 DTW point-wise and DTW point-to-segment-wise

We compute a DTW distance between the inferred online signal and the ground
truth signal to measure the accuracy of the network prediction. We also employ
a modified DTW with a point-to-segment distance DTWseg by [15] which is less
sensitive to the sampling rate. We also evaluate the stroke extraction by using a
DTW on the stroke level. Similar to the offline Stroke IoU proposed by [7], we
use an online stroke DTW defined as :

SDTW =
1

n

∑
i=1,...,n

min
j=1,...,m

DTW(Si, Ŝj), (4)

where Si are ground-truth strokes and Ŝj are predicted strokes. This metric is
useful to detect under/over-segmentation issues of strokes which are otherwise
not taken into account by DTW.

4.2 Handwriting Recognition Rate

The natural variability in writing styles makes it so that different reconstruc-
tions are plausible. DTW-based metrics continuity constraint strictly matches
two online signals, which leads to high-cost alignment in some cases such as de-
layed strokes, interchangeable strokes and reversed strokes. An online automatic
handwriting recognition system can be used to recognize the retrieved online
signal. The recognition results can be compared with a ground-truth text label,
computing a word and character recognition rate (WRR and CRR) for hand-
written text and expression recognition rate for handwritten math. This results
in higher-level evaluation which is far less sensitive to writing styles. However,
we note that powerful state-of-art recognition systems can correctly predict the
text even if some symbols are approximated roughly. In our case, this is problem-
atic since the predicted signal is no longer loyal to the user’s handwriting. For
this reason, it is important to supplement the recognition rate with the DTW to
also account for visual accuracy. We use the MyScript interactive ink recognition
engine version 2.0 3 to evaluate the recognition.

5 Experiments

In this section, we present the training protocol and the evaluation results of our
approach using online metrics.

3 MyScript iink SDK is available at https://developer.myscript.com/docs/interactive-
ink/2.0/overview/about/

https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
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5.1 Datasets and Training

Our networks are trained and evaluated on IRONOFF [20] and CROHME [12]
datasets. We follow the same procedure as [14] to render synthetic offline images
from their online counterpart. Our rendered offline images are noisier than the
constant stroke width rendering proposed in [12], as we want to better mimic the
end goal real word noisier offline images (cf. fig. 5). The training set of IRONOFF
and CROHME contains respectively 48K and 10K samples, roughly equating
to a total of 100K strokes each. We supplement CROHME with 15K equations
from our private proprietary dataset.

(a) Random stroke width (b) Constant stroke width

Fig. 5: Comparison between variable and constant thickness stroking.

We first train the SET network on IRONOFF and freeze it during the training
of the SORT network. The SORT network is trained on IRONOFF and fine-
tuned on CROHME and our private datasets. We use the Adam optimizer with
a learning rate of 0.001 and a batch size of 10. The training is performed on a
single NVIDIA GeForce RTX 2080 Ti GPU with 24GB of memory and takes 20
hours to be completed.

5.2 Results

We evaluate and benchmark our method against state-of-art offline to online
conversion systems. Table 1 shows the results on the test set of IRONOFF con-
taining 17K test samples. Row (d) shows that the oracle approximation is very
close to the original online (e). The small difference reflects the previously men-
tioned errors and simplifications. Our method (c) outperforms other state-of-
the-art approaches (a) and (b) while using a relatively lighter model compared
to the other data-driven approach of [2]. However, as shown by (d) there is still
a margin for progression.

We also evaluate our method on the CROHME 2014 and 2019 test sets. The
evaluation results of [4] and our method are presented in Table 2 and 3.

Our approach achieves a better stroke extraction resulting in higher expres-
sion recognition rates. As reported by rows (d) of tables 2 and 3 respectively,
better online level DTW is not always synonymous with more precise stroke
segmentation and more accurate recognition. In fact, [4] obtains a slightly bet-
ter DTW of 14.29 as reported by table 3 however a fairly lesser stroke DTW
7.19 compared to ours of 3.85. The same applies to ExpRate as well, 57.01%
compared to 62.00% of our approach.
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Method Parameters DTW↓ DTWseg↓ CRR↑ WRR↑

(a) CNN-BiLSTM [2] 7M 7.09 7.45 59.22 41.43
(b) Chungkwong et al. [4] - 5.75 5.06 73.45 60.00
(c) Sub-stroke Transformer (Ours) 2M 3.25 2.72 90.85 81.06

(d) Oracle - 0.33 0.32 92.56 83.45
(e) online GT - 93.03 83.81

Table 1: Results on IRONOFF test set.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑

(a) Chungkwong et al. 16.30 16.13 6.54 52.43
(b) Sub-stroke Transformer (Ours) 24.54 24.37 12.29 29.37
(c) fine-tune (b) on CROHME 13.75 13.59 4.43 53.75
(d) fine-tune (c) on private datasets 13.93 13.80 2.93 59.31

(f) Oracle 0.24 0.22 0.50 66.63
(g) GT online –– –– –– 69.77

Table 2: Results on CROHME 2014 test set.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑

(a) Chungkwong et al. 14.29 14.14 7.19 57.01
(d) fine-tune on private dataset 14.98 14.80 3.85 62.00

(f) Oracle 0.26 0.24 0.69 70.19
(g) GT online –– –– –– 73.13

Table 3: Results on CROHME 2019 test set. Row (d) reports the results of the
fine-tuned model on equations from CROHME and our private dataset.

Figure 6 shows a visual comparison between our approaches and other state-
of-the-art methods on IRONOFF. Our approach 6c is observed to cover very
closely most of the offline image compared to 6a and 6b. In fact, some characters
are missing in their online reconstructions. For example, the smaller “e” loops
(rows 3 and 4), the middle horizontal bar of “E” (row 4) and the apostrophe
(row 2) are not covered. 6a and 6b tend to over-segment the strokes, on the other
hand, our approach predicts more accurate pen ups resulting in a far less number
of strokes. 6a often struggles with end-of-sequence predictions (first three rows).

Our method is observed to better capture the greater diversity in the stroke
2D ordering in Maths equations as illustrated by Figure 7. For instance, the re-
construction in 7b shows greater variability compared to the strict X-Y ordering
of 7a. Here the superscripts are predicted after the exponents and the operators.
This is a less common way to write but is still plausible. As highlighted in 7b
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(a) Archibald et al. (b) Chungkwong et al. (c) Ours.

Fig. 6: Comparaison of our approach (c) to [2] (a) and [4](b) on IRONOFF sam-
ples. Each stroke is drawn with a distinct color. Blue arrows show the direction.
The first and last stroke points are respectively yellow and red.

our network mistakenly re-crosses the first “+” sign (as highlighted in the red
box), instead of drawing the “1”, but is still able to recover the remaining strokes
correctly. We hypothesize that it’s due to the two strokes being of very similar
shape and in close proximity to each other. We observe a few errors in 7a, the
“i” dot is missing in one case. The ordering of the superscripts in the second
“
∑

” is far from ideal. In 7d, the parenthesis and their content are not always
in the same order. Reflecting once again on the great diversity captured by our
network. Thanks to our pen state prediction, we can more accurately segment
the symbols 7d. In 7c the f in the term “f(a)” of the numerator is incorrectly
segmented resulting in a bad recognition. Figure 8 shows the SORT prediction of
the probability distribution of the next sub-stroke at every timestep. We observe
that the network is very confident in its predictions and they are well centered
around a small local region of the image. The network’s reconstructed signal
overall reflects the same temporal dynamics as the ground truth online signal.
However, as depicted in 8b, in rare instances it locally drifts from the ground
truth online.

6 Discussion

Our approach is able to generalize to different handwriting domains. By trans-
ferring the learned knowledge from Latin words to Maths equations we are able
to achieve better results compared to handcrafted rule-based systems. However,
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(a) Chungkwong et al. [4]

(b) Ours.

(c) Chungkwong et al. (d) Ours.

Fig. 7: Inference results of [4] and our approach on CROHME datasets.

we need this transfer, in the form of a fine-tuning step, for new application do-
mains. The existing online databases of handwriting in a multitude of languages
and free-form charts can be exploited to train the system in order to generalize
to all content types.

We focus our study application on offline images of at most 100 sub-strokes.
Full offline documents can attain upwards of 6000 sub-strokes. Further research
efforts are necessary to up-scale our sub-stroke ordering transformer to the doc-
ument level. In fact, it presents two difficulties, firstly longer and more com-
plex temporal dependencies to model. Secondly, the memory bottleneck of the
quadratic multi-head attention needs to be addressed.

7 Conclusion

In this paper, we presented a novel sub-stroke level transformer approach to
recover online from offline handwriting. Our approach consists of two steps:
First, we embed the sub-strokes set, extracted from the inferred skeleton, using a
sub-stroke encoding transformer (SET). The sub-strokes embeddings are ordered
using a sub-strokes ordering Transformer (SORT) which also predicts the pen
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(a) Output attention heatmap during infer-
ence.

(b) Top net-
work’s prediction
and bottom
oracle’s order.

Fig. 8: (a) Attention heatmap of the SORT decoder output layer for the equation
7d. The y-axis is the memory sub-strokes sorted from left to right (with the first
point) for illustration purposes only. Network predictions (see section 3.6) as well
as the oracle answers are plotted on top of the heatmap. The eos sub-stroke is
here indicated by a -1. (b) The divergence between the inferred sub-stroke order
and the oracle’s order, for timesteps from 24 to 40.

state. In contrast to other data-driven approaches, SORT is trained in a guided
attention manner and is able to accurately string together the original sub-
strokes rather than regressing a simplified approximation of the online. Our
method’s performance stands out when compared to the state-of-the-art on Latin
words and Math equations. In future work, we would like to extend our system
to full documents thus enabling a powerful combination of offline note-taking
and seamless online editing.
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