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Abstract: In this report, we present energy quadratization techniques for a Hamiltonian system
of nonlinear wave equations formulated at order 2 in time. On a generic system, we present the
so-called Invariant Energy Quadratization (IEQ) and Scalar Auxiliary Variable (SAV) methods as
well as their energy conservation properties and discretization strategies in space and time. Unlike
the iterative techniques commonly used for nonlinear systems to guarantee certain invariances,
these two methods lead to algorithms whose complexity is known in advance and rely on the
simple inversion of a linear system at each time step. In spite of an unconditional stability and an
attractive complexity, the literature mentions problematic application cases with an uncontrolled
accuracy.
The numerical properties (stability, consistency and uniform convergence in time with respect to
the CFL) of schemes obtained by hybridization between ✓-scheme and quadratization are studied
for two classes of nonlinear terms: a nonlinearity concerning the solution field, and a nonlinearity
concerning its gradient.
These results are then applied to a geometrically exact nonlinear piano string for which numerical
results are presented. The influence of the discretization parameters is studied and related to the
theoretical results. The choices for the best accuracy or computational cost are illustrated. Some
parameters can induce the space-time non-convergence of the schemes for a nonlinearity on the
gradient, as it is the case for the piano string.

Key-words: Numerical analysis, Space-Time convergence, Invariant Energy Quadratization,
Scalar Auxiliary Variable
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Analyse numérique des schémas quadratisés. Application à la
simulation de la corde de piano non-linéaire

Résumé : Dans ce rapport, nous présentons en détail des techniques de quadratisation d’énergie pour un
système hamiltonien d’équations d’ondes non-linéaires formulé à l’ordre 2 en temps. Sur un système générique,
nous présentons les méthodes dites d’Invariant Energy Quadratization (IEQ) et de Scalar Auxiliary Variable
(SAV) ainsi que leurs propriétés de conservation d’énergie et des stratégies de discrétisation en espace et en
temps. Contrairement aux techniques itératives couramment utilisées pour des systèmes non-linéaires afin de
garantir certaines invariances, ces deux méthodes conduisent à des algorithmes de résolution dont la complexité
est connue à l’avance, et reposent sur la simple inversion d’un système linéaire à chaque pas de temps. Malgré
une stabilité inconditionnelle et une complexité attrayante, la bibliographie mentionne des cas d’application
problématiques à la précision non maitrisée.
Les propriétés numériques (stabilité, consistance et convergence en temps uniformément par rapport à la CFL)
des schémas obtenus par hybridation entre ✓-schéma et quadratisation sont étudiées pour deux classes de non-
linéarités : une non-linéarité portant sur le champs solution, et une non-linéarité portant sur son gradient.
Ces résultats sont alors appliqués à une corde de piano non-linéaire géométriquement exacte pour laquelle sont
présentés des résultats de simulations numériques. L’influence des paramètres de discrétisation est étudiée et
mise en relation avec les résultats théoriques. Les choix garantissant la meilleure précision ou coût de calcul
sont illustrés. Certains paramètres peuvent notamment induire la non-convergence espace-temps des schémas
pour une non-linéarité portant sur le gradient, comme c’est le cas pour la corde de piano.

Mots-clés : Analyse numérique, Convergence spatio-temporelle, Quadratisation à Energie Invariante, Variable
Auxiliaire Scalaire
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Introduction
Nonlinear wave equations are quite frequently encountered in many application domains like acoustics, fluid
and solid state, optics, quantum, and others. We consider in this work Hamiltonian wave equations, which can
entirely be described from the knowledge of a Hamiltonian function. These systems have energy conservation
properties that can be exploited to perform the mathematical analysis of the equations.
Such a property is also very useful for numerical computation as it ensures the preservation of a discrete analog
of the energy identity which allows to derive a-posteriori stability estimates and convergence results of the time
integration scheme for a lot of application cases [Joly, 2003], [Chabassier and Imperiale, 2017]. These estimates
can especially be used to couple multiple systems even if each one of them has a different integration strategy.

The system of equations that we consider here consists in finding u ⌘ u(x, t) 2 Rp for x 2 ⌦, t 2 [0, T ], such
that

@2
t
Mu� Div (Aru+rF2(ru)) +rF1(u) = f (.1)

with ⌦ ⇢ Rd, F1 : Rp ! R and F2 : Rp ⇥ Rd ! R two nonlinear forms, and M , A two linear operators of
Rp ⇥ Rp.
u : ⌦⇥ [0, T ] ! Rp is a function of space and time and f 2 L2(⌦) an exterior source term.

Two separated groups stand out among all the nonlinear terms that can be found in physics. In this work we
will call "type 1 nonlinear terms" the nonlinear terms which are a function of the unknown field u, for exam-
ple Sine-Gordon equation [Rubinstein, 1970], [Barone et al., 1971] or Allen–Cahn and Cahn-Hilliard equation
[Allen and Cahn, 1979], [Cahn and Hilliard, 1958], [Shen and Yang, 2010]. Piano hammer impacting a string
[Chabassier, 2012], [Bilbao et al., 2015] or wind instrument’s reeds [Bilbao et al., 2015] can also be modeled
with type 1 nonlinear functions. We will call "type 2 nonlinear terms" the nonlinear terms which are a function
of the gradient of the unknown field ru, for example a string, plate, or 3D solid element submitted to large
deformations [Banks et al., 1995]. In the context of wave equations, a function like F1 is of type 1 and the F2

function is of type 2.

The existence and regularity of continuous solutions to (.1) is not the topic of this work. Such results will
instead be supposed in order to perform the stability and convergence analysis of some numerical integration
strategies.

A widely spread strategy to solve nonlinear Hamiltonian equations with energy consistent methods is the use of
Discrete Gradients. In [He and Sun, 2020], [Rincon and Quintino, 2016] such schemes are used in dimensions
2 and 3 for type 1 nonlinear term. [Shen and Yang, 2010] uses it for Allen-Cahn and Cahn-Hilliard equations
and give some convergence proofs. [Gonzalez, 2000] deals with nonlinear elasticity and in [Bilbao et al., 2015],
[Chatziioannou and Van Walstijn, 2015], a Discrete Gradient approach is used to tackle contact terms in musi-
cal acoustics, which can be of both types 1 and 2. In [Chabassier and Joly, 2010] such schemes are used for the
1D nonlinear piano string which is of type 2.

The discrete gradient schemes have the major drawback of leading to implicit nonlinear schemes that must
be solved with iterative techniques. It requires to choose a convergence threshold, and induces a consequent
number of iterations depending on how "hard" the nonlinear term is. The computation cost is often very high
and unpredictable, as well as the implementation effort.

Recent strategies have appeared that guarantee a discrete energy identity while increasing efficiency. The so-
called Invariant Energy Quadratization (IEQ) schemes were introduced in [Yang, 2016], [Zhao et al., 2017] in
the context of phase-fields models (nonlinearities of type 1). The so-called Scalar Auxiliary Variable (SAV)
schemes introduced in [Shen et al., 2019] and all its variants [Liu and Li, 2022], [Liu and Li, 2020] were applied
for gradient flows, but also for incompressible Navier-Stokes [Lin et al., 2019], Sine-Gordon [Jiang et al., 2019],
or general Hamiltonian equations [Cai and Shen, 2020, Jiang et al., 2021, Li and Sun, 2020], all of them with
nonlinearities of type 1. These techniques were applied recently to the geometrically exact piano string which is
of type 2 in [Ducceschi and Bilbao, 2019], [Ducceschi and Bilbao, 2022], [Ducceschi et al., 2022] on the discrete
ordinary differential equation (ODE) system obtained after space discretization with finite differences.

RR n° 9516



6 Castera & Chabassier

Although the literature for applied cases is very rich and creative, numerical analysis of these schemes is quite
scarce. A space-time convergence proof can be found in [Jiang et al., 2019] for a type 1 Sine-Gordon nonlinear
wave equation discretized in space with finite differences, and [Yang and Zhang, 2020], [Shen and Xu, 2018]
study both IEQ and SAV convergence in the context of diffusive phase-fields under the form of gradient flow
models, with nonlinear terms that seem to behave theoretically like type 1 terms. To the best of our knowledge,
no mathematical study of these schemes with type 2 nonlinearities has been proposed yet.

It is a global agreement among all these previous references that these quadratized schemes are very efficient and
easy to implement compared to other nonlinear schemes like convex splitting [Eyre, 1998] or discrete gradient.
However, some authors point out some aliasing problems [Ducceschi and Bilbao, 2019] when using SAV with too
large time steps even though it is unconditionally stable. [Shen et al., 2019], [Bilbao et al., 2023] also mention
a stabilization parameter that can help (or not) the scheme to give precise results with the largest possible time
steps, but no clear stabilization process is given.

This report is structured in two parts. In the first part we present linearly implicit and energy-preserving space-
time discretizations of I.1 using spectral finite elements along with IEQ and SAV methods. The quadratization
techniques and the numerical schemes are presented along with continuous and discrete energy balances and
solving techniques.
Numerical analysis including stability, consistency and time-convergence proofs of the IEQ scheme for both
nonlinear types 1 and 2 is given in section 3. It can easily adapt to SAV. Treating the case of nonlinear terms of
type 2 requires a finite dimension assumption (fixed space step) which is not needed for type 1 nonlinear terms.
The second part presents numerical results of these schemes for the geometrically exact piano string including
efficiency comparisons, times and space-time convergence rates, and investigations on the stabilization methods
mentioned above and on the influence of some other discretization parameters.

Notations
For U and V two vectors of Rn we denote ’·’ as the component-wise inner product:

U · V =
nX

i=1

UiVi (.2)

The associated norm is k.k2

For A and B two matrices of Mn(R) we denote ’:’ as the matricial double dot product also known as Frobenuis
dot product:

A : B =
nX

i=1

nX

j=1

Ai,jBi,j (.3)

and
kAk

F
=

p
A : A =

p
Tr ( tAA) (.4)

Inria
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Part I

Abstract problem
1 General equations
Let ⌦ ⇢ Rd measurable.
Let F1 : Rp ! R and F2 : Rp ⇥ Rd ! R be two nonlinear forms and M , A two linear positive operators of
Rp ⇥ Rp.
We consider u : ⌦⇥ [0, T ] ! Rp a function of space and time and f 2 L2(⌦) such that

@2
t
Mu� Div (Aru+rF2(ru)) +rF1(u) = f (I.1)

with Dirichlet boundary conditions on @⌦ and initial conditions described by an initail function u0:
⇢ 8(x, t) 2 @⌦⇥ [0, T ], u(x, t) = 0 (I.2a)
8x 2 ⌦, u(x, 0) = u0 (I.2b)

Assumption 1.1 (Existence and regularity of strong solution.)
Equation (I.1) has a unique solution

u 2 C 4
⇣
[0, T ],

�
L2(⌦)

�p⌘ \ C 3
⇣
[0, T ],

�
H1(⌦)

�p⌘

Remark 1.1 This result can be obtained for example with Hille-Yoshida theorem if the source term f is regular
enough.

Theorem 1.1 (Weak formulation)
We seek u 2 H1(⌦)p so that

8u⇤ 2 H1(⌦)p,

Z

⌦
@2
t
Mu · u⇤ +

Z

⌦
Aru : ru⇤ +

Z

⌦
rF2(ru) : ru⇤ +

Z

⌦
rF1(u) · u⇤ =

Z

⌦
f · u⇤ (I.3)

Theorem 1.2 (Energy Conservation Identity)
Any solution to I.3 satisfies

dE0
dt

=

Z

⌦
f · @tu (I.4)

with
E0(t) =

1

2

Z

⌦
M@tu · @tu+

1

2

Z

⌦
Aru : ru+

Z

⌦
F2(ru) +

Z

⌦
F1(u) (I.5)

Proof Just apply the weak formulation (I.3) with u⇤ = @tu 2 H1(⌦)p from assumption 1.1.
Note that this energy is not a quadratic form, and in order to be positive F1 and F2 must be positive.

Remark 1.2 Notice that the choice of F2 is not unique. We can introduce a matrix ↵ such that A = ↵A +
(Ip � ↵)A and transform the equation into

@2
t
Mu� Div (↵Aru+rF2,↵(ru)) +rF1(u) = f (I.6)

RR n° 9516



8 Castera & Chabassier

with F2,↵(ru) = 1
2 (Ip � ↵)Aru : ru+ F2(ru).

This ↵-decomposition is called stabilization in [Shen et al., 2019], [Bilbao et al., 2023] and allows to adjust the
amount of linear terms to put inside F2. With ↵ = Ip no part of the linear term is in F2,↵, but the closer ↵ is
from 0 the more linear terms go into F2,↵.
In part II about the simulation of the piano string we will explore the tuning of ↵ and see that its value has a
huge influence on the accuracy of the quadratized schemes.

2 Energy Quadratization

If F1 and F2 are bounded below, we can find two real constants c1 and c2 so that ci +2Fi is positive. And then
we can do the following transformation:

dE
dt

=
dE0
dt

=

Z

⌦
f · @tu (I.7)

with

E(t) = E0(t)+
c1 + c2

2
=

1

2

Z

⌦
M@tu·@tu+

1

2

Z

⌦
Aru : ru+

1

2

✓
c2 + 2

Z

⌦
F2(ru)

◆
+
1

2

✓
c1 + 2

Z

⌦
F1(u)

◆
(I.8)

Now since ci +2Fi is positive we can introduce an auxiliary variable which is a square root of it and it will lead
to the so-called Invariant Energy Quadratization method (IEQ). Taking a square root of the entire ci + 2

R
⌦ Fi

as an auxiliary variable is also possible and will lead to the Scalar Auxiliary Variable method (SAV).
The preserved quantity of the resulting system of equations is no longer the energy but a modified quadratic
invariant.

Assumption 2.1 (Local Lipschitz assumptions on functions Fi)
We asses that there exists two subsets I and Ir such that

8
>>>><

>>>>:

8(a, b) 2 I2, |F1(a)� F1(b)| 6 Cf1 ka� bk2 (I.9a)
8(a, b) 2 I2, krF1(a)�rF1(b)k2 6 Cdf1 ka� bk2 (I.9b)

8(a, b) 2 I2
r, |F2(a)� F2(b)| 6 Cf2 ka� bk

F
(I.9c)

8(a, b) 2 I2
r, krF2(a)�rF2(b)kF 6 Cdf2 ka� bk

F
(I.9d)

2.1 Invariant Energy Quadratization (IEQ)

Assumption 2.2 Let u be the solution of I.3.
We assume that there exist (�1,�2) 2 (R⇤

+)
2 depending on the source f such that for all (x, t) 2 ⌦⇥ [0, T ]

��1

2 < F1(u(x, t)) and ��2

2 < F2(ru(x, t)).

It ensures that 2F1(u(x, t)) + c1 > c1 � �1 > 0 and 2F2(ru(x, t)) + c2 > c2 � �2 > 0

Let’s introduce two auxiliary variables z1 and z2:

8(x, t) 2 Rp ⇥ [0, T ],

(
z1(x, t) ⌘

p
2F1(u(x, t)) + c1 (I.10a)

z2(x, t) ⌘
p
2F2(ru(x, t)) + c2 (I.10b)

Inria



Numerical analysis of quadratized schemes 9

with two constants c1 and c2 so that the radicands are strictly positive, and also two auxiliary functions g1 and
g2 the functions such that:

8
>>><

>>>:

8q 2 Rp, g1(q) =
1p

2F1(q) + c1
rF1(q) 2 Rd (I.11a)

8q 2 Rp ⇥ Rd, g2(q) =
1p

2F2(q) + c2
rF2(q) 2 Rp ⇥ Rd (I.11b)

and the operators G1 and G2:
8
>>><

>>>:

8u 2 H1(⌦)p, G1(u) =
1p

2F1(u) + c1
rF1(u) (I.12a)

8u 2 H1(⌦)p, G2(ru) =
1p

2F2(ru) + c2
rF2(ru) (I.12b)

so that for (x, t) 2 ⌦⇥ [0, T ], Gi(u)(x, t) = gi(u(x, t)).

We can rewrite (I.1) as:
Seek u : ⌦⇥ [0, T ] ! Rd and zi : ⌦⇥ [0, T ] ! R such that

8
><

>:

@2
t
Mu� Div (Aru+ z2G2(ru)) + z1G1(u) = f (I.13a)

@tz1 = G1(u) · @tu (I.13b)
@tz2 = G2(ru) : @tru (I.13c)

with the same conditions I.2 for u and an extra initial condition:

8x 2 ⌦,

(
z1(x, 0) =

p
2F1(u0(x)) + c1 (I.14a)

z2(x, 0) =
p
2F2(ru0(x)) + c2 (I.14b)

Proposition 2.1
The two formulations (I.1) and (I.13) with conditions I.2 and I.14 are equivalent in the sens of distributions.

Proof Let u be the solution of (I.1) with conditions I.2. Then u is also solution of (I.13) with auxiliary variables
defined as I.10 and conditions I.2 and I.14.
Now let (u, z1, z2) be the solution of (I.13) with conditions I.2 and I.14. Equations (I.13b) and (I.13c) ensure
that @t

�
zi �

p
2Fi + ci

�
= 0 and because of conditions I.14 after time integration we have zi �

p
2Fi + ci = 0.

Using this in I.13a along with the definitions of Gi functions gives back equation I.1.

2.1.1 Variational formulation and Energy

Since u is in H1(⌦)p the variational spaces of z1 and z2 are restricted. We will seek z1 in H1(⌦) but because it
is a function of the gradient of u, z2 will only be in L2(⌦).

Proposition 2.2 (Weak formulation of IEQ)
We seek u 2 H1(⌦)p, z1 2 H1(⌦) and z2 2 L2(⌦) so that for all u⇤ 2 H1(⌦)p and all z⇤1 2 H1(⌦),
z⇤2 2 L2(⌦):

8
>>>>>><

>>>>>>:

Z

⌦
M@2

t
u · u⇤ +

Z

⌦
Aru : ru⇤ +

Z

⌦
z2G2(ru) : ru⇤ +

Z

⌦
z1G1(u) · u⇤ =

Z

⌦
f · u⇤ (I.15a)

Z

⌦
@tz1z

⇤
1 =

Z

⌦
z⇤1G1(u) · @tu (I.15b)

Z

⌦
@tz2z

⇤
2 =

Z

⌦
z⇤2G2(ru) : @tru (I.15c)
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10 Castera & Chabassier

We can also write this with weak formulation with functional forms:
8
><

>:

m(@2
t
u, u⇤) + a(u, u⇤) + Ḡ1(u, u

⇤, z1) + Ḡ2(u, u
⇤, z2) = f(u⇤) (I.16a)

`(@tz1, z
⇤
1) = Ḡ1(u, @tu, z

⇤
1) (I.16b)

`(@tz2, z
⇤
2) = Ḡ2(u, @tu, z

⇤
2) (I.16c)

where for u and v in H1(⌦)p

8
>>>>>><

>>>>>>:

m(u, v) =

I

⌦
Mu · v (I.17a)

a(u, v) =

I

⌦
Aru : rv (I.17b)

f(v) =

I

⌦
f · v (I.17c)

and for z and z⇤ in L2(⌦)

`(z, z⇤) =

I

⌦
zz⇤ (I.18)

For u and v in H1(⌦)p and z in L2(⌦) we also denoted
8
>><

>>:

Ḡ1(u, v, z) =

I

⌦
zG(u) · v (I.19a)

Ḡ2(u, v, z) =

I

⌦
zG(ru) : rv (I.19b)

Gi is a nonlinear form in its first variable u, and linear in v and z.

Theorem 2.2 (Energy conservation of IEQ formulation)
Any solution to I.16 satisfies

dE
dt

= f(@tu) =

Z

⌦
f · @tu (I.20)

with
E(t) = 1

2
m(@tu, @tu) +

1

2
a(u, u) +

1

2
`(z1, z1) +

1

2
`(z2, z2) = E0(t) +

c1 + c2
2

(I.21)

Proof Just apply the weak formulation (I.16) with u⇤ = @tu 2 H1(⌦)p and z⇤
i
= zi 2 L2(⌦).

Note that the energy is now a quadratic and positive form.

2.1.2 Spatial discretization

Let (Qh)h>0, (Zh,1)h>0 and (Zh,2)h>0 be Galerkin conform approximations of H1(⌦)p, H1(⌦) and L2(⌦)
respectively.
We discretize them with High-Order Spectral Lagrange Finite Elements Pr on a conform mesh Th of ⌦ with
order r 2 N⇤.
We also introduce nu

h
= dimQh, nz1

h
= dimZh,1 and nz2

h
= dimZh,2, and ('i)16i6n

u
h

are the basis functions of
Qh, and (�i)16i6n

z1
h

and ( i)16i6n
z2
h

the ones of Zh,1 and Zh,2 so that

uh =

n
u
hX

i=1

Uh,i'i, zh,1 =

n
z1
hX

i=1

Zh,1,i�i, zh,2 =

n
z2
hX

i=1

Zh,2,i i and fh =

n
u
hX

i=1

Fh,i'i (I.22)

with Uh, Zh,1, Zh,2 the vectorial representations in the finite element basis.

Inria



Numerical analysis of quadratized schemes 11

Assumption 2.3 (Convergence of the finite elements method.)
We suppose in the next sections that the constructed Galerkin approximation and finite elements are conform
and that the discrete solution (uh, zh,1, zh,2) converges to (u, z1, z2) in the sens that there exists �h,u, �h,z1
and �h,z2 such that

8
>>><

>>>:

ku� uhkH1(⌦)p 6 C�h,u �!
h!0

0 (I.23a)

kz1 � zh,1kH1(⌦) 6 C�h,z1 �!
h!0

0 (I.23b)

kz2 � zh,2kL2(⌦) 6 C�h,z2 �!
h!0

0 (I.23c)

We can derive the semi-discretized variational formulation.
Find uh 2 Qh and zh,i 2 Zh,i such that for all u⇤

h
2 Qh and all z⇤

h,i
2 Zh,i:

8
><

>:

m(@2
t
uh, u

⇤
h
) + a(uh, u

⇤
h
) + Ḡ1(uh, u

⇤
h
, zh,1) + Ḡ2(uh, u

⇤
h
, zh,2) = f(u⇤

h
) (I.24a)

`(@tzh,1, z
⇤
h,1) = Ḡ1(uh, @tuh, z

⇤
h,1) (I.24b)

`(@tzh,2, z
⇤
h,2) = Ḡ2(uh, @tuh, z

⇤
h,2) (I.24c)

2.1.3 Time discretization

For time discretization we use a constant time-step �t so that N�t = T .

Let’s introduce some discrete operators �, �1/2, µ and µ1/2 such that:

�uh =
un+1
h

� un

h

�t
, µuh =

un+1
h

+ un

h

2
, �µ uh =

un+1
h

� un�1
h

2�t
and �2uh =

un+1
h

� 2un

h
+ un�1

h

�t2
(I.25)

and

�1/2zh =
zn+1/2
h

� zn�1/2
h

�t
and µ1/2zh =

zn+1/2
h

+ zn�1/2
h

2
(I.26)

We also name {uh}n✓ = ✓un+1
h

+ (1� 2✓)un

h
+ ✓un�1

h
the ✓-scheme.

Like [Ducceschi and Bilbao, 2022] and [Ducceschi and Bilbao, 2019] we use an interleaved time grid to discretize
the auxiliary variable.

Numerical Scheme 2.1 (IEQ Time Scheme)
We seek (uh, zh,1, zh,2) 2 Qh⇥Zh,1⇥Zh,2 so that for all (u⇤

h
, z⇤

h,1, z
⇤
h,2) 2 Qh⇥Zh,1⇥Zh,2 and all n 2 [[0, N ]]

8
>>>><

>>>>:

m
�
�2uh, u

⇤
h

�
+ a ({uh}n✓ , u

⇤
h
) + Ḡ1

⇣
un

h
, u⇤

h
, µ1/2zh,1

⌘
+ Ḡ2

⇣
un

h
, u⇤

h
, µ1/2zh,2

⌘
= fn(u⇤

h
) (I.27a)

`
⇣
�1/2zh,1, z

⇤
h,1

⌘
= Ḡ1

�
un

h
, �µ uh, z

⇤
h,1

�
(I.27b)

`
⇣
�1/2zh,2, z

⇤
h,2

⌘
= Ḡ2

�
un

h
, �µ uh, z

⇤
h,2

�
(I.27c)
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12 Castera & Chabassier

Theorem 2.4 (Discrete energy Identity of IEQ scheme)
Any solution to I.27 satisfies

�1/2Eh = fn (�µ uh) =

Z

⌦
fn

h
· �µ uh (I.28)

with

En+1/2
h

=
1

2
em (�uh, �uh) +

1

2
a (µuh, µuh) +

1

2
`
⇣
zn+1/2
h,1 , zn+1/2

h,1

⌘
+

1

2
`
⇣
zn+1/2
h,2 , zn+1/2

h,2

⌘
(I.29)

and em(u, v) = m(u, v) +�t2
�
✓ � 1

4

�
a(u, v)

Proof We use the scheme (I.27) with u⇤
h
= �µ uh 2 Qh, z⇤h,1 = µ1/2zh,1 2 Zh,1 and z⇤

h,2 = µ1/2zh,2 2 Zh,2.

2.1.4 Matrix formulation

Evaluating (I.24) with basis functions as test functions allows us to compute the finite elements matrices:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

8(i, j) 2 [[1, nu

h
]]2, (Mh)i,j = m('j ,'i) =

I

⌦
M'j · 'i (I.30a)

8(i, j) 2 [[1, nu

h
]]2, (Kh)i,j = a('j ,'i) =

I

⌦
Ar'j : r'i (I.30b)

8(i, j) 2 [[1, nz1
h
]]2, (Lh,1)i,j = `(�j ,�i) =

I

⌦
�j · �i (I.30c)

8(i, j) 2 [[1, nz2
h
]]2, (Lh,2)i,j = `( j , i) =

I

⌦
 j ·  i (I.30d)

8(i, j) 2 [[1, nz1
h
]]⇥ [[1, nu

h
]], (G1(Uh))i,j = Ḡ1(uh,'j ,�i) =

I

⌦
�iG1(uh) · 'j (I.30e)

8(i, j) 2 [[1, nz2
h
]]⇥ [[1, nu

h
]], (G2(Uh))i,j = Ḡ2(uh,'j , i) =

I

⌦
 iG2(ruh) : r'j (I.30f)

8i 2 [[1, nu

h
]], (Fh)i = f('i) =

I

⌦
fh · 'i (I.30g)

so that the matrix formulation of the system writes:

8
><

>:

MhÜh +KhUh + tG2(Uh)Zh,2 +
tG1(Uh)Zh,1 = Fh (I.31a)

Lh,1Żh,1 = G1(Uh)U̇h (I.31b)
Lh,2Żh,2 = G2(Uh)U̇h (I.31c)

The time scheme rewrites:
8
><

>:

Mh�
2Uh +Kh {Uh}n✓ + tG1(U

n

h
)µ1/2Zh,1 +

tG2(U
n

h
)µ1/2Zh,2 = Fn

h
(I.32a)

Lh,1�
1/2Zh,1 = G1(U

n

h
)�µ Uh (I.32b)

Lh,2�
1/2Zh,2 = G2(U

n

h
)�µ Uh (I.32c)

2.1.5 Practical solution of the scheme

The numerical scheme above is linearly implicit so it can be solved as a linear system. There are two main ways
to solve it though.

Inria



Numerical analysis of quadratized schemes 13

We can solve it with the coupled unknowns at every step:
0

BB@

Mh
�t2

+ ✓Kh
1
2
tG1(Un

h
) 1

2
tG2(Un

h
)

� 1
2G1(Un

h
) Lh,1 0

� 1
2G2(Un

h
) 0 Lh,2

1

CCA

0

BB@

Un+1
h

Zn+1/2
h,1

Zn+1/2
h,2

1

CCA

=

0

BBB@

Fn

h
+Mh

2Un
h �U

n�1
h

�t2
+Kh

�
(2✓ � 1)Un

h
� ✓Un�1

h

�
� 1

2
tG1(Un

h
)Zn�1/2

h,1 � 1
2
tG2(Un

h
)Zn�1/2

h,2

Lh,1Z
n�1/2
h,1 � 1

2G1(Un

h
)Un�1

h

Lh,2Z
n�1/2
h,2 � 1

2G2(Un

h
)Un�1

h

1

CCCA

(I.33)

Or since it is linearly implicit we can eliminate Zh,1 and Zh,2 from (I.32a) with the relation:

µ1/2Zh =
�t

2
�1/2Zh + Zn�1/2

h
=

�t

2
L�1
h

G(Un

h
)�µ Uh + Zn�1/2

h
(I.34)

which leads to
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:


Mh

�t2
+ ✓Kh +

1

4
tG1(U

n

h
)L�1

h,1G1(U
n

h
) +

1

4
tG2(U

n

h
)L�1

h,2G2(U
n

h
)

�
Un+1
h

= Fn

h
+Mh

2Un

h
� Un�1

h

�t2
+Kh

�
(2✓ � 1)Un

h
� ✓Un�1

h

�

� tG1(U
n

h
)Zn�1/2

h,1 +
1

4
tG1(U

n

h
)L�1

h,1G1(U
n

h
)Un�1

h

� tG2(U
n

h
)Zn�1/2

h,2 +
1

4
tG2(U

n

h
)L�1

h,2G2(U
n

h
)Un�1

h

(I.35a)

Zn+1/2
h,1 = Zn�1/2

h,1 + L�1
h,1G1(U

n

h
)
Un+1
h

� Un�1
h

2
(I.35b)

Zn+1/2
h,2 = Zn�1/2

h,2 + L�1
h,2G2(U

n

h
)
Un+1
h

� Un�1
h

2
(I.35c)

We compute Un+1
h

with the first equation and then compute Zn+1/2
h,1 and Zn+1/2

h,2 explicitly with the others.

The second formulation with elimination reduces the size of the linear system to solve by nz1
h

+ nz2
h

and we can
use Woodbury matrix inversion formula:

Lemma 2.1 (Woodbury inversion formula.) [Woodbury, 1950]
Let A be a invertible square matrix of size n 2 N⇤ and C one of size p 2 N⇤.
U , V two matrices of size n⇥ p and p⇥ n.
A+ UCV is invertible if and only if det

�
C�1 + V A�1U

�
6= 0 and we have:

(A+ UCV )�1 = A�1 �A�1U
�
C�1 + V A�1U

��1
V A�1

with A =
Mh

�t2
+ ✓Kh, C =

✓
L�1
h,1 0
0 L�1

h,2

◆
and tU = V = 1

2

✓
G1(U

n

h
)

G2(U
n

h
)

◆
.

In this case the size p = nz1
h

+ nz2
h

of the matrices U and V is quite large so the inversion of C�1 + V A�1U is
expensive. We will see that the SAV method allows to reduce considerably the size p.
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14 Castera & Chabassier

2.2 Scalar Auxiliary Variable (SAV)

Assumption 2.4 Let u be the solution of I.3.
We assume that there exist (�1,�2) 2 (R⇤

+)
2 depending on the source f such that for all (x, t) 2 ⌦⇥ [0, T ]

��1

2 <
R
⌦ F1(u(x, t))dx and ��2

2 <
R
⌦ F2(ru(x, t))dx.

It ensures that 2
R
⌦ F1(u(x, t))dx+ c1 > c1 � �1 > 0 and 2

R
⌦ F2(ru(x, t))dx+ c2 > c2 � �2 > 0

Similarly to IEQ, we introduce two auxiliary variable. But now the nonlinear function is integrated on the space
domain so these no longer depend on the space variable x:

8t 2 [0, T ],

8
>>>><

>>>>:

z1(t) ⌘

s

2

Z

⌦
F1(u(x, t)) + c1 (I.36a)

z2(t) ⌘

s

2

Z

⌦
F2(ru(x, t)) + c2 (I.36b)

The two auxiliary functions are:
8
>>>>><

>>>>>:

8u 2 H1(⌦)p, 8(x, t) 2 ⌦⇥ [0, T ], g1(u(x, t)) =
1q

2
R
⌦ F1(u(s, t))ds+ c1

rF1(u(x, t)) (I.37a)

8u 2 H1(⌦)p, 8(x, t) 2 ⌦⇥ [0, T ], g2(u(x, t)) =
1q

2
R
⌦ F2(ru(s, t))ds+ c2

rF2(ru(x, t)) (I.37b)

but unlike IEQ these functions cannot be studied on Rp independently of the field u because of the integration
in the square root.

The two associated operators write
8
>>>>><

>>>>>:

8u 2 H1(⌦)p, G1(u) =
1q

2
R
⌦ F1(u) + c1

rF1(u) (I.38a)

8u 2 H1(⌦)p, G2(u) =
1q

2
R
⌦ F2(ru) + c2

rF2(ru) (I.38b)

so that for (x, t) 2 ⌦⇥ [0, T ], Gi(u)(x, t) = gi(u(x, t)).

The nonlinear forms involved in the variational formulations are called
8
>><

>>:

8(u, v) 2 H1(⌦)p ⇥H1(⌦)p, Ḡ1(u, v) =

Z

⌦
G1(u) · v (I.39a)

8(u, v) 2 H1(⌦)p ⇥H1(⌦)p, Ḡ2(u, v) =

Z

⌦
G2(u) : v (I.39b)

2.2.1 Variational formulation and Energy

The new system is derivated directly from the variational formulation (I.3):

Inria



Numerical analysis of quadratized schemes 15

Proposition 2.3 (Weak formulation of SAV)
Find u 2

�
H1(⌦)

�p and (z1, z2) 2
�
R[0,T ]

�2 such that for all u⇤ 2
�
H1(⌦)

�p

8
><

>:

m(@2
t
u, u⇤) + a(u, u⇤) + z2(t)Ḡ2(u, u

⇤) + z1(t)Ḡ1(u, u
⇤) = f(u⇤) (I.40a)

@tz1(t) = Ḡ1(u, @tu) (I.40b)
@tz2(t) = Ḡ2(u, @tu) (I.40c)

Notice that the two auxiliary equations are not in a weak form since the auxiliary variables only depend on
time and not on space anymore.

Theorem 2.6 (Energy of SAV formulation)
Any solution to I.40 verifies

dE
dt

= f(@tu) =

Z

⌦
f · @tu (I.41)

with
E(t) = 1

2
m(@tu, @tu) +

1

2
a(u, u) +

1

2
z22 +

1

2
z21 = E0(t) +

c1 + c2
2

(I.42)

Proof Just use the weak formulation I.40 with u⇤ = @tu 2 H1(⌦)p.

2.2.2 Spatial discretization

We use the same space discretisation as for IEQ formulation 2.1.2 but now only u is discretized since zi are
scalars.

Find uh 2 Qh and (zh,1, zh,2) 2 R2 such that for all u⇤
h
2 Qh:

8
><

>:

m(@2
t
uh, u

⇤
h
) + a(uh, u

⇤
h
) + zh,2Ḡ2(uh, u

⇤
h
) + zh,1Ḡ1(uh, u

⇤
h
) = f(u⇤

h
) (I.43a)

@tzh,1 = Ḡ1(uh, @tuh) (I.43b)
@tzh,2 = Ḡ2(uh, @tuh) (I.43c)

2.2.3 Time discretization

A very similar time scheme to IEQ I.27 is used here for SAV:

Numerical Scheme 2.2 (SAV Time Scheme)
We seek uh 2 Qh and (z1, z2) 2

�
R[0,T ]

�2 so that for all u⇤
h
2 Qh and all n 2 [[0, N ]]

8
><

>:

m(�2uh, u
⇤
h
) + a({uh}n✓ , u

⇤
h
) + µ1/2zh,2 Ḡ2(u

n

h
, u⇤

h
) + µ1/2zh,1 Ḡ1(u

n

h
, u⇤

h
) = fn(u⇤

h
) (I.44a)

�1/2zh,1 = Ḡ1(u
n

h
, �µuh) (I.44b)

�1/2zh,2 = Ḡ2(u
n

h
, �µuh) (I.44c)

Theorem 2.8 (Discrete Energy Identity of SAV scheme)
Any solution to I.44 satisfies

�1/2Eh = fn(�µuh) =

Z

⌦
fn

h
· �µuh (I.45)
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16 Castera & Chabassier

with
En+1/2
h

=
1

2
em(�uh, �uh) +

1

2
a(µuh, µuh) +

1

2

⇣
zn+1/2
h,1

⌘2
+

1

2

⇣
zn+1/2
h,2

⌘2
(I.46)

and em(u, v) = m(u, v) +�t2
�
✓ � 1

4

�
a(u, v)

Proof We use the scheme (I.44) with u⇤
h
= �µ uh.

2.2.4 Matrix formulation

We can compute the Finite Elements matrices and vectors:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

8(i, j) 2 [[1, nu

h
]]2, (Mh)i,j = m('j ,'i) =

I

⌦
M'j · 'i (I.47a)

8(i, j) 2 [[1, nu

h
]]2, (Kh)i,j = a('j ,'i) =

I

⌦
Ar'j : r'i (I.47b)

8i 2 [[1, nu

h
]], (G1(Uh))i = Ḡ1(uh,'i) (I.47c)

8i 2 [[1, nu

h
]], (G2(Uh))i = Ḡ2(uh,'i) (I.47d)

8i 2 [[1, nu

h
]], (Fh)i = f('i) =

I

⌦
fh · 'i (I.47e)

so that the matrix formulation of the system (I.43) writes:

8
><

>:

MhÜh +KhUh +G2(Uh)zh,2 +G1(Uh)zh,1 = Fh (I.48a)
żh,1 = G1(Uh) · U̇h (I.48b)
żh,2 = G2(Uh) · U̇h (I.48c)

the time scheme rewrites:

8
><

>:

Mh�
2Uh +Kh {Uh}n✓ +G2(U

n

h
)µ1/2zh,2 +G1(U

n

h
)µ1/2zh,1 = Fn

h
(I.49a)

�1/2zh,1 = G1(U
n

h
) · �µUh (I.49b)

�1/2zh,2 = G2(U
n

h
) · �µUh (I.49c)

2.2.5 Practical solution of the scheme

The SAV schemes can be very efficiently solved. The one presented just above is not an exception.
Just like in 2.1.5 we eliminate zh,1 and zh,2 with the relation:

µ1/2zh =
�t

2
�1/2zh + zn�1/2

h
=

�t

2
G(Un

h
) · �µUh + zn�1/2

h
(I.50)
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which leads to
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:


Mh

�t2
+ ✓Kh +

1

4
G1(U

n

h
) tG1(U

n

h
) +

1

4
G2(U

n

h
) tG2(U

n

h
)

�
Un+1
h

= Fn

h
+Mh

2Un

h
� Un�1

h

�t2
+Kh

�
(2✓ � 1)Un

h
� ✓Un�1

h

�

�G1(U
n

h
)zn�1/2

h,1 +
1

4
G1(U

n

h
) tG1(U

n

h
)Un�1

h

�G2(U
n

h
)zn�1/2

h,2 +
1

4
G2(U

n

h
) tG2(U

n

h
)Un�1

h

(I.51a)

zn+1/2
h,1 = zn�1/2

h,1 +G1(U
n

h
) ·

Un+1
h

� Un�1
h

2
(I.51b)

zn+1/2
h,2 = zn�1/2

h,2 +G2(U
n

h
) ·

Un+1
h

� Un�1
h

2
(I.51c)

and now we can use Woodbury inversion formula 2.1 to solve (I.51a) with A =
Mh

�t2
+ ✓Kh, C = I2 and

U = tV = 1
2

✓
G1(U

n

h
)

G2(U
n

h
)

◆
.

The size p of the matrix I2 + V A�1U to invert at every time step is now only 2.

Remark 2.1 If only one auxiliary variable is used, Woodbury identity becomes Sherman-Morrison formula and
the computation is even more efficient since no matrix inversion is required.

Lemma 2.2 (Sherman-Morrison formula.) [Sherman and Morrison, 1950]
Let A be a invertible square matrix of size n 2 N⇤ and u, v two column vectors of size n.
A+ u tv is invertible if and only if 1 + tvA�1u 6= 0 and we have:

�
A+ u tv

��1
= A�1 � A�1u tvA�1

1 + tvA�1u

Remark 2.2 This formula is a specific application case of Woodbury inversion formula in lemma 2.1 when the
contribution added to A is of rank 1.
The matrix A which is very often symmetric and its inverse (or at least its LU factorization) A�1 are computed
once and for all at the beginning of the simulation since they do not depend of time. Then if b is the right-hand
side of (I.51a), to implement the Sherman-Morrison formula we do at every time step:

• compute A�1b and A�1u, and notice that tuA�1 = t(A�1u) for a symmetric matrix A

• compute s =
t
uA

�1
b

1+ tuA�1u
= (A�1

u)·b
1+u·(A�1u) which is a scalar

• and finally compute A�1b+ s⇥ (A�1u)

We see that solution of (I.51a) only requires some matrix-vector and scalar products, but no extra heavy LU
factorization at every step which is a huge gain of SAV over IEQ.
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3 Numerical analysis
In this section we analyze the mathematical properties of the IEQ scheme. SAV scheme is very similar so the
results adapt easily.

It is important to recall that we study two different types of nonlinear terms:

• the ones of type 1 like F1 composed with u, F1(u)

• the ones of type 2 like F2 composed with ru, F2(ru)

A time convergence proof for type 1 nonlinear terms is given. It is uniform with respect to the CFL condition.
For type 2 we only give a time convergence proof in finite dimension with fixed space discretization and emphasize
the blocking elements for a uniform estimation of the errors.

3.1 Stability
In this section we will work with the scalar product induced by the bilinear form m. In other words we denote
(u, v)m = m(u, v) and kvk

m
=
p
m(v, v) the associated norm.

Assumption 3.1 (Equivalence of norms)
In the following we asses that there exists two constants cm and Cm such that

cm k·k(L2(⌦))p 6 k·k
m

6 Cm k·k(L2(⌦))p

meaning that the bilinear form m is coercive and continuous in
�
L2(⌦)

�p.

Let’s first recall the scheme:
Seek (uh, zh,1, zh,2) 2 Qh ⇥ Zh,1 ⇥ Zh,2 so that for all (u⇤

h
, z⇤

h,1, z
⇤
h,2) 2 Qh ⇥ Zh,1 ⇥ Zh,2 and all n 2 [[0, N ]]

8
>>>><

>>>>:

�
�2uh, u

⇤
h

�
+ a ({uh}n✓ , u

⇤
h
) + Ḡ1

⇣
un

h
, u⇤

h
, µ1/2zh,1

⌘
+ Ḡ2

⇣
un

h
, u⇤

h
, µ1/2zh,2

⌘
= fn(u⇤

h
) (I.52a)

`
⇣
�1/2zh,1, z

⇤
h,1

⌘
= Ḡ1

�
un

h
, �µ uh, z

⇤
h,1

�
(I.52b)

`
⇣
�1/2zh,2, z

⇤
h,2

⌘
= Ḡ2

�
un

h
, �µ uh, z

⇤
h,2

�
(I.52c)

and its energy identity:

�1/2Eh = fn (�µ uh) =

Z

⌦
fn

h
· �µ uh (I.53)

with
En+1/2
h

=
1

2
em (�uh, �uh) +

1

2
a (µuh, µuh) +

1

2
`
⇣
zn+1/2
h,1 , zn+1/2

h,1

⌘
+

1

2
`
⇣
zn+1/2
h,2 , zn+1/2

h,2

⌘
(I.54)

and em(u, v) = (u, v)m +�t2
�
✓ � 1

4

�
a(u, v)

In this section we use a technique of [Chabassier and Imperiale, 2017] to show uniform stability of the scheme
with respect to a CFL condition.

Definition 3.1
For each space step h we define an operator Ah : Qh �! Qh such that

8vh 2 Qh, a(uh, vh) = (Ahuh, vh)m (I.55)
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Assumption 3.2
The operator Ah is self-adjoint and positive and there exists (c0, ca) 2

�
R⇤

+

�2 such that
(
8vh 2 Qh, a(vh, vh) > 0 (I.56a)
8vh 2 Qh, a(vh, vh) + c0 kvhk2m > ca kvhk2(H1(⌦))p (I.56b)

Proposition 3.1
The spectral theorem applies to Ah. We denote by Sp(Ah) its spectrum which is a finite set of positive
eigenvalues, and there exist a family

�
w�

h

�
�2Sp(Ah)

which is a orthonormal basis of Qh such that

8vh 2 Qh,
�
Ahw

�

h
, vh

�
m

= �
�
w�

h
, vh

�
m

(I.57)

and
��w�

h

��
m

= 1

The energy I.54 can be written with two polynomials PK and PP such that:
8
>>>>>>>><

>>>>>>>>:

En+1/2
h

=
1

2

�
PK

�
�t2Ah

�
�uh, �uh

�
+

1

2

�
AhPP

�
�t2Ah

�
µuh, µuh

�

+
1

2
`
⇣
zn+1/2
h,1 , zn+1/2

h,1

⌘
+

1

2
`
⇣
zn+1/2
h,2 , zn+1/2

h,2

⌘ (I.58a)

PK(X) = 1 +

✓
✓ � 1

4

◆
X (I.58b)

PP (X) = 1 (I.58c)

Proposition 3.2 (CFL Condition)
The energy En+1/2

h
is positive for all steps n if PK(x) > 0 and xPP (x) > 0 for all x 2 [0, ⌘]:

• If ✓ > 1
4 , E

n+1/2
h

is always positive and ⌘ = +1

• If ✓ < 1
4 it is positive with CFL condition:

�t2⇢ (Ah) 6 ⌘ =
4

1� 4✓
(I.59)

where ⇢ (Ah) is the largest eigenvalue of Ah.

Definition 3.2
We suppose that there exists a a partition of [0, ⌘] = JK [ JP such that there exists two real constants
CK > 0 and CP > 0 such that

8x 2 JK , PK(x) > CK and 8x 2 JP , xPP (x) > CP (I.60)

and we introduce two projectors on corresponding frequencies of Ah:

8vh 2 Qh,

8
>>>>>><

>>>>>>:

⇧Kvh =
X

�t
2
�2JK

�2Sp(Ah)

�
w�

h
, vh

�
m
w�

h
(I.61a)

⇧P vh =
X

�t
2
�2JP

�2Sp(Ah)

�
w�

h
, vh

�
m
w�

h
(I.61b)
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Theorem 3.1 (Stability)
The IEQ scheme I.27 and SAV scheme I.44 are stable if the CFL condition 3.2 is satisfied.

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

q
En+1/2
h

6
q
E1/2
h

+ �
p
2�t

nX

j=1

���f j

h

���
(L2(⌦))p

(I.62a)

��un+1
h

��
(L2(⌦))p

6 Cm

p
2
��u0

h

��
(L2(⌦))p

+ 2�tn
q

2E1/2
h

+ 4�2�t2
nX

i=0

iX

j=1

���f j

h

���
(L2(⌦))p

(I.62b)

k�µ uhk(L2(⌦))p 6 2�
q
2E1/2

h
+ 4�2�t

nX

j=1

���f j

h

���
(L2(⌦))p

(I.62c)

���zn+1/2
h,i

���
L2(⌦)

6
q
2E1/2

h
+ 2��t

nX

j=1

���f j

h

���
(L2(⌦))p

for IEQ scheme (I.62d)

���zn+1/2
h,i

��� 6
q
2E1/2

h
+ 2��t

nX

j=1

���f j

h

���
(L2(⌦))p

for SAV scheme (I.62e)

with � =
C

�1/2
P + 1

2C
�1/2
K

cm
.

Proof
The following proof is given in [Chabassier and Imperiale, 2017] for various linear schemes. It is adapted here
for nonlinear schemes.

First notice that I.60 implies that for uh solution of I.27
(
k⇧K�uhk2m 6 C�1

K

�
PK

�
�t2Ah

�
�uh, �uh

�
m

6 2C�1
K

En+1/2
h

(I.63a)

k⇧Pµuhk2m 6 C�1
P

�
�t2AhPP

�
�t2Ah

�
µuh, µuh

�
m

6 2C�1
P

�t2En+1/2
h

(I.63b)

We start with an estimate on k�µ uhkm:

cm k�µ uhk(L2(⌦))p 6 k�µ uhkm 6 k⇧K�µ uhkm + k⇧P �µ uhkm (I.64)

6 µ k⇧K�uhkm +
2

�t
µ k⇧Pµuhkm (I.65)

6 µ
h
C�1/2

K

p
2Eh

i
+

2

�t
µ
h
�tC�1/2

P

p
2Eh

i
(I.66)

6 cm�
p
2

q
En+1/2
h

+
q

En�1/2
h

�
(I.67)

Now we can apply Cauchy-Schwarz to (I.53):

1

�t

⇣
En+1/2
h

� En�1/2
h

⌘
6 kfn

h
k(L2(⌦))p k�µ uhk(L2(⌦))p 6 �

p
2 kfn

h
k(L2(⌦))p

q
En+1/2
h

+
q
En�1/2
h

�
(I.68)

We can simplify and sum from 1 to n which gives the first result I.62a with telescopic sum.

For the second estimate on
��un+1

h

��
(L2(⌦))p

we write:
��⇧Kun+1

h

��
m

6 k⇧Kun

h
k
m
+�t k⇧K�uhkm (I.69)

6 k⇧Kun

h
k
m
+�tC�1/2

K

q
2En+1/2

h
(I.70)

and
��⇧Pu

n+1
h

��
m

6 k⇧Pu
n

h
k
m
+ 2 k⇧Pµuhkm (I.71)

6 k⇧Pu
n

h
k
m
+ 2�tC�1/2

K

q
2En+1/2

h
(I.72)

Inria



Numerical analysis of quadratized schemes 21

which implies with telescopic sums that

cm
��un+1

h

��
(L2(⌦))p

6
��un+1

h

��
m

6
��⇧Kun+1

h

��
m
+
��⇧Pu

n+1
h

��
m

6
p
2
��u0

h

��
m
+ 2cm�

p
2�t

nX

i=0

q
E i+1/2
h

(I.73)

and using (I.62a) gives the result I.62b.

The estimates on the auxiliary variables come directly from the energy:

8
><

>:

���zn+1/2
h,i

���
2

L2(⌦)
= `

⇣
zn+1/2
h,i

, zn+1/2
h,i

⌘
6 2En+1/2

h
for IEQ scheme (I.74a)

���zn+1/2
h,i

���
2
=
⇣
zn+1/2
h,i

⌘2
6 2En+1/2

h
for SAV scheme (I.74b)

and we just use I.62a again.

3.2 Discrete regularity assumptions

Assumption 3.3
Let (uh, zh,1, zh,2) the solution of the semi-discrete problem I.24.
We assume that there exists a constant Cp,q such that for all h > 0 we have

8
>><

>>:

sup
t2[0,T ]

���Ap/2
h
@q
t
uh

���
(L2(⌦))p

6 Cp,q (I.75a)

sup
t2[0,T ]

��@`
t
zh,i

��
L2(⌦)

6 Czi,` (I.75b)

In particular we suppose that I.75a is true for (p, q) 2 {(0, 0), (0, 3), (0, 4), (1, 0), (1, 3), (2, 2)}
and that I.75b is true for ` 2 {2, 3}.

Let Jh =
N[

n=0

Im (uh(t
n)) and Jr,h =

N[

n=0

Im (ruh(t
n))

Let Ih = Jh [
N[

n=0

Im (un

h
) and Ir,h = Jr,h [

N[

n=0

Im (run

h
)

with Im(u) the set of values taken by the field u.

Assumption 3.4
If the scheme is stable and for reasonably small source term and initial conditions we can assess that Ih ⇢ I
and Ir,h ⇢ Ir with I and Ir defined in assumption 2.1.

Assumption 3.5
We assume that there exist (�h,1,�h,2) 2 (R⇤

+)
2 depending on the source f such that for all (a, b) 2 Ih⇥Ir,h

��h,1

2 < F1(a) and ��h,2

2 < F2(b).
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Proposition 3.3 (Lipschitz properties of Ḡ IEQ functions)
For all u⇤

h
2 Qh and z⇤

h,1 2 Zh,1

��Ḡ1

�
uh(t

n), u⇤
h
, z⇤

h,1

�
� Ḡ1

�
un

h
, u⇤

h
, z⇤

h,1

��� 6 Cg1 kuh(t
n)� un

h
k(L2(⌦))p ku

⇤
h
k(L2(⌦))p

��z⇤
h,1

��
L2(⌦)

(I.76)

with Cg1 = 1
c1��h,1


Cdf1 sup

p2Jh

p
2F1(p) + c1 +

Cf1p
c1��h,1

sup
p2Jh

krF1(p)k2
�

and �h,1 = �2 inf
p2Ih

F1(p)

For all u⇤
h
2 Qh and z⇤

h,2 2 Zh,2

��Ḡ2

�
uh(t

n), u⇤
h
, z⇤

h,2

�
� Ḡ2

�
un

h
, u⇤

h
, z⇤

h,2

��� 6 Cg2 kuh(t
n)� un

h
k(H1(⌦))p ku

⇤
h
k(H1(⌦))p

��z⇤
h,2

��
L2(⌦)

(I.77)

with Cg2 = 1
c2��h,2


Cdf2 sup

p2Jr,h

p
2F2(p) + c2 +

Cf2p
c2��h,2

sup
p2Jr,h

krF2(p)k2
�

and �h,2 = �2 inf
p2Ir,h

F1(p)

Proof Ḡi functions inherit of the Lipschitz properties of functions Fi of assumption 2.1.

��Ḡ1

�
uh(t

n), u⇤
h
, z⇤

h,1

�
� Ḡ1

�
un

h
, u⇤

h
, z⇤

h,1

��� =

����
Z

⌦
z⇤
h,1 (G1(uh(t

n))�G1(u
n

h
)) · u⇤

h

���� (I.78)

6 kG1(uh(t
n))�G1(u

n

h
)k(L2(⌦))p ku

⇤
h
k(L2(⌦))p

��z⇤
h,1

��
L2(⌦)

(I.79)

Because of the good regularity of the square root and the Lipschitz assumptions 2.1 and 3.5 on F1 we can prove
(see [Yang and Zhang, 2020]) that for all (a, b) 2 I2

h
⇢ I2:

���
p
2F1(a) + c1 �

p
2F1(b) + c1

��� 6 1p
c1 � �h,1

|F1(a)� F1(b)| (I.80)

6 Cf1p
c1 � �h,1

ka� bk2 (I.81)

Then we have for all (a, b) 2 I2
h
⇢ I2:

kg1(a)� g1(b)k2 =

�����
rF1(a)p
2F1(a) + c1

� rF1(b)p
2F1(b) + c1

�����
2

(I.82)

=

�����

p
2F1(b) + c1rF1(a)�

p
2F1(a) + c1rF1(b)p

2F1(a) + c1
p
2F1(b) + c1

�����
2

(I.83)

6 1

c1 � �h,1

���
p
2F1(b) + c1rF1(a)�

p
2F1(a) + c1rF1(b)

���
2

(I.84)

6 1

c1 � �h,1

����
p
2F1(b) + c1 (rF1(a)�rF1(b)) (I.85)

+
⇣p

2F1(b) + c1 �
p

2F1(a) + c1
⌘
rF1(b)

����
2

6 1

c1 � �h,1


Cdf1

p
2F1(b) + c1 ka� bk2 +

Cf1p
c1 � �1

ka� bk2 krF1(b)k2
�

(I.86)

6 1

c1 � �h,1


Cdf1

p
2F1(b) + c1 +

Cf1p
c1 � �h,1

krF1(b)k2
�
ka� bk2 (I.87)

6 1

c1 � �h,1


Cdf1 sup

p2Jh

p
2F1(p) + c1 +

Cf1p
c1 � �h,1

sup
p2Jh

krF1(p)k2
�

| {z }
Cg1

ka� bk2 (I.88)
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So in the end

kG1(uh(t
n))�G1(u

n

h
)k2(L2(⌦))p =

Z

⌦
(G1(uh(t

n))�G1(u
n

h
)) · (G1(uh(t

n))�G1(u
n

h
)) (I.89)

=

Z

⌦
kg1(uh(x, t

n))� g1(u
n

h
(x))k22 dx (I.90)

6 C2
g1

Z

⌦
kuh(x, t

n)� un

h
(x)k22 dx (I.91)

6 C2
g1 kuh(t

n)� un

h
k2(L2(⌦))p (I.92)

which gives the expected result. A similar justification applies for Ḡ2.

Assumption 3.6
We assume that there exist (�h,1,�h,2) 2 (R⇤

+)
2 depending on the source f such that for all step n

��h,1

2 <
R
⌦ F1(un

h
(x))dx and ��h,2

2 <
R
⌦ F2(run

h
(x))dx

��h,1

2 <
R
⌦ F1(uh(x, tn))dx and ��h,2

2 <
R
⌦ F2(ruh(x, tn))dx.

Proposition 3.4 (Lipschitz properties of Ḡ SAV functions)
For all u⇤

h
2 Qh

��Ḡ1 (uh(t
n), u⇤

h
)� Ḡ1 (u

n

h
, u⇤

h
)
�� 6 Cg1 kuh(t

n)� un

h
k(L2(⌦))p ku

⇤
h
k(L2(⌦))p (I.93)

with Cg1 = 1
c1��h,1


Cdf1 sup

n2[[0,N ]]

q
2
R
⌦ F1(uh(x, tn))dx+ c1 +

Cf1p
c1��h,1

sup
p2Jh

krF1(p)k2
�

and �h,1 = �2 inf
n2[[0,N ]]

R
⌦ F1(uh(x, tn))dx

For all u⇤
h
2 Qh

��Ḡ2 (uh(t
n), u⇤

h
)� Ḡ2 (u

n

h
, u⇤

h
)
�� 6 Cg2 kuh(t

n)� un

h
k(H1(⌦))p ku

⇤
h
k(H1(⌦))p (I.94)

with Cg2 = 1
c2��h,2


Cdf1 sup

n2[[0,N ]]

q
2
R
⌦ F2(ruh(x, tn))dx+ c2 +

Cf1p
c2��h,2

sup
p2Jr,h

krF2(p)k2
�

and �h,2 = �2 inf
n2[[0,N ]]

R
⌦ F2(ruh(x, tn))dx

Proof Ḡi functions inherit of the Lipschitz properties of functions Fi of assumption 2.1.

��Ḡ1 (uh(t
n), u⇤

h
)� Ḡ1 (u

n

h
, u⇤

h
)
�� =

����
Z

⌦
(G1(uh(t

n))�G1(u
n

h
)) · u⇤

h

���� (I.95)

6 kG1(uh(t
n))�G1(u

n

h
)k(L2(⌦))p ku

⇤
h
k(L2(⌦))p (I.96)

Because of the good regularity of the square root and the Lipschitz assumptions 2.1 and 3.6 we can prove that
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the quantity IF1(u) =
q
2
R
⌦ F1(u(x, t))dx+ c1 verifies:

|IF1(uh(t
n))� IF1(u

n

h
)| 6 1p

c1 � �h,1

����
Z

⌦
F1(uh(x, t

n))dx�
Z

⌦
F1(u

n

h
(x))dx

���� (I.97)

6 1p
c1 � �h,1

Z

⌦
|F1(uh(x, t

n))� F1(u
n

h
(x))| dx (I.98)

6 Cf1p
c1 � �h,1

Z

⌦
kuh(x, t

n)� un

h
(x)k2 dx (I.99)

6 Cf1p
c1 � �h,1

kuh(t
n)� un

h
k(L1(⌦))p (I.100)

6 Cf1

s
|⌦|

c1 � �h,1
kuh(t

n)� un

h
k(L2(⌦))p thanks to Hölder inequality (I.101)

Then we have

kg1(uh(x, t
n))� g1(u

n

h
(x))k2 =

����
rF1(uh(x, tn))

IF1(uh(tn))
� rF1(un

h
(x))

IF1(un

h
)

����
2

(I.102)

=

����
IF1(un

h
)rF1(uh(x, tn))� IF1(uh(tn))rF1(un

h
(x))

IF1(un

h
)IF1(uh(tn))

����
2

(I.103)

6 1

c1 � �h,1
kIF1(u

n

h
)rF1(uh(x, t

n))� IF1(uh(t
n))rF1(u

n

h
(x))k2 (I.104)

6 1

c1 � �h,1
kIF1(uh(t

n)) (rF1(uh(x, t
n))�rF1(u

n

h
(x))) (I.105)

+ (IF1(uh(t
n))� IF1(u

n

h
))rF1(uh(x, t

n))k2

6 1

c1 � �h,1


|IF1(uh(t

n))|Cdf1 kuh(x, t
n)� un

h
(x)k2 (I.106)

+ Cf1

s
|⌦|

c1 � �h,1
kuh(t

n)� un

h
k(L2(⌦))p krF1(uh(x, t

n))k2
�

6
kuh(tn)� un

h
k(L2(⌦))p

c1 � �h,1


Cdf1 |IF1(uh(t

n))| (I.107)

+ Cf1

s
|⌦|

c1 � �h,1
krF1(uh(x, t

n))k2
�

6
kuh(tn)� un

h
k(L2(⌦))p

c1 � �h,1


Cdf1 sup

n2[[0,N ]]
|IF1(uh(t

n))| (I.108)

+ Cf1

s
|⌦|

c1 � �h,1
sup
p2Jh

krF1(p)k2
�

So in the end

kG1(uh(t
n))�G1(u

n

h
)k2(L2(⌦))p =

Z

⌦
(G1(uh(t

n))�G1(u
n

h
)) · (G1(uh(t

n))�G1(u
n

h
)) (I.109)

=

Z

⌦
kg1(uh(x, t

n))� g1(u
n

h
(x))k22 dx (I.110)

6 C2
g1 ku1 � u2k2(L2(⌦))p (I.111)

with Cg1 =
1

c1 � �h,1

 
Cdf1 sup

n2[[0,N ]]
|IF1(uh(t

n))|+ Cf1

s
|⌦|

c1 � �h,1
sup
p2Jh

krF1(p)k2

!

which gives the expected result. A similar justification applies for Ḡ2.
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3.3 Consistency

Let ✏n
h,u

:
�
H1(⌦)

�p �! R, ✏n
h,z1 : H1(⌦) �! R and ✏n

h,z2 : L2(⌦) �! R the truncation errors of the scheme
such that

8
>>>>>>><

>>>>>>>:

✏n
h,u

(u⇤
h
) = m

�
�2uh(t

n), u⇤
h

�
+ a ({uh}✓ (t

n), u⇤
h
)

+ Ḡ1

⇣
uh(t

n), u⇤
h
, µ1/2zh,1(t

n)
⌘
+ Ḡ2

⇣
uh(t

n), u⇤
h
, µ1/2zh,2(t

n)
⌘
� fn(u⇤

h
)

(I.112a)

✏n
h,z1(z

⇤
h,1) = `

⇣
�1/2zh,1(t

n), z⇤
h,1

⌘
� Ḡ1

�
uh(t

n), �µ uh(t
n), z⇤

h,1

�
(I.112b)

✏n
h,z2(z

⇤
h,2) = `

⇣
�1/2zh,2(t

n), z⇤
h,2

⌘
� Ḡ2

�
uh(t

n), �µ uh(t
n), z⇤

h,2

�
(I.112c)

Theorem 3.5 (Consistency)
If assumption 3.3 holds, the scheme I.32 is consistent in O(�t2) and we have:

8 (u⇤
h
, z⇤

h,1, z
⇤
h,2) 2 Qh ⇥ Zh,1 ⇥ Zh,2,

8
>><

>>:

��✏n
h,u

(u⇤
h
)
�� 6 C✏,u�t2 ku⇤

h
k(H1(⌦))p (I.113a)

��✏n
h,z1(z

⇤
h,1)

�� 6 C✏,z1�t2
��z⇤

h,1

��
L2(⌦)

(I.113b)
��✏n

h,z2(z
⇤
h,2)

�� 6 C✏,z2�t2
��z⇤

h,2

��
L2(⌦)

(I.113c)

Corollary 3.1 (Modified Consistency)
If there is no type 2 nonlinear term in the equations and if assumption 3.3 holds, the scheme I.32 is
consistent in O(�t2) and we have:

8 (u⇤
h
, z⇤

h,1) 2 Qh ⇥ Zh,1,

( ��✏n
h,u

(u⇤
h
)
�� 6 C✏,u�t2 ku⇤

h
k(L2(⌦))p (I.114a)

��✏n
h,z1(z

⇤
h,1)

�� 6 C✏,z1�t2
��z⇤

h,1

��
L2(⌦)

(I.114b)

The difference is in the norm used for u⇤
h
: it is H1 for the general case in the theorem above, and L2 in

this simplified case because there is no gradient nonlinear term.

Proof Thanks to Taylor-Lagrange expansion we have (⌧i)16i68 2 ]tn�1, tn+1[8 so that:

8
>>>>>>>>>><

>>>>>>>>>>:

✏n
h,u

(u⇤
h
) =

�t2

12
m
⇣
u(4)
h

(⌧1), u
⇤
h

⌘
+ ✓�t2a

⇣
u(2)
h

(⌧2), u
⇤
h

⌘

+
�t2

8
Ḡ1

⇣
uh(⌧3), u

⇤
h
, z(2)

h,1(⌧4)
⌘
+

�t2

8
Ḡ2

⇣
uh(⌧3), u

⇤
h
, z(2)

h,2(⌧5)
⌘ (I.115a)

✏n
h,z1(z

⇤
h,1) =

�t2

24
`
⇣
z(3)
h,1(⌧6), z

⇤
h,1

⌘
� �t2

3
Ḡ1

⇣
uh(⌧3), u

(3)
h

(⌧8), z
⇤
h,1

⌘
(I.115b)

✏n
h,z2(z

⇤
h,2) =

�t2

24
`
⇣
z(3)
h,2(⌧7), z

⇤
h,2

⌘
� �t2

3
Ḡ2

⇣
uh(⌧3), u

(3)
h

(⌧8), z
⇤
h,2

⌘
(I.115c)
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Then using continuity of Ḡi provided by proposition 3.3 and continuity of the bilinear forms we have:
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

��✏n
h,u

(u⇤
h
)
�� 6 �t2


Cm

12

���u(4)
h

(⌧1)
���
(L2(⌦))p

ku⇤
h
k(L2(⌦))p + ✓

���Ahu
(2)
h
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���
(L2(⌦))p

ku⇤
h
k(L2(⌦))p

+
Cg1

8
kuh(⌧3)k(L2(⌦))p

���z(2)
h,1(⌧4)

���
L2(⌦)

ku⇤
h
k(L2(⌦))p

+
Cg2

8
kuh(⌧3)k(H1(⌦))p

���z(2)
h,2(⌧5)

���
L2(⌦)
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h
k(H1(⌦))p

�
(I.116a)

��✏n
h,z1(z

⇤
h,1)

�� 6 �t2

C`

24

���z(3)
h,1(⌧6)

���
L2(⌦)

+
Cg1

3
kuh(⌧3)k(L2(⌦))p

���u(3)
h

(⌧8)
���
(L2(⌦))p
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��
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(I.116b)

��✏n
h,z2(z

⇤
h,2)

�� 6 �t2

C`

24

���z(3)
h,2(⌧7)

���
L2(⌦)

+
Cg2

3
kuh(⌧3)k(H1(⌦))p

���u(3)
h

(⌧8)
���
(H1(⌦))p

� ��z⇤
h,2

��
L2(⌦)

(I.116c)

which proves the theorem with the constants:
8
>>>>><

>>>>>:

C✏,u =
1

12
CmC0,4 + ✓C2,2 +

1

8
Cg1C0,1Cz1,2 +

1

8
Cg2C0,1Cz2,2 (I.117a)

C✏,z1 =
1

24
C`Cz1,3 +

1

3
Cg1C0,1C0,3 (I.117b)

C✏,z2 =
1

24
C`Cz2,3 +

1

3
Cg2C0,1C1,3 (I.117c)

with Cm and C` the continuity constants of m and ` and also the constants of assumption 3.3.

Remark 3.1 It is actually possible to assess less space regularity on the semi-discrete solution by using a
discrete summation by parts on the term a(u(2)

h
, u⇤

h
) as done in [Chabassier and Imperiale, 2021]. (p, q) = (1, 3)

in assumption 3.3 is sufficient and (p, q) = (2, 2) would not be required.

Inria



Numerical analysis of quadratized schemes 27

3.4 Convergence for type 1 nonlinear terms
In this section we study the convergence of a scheme without a nonlinear term of type 2 .

The simplified scheme is:
Seek (uh, zh,1, zh,2) 2 Qh ⇥ Zh,1 ⇥ Zh,2 so that for all (u⇤

h
, z⇤

h,1, z
⇤
h,2) 2 Qh ⇥ Zh,1 ⇥ Zh,2 and all n 2 [[0, N ]]

8
><
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�
�2uh, u

⇤
h

�
+ a ({uh}n✓ , u

⇤
h
) + Ḡ1

⇣
un

h
, u⇤

h
, µ1/2zh,1

⌘
= fn(u⇤

h
) (I.118a)

`
⇣
�1/2zh,1, z

⇤
h,1

⌘
= Ḡ1

�
un

h
, �µ uh, z

⇤
h,1

�
(I.118b)

Let en
u
= uh(tn)� un

h
and en+1/2

z = zh,1(tn+1/2)� zn+1/2
h,1 the time-discretization errors.

Theorem 3.7 (Convergence)
If the CFL condition 3.2 is satisfied and if the scheme is consistent in the sense of corollary 3.1, then the
IEQ scheme I.118 converges with order 2 and:

8
<

:

ken
u
k(L2(⌦))p 6 2� (2�C✏,u + C✏,z1)T

2�t2 eCT
2

(I.119a)
���en+1/2

z

���
L2(⌦)

6 (2�C✏,u + C✏,z1)T�t2 eCT
2

(I.119b)

with
C = 2�Cg1

✓
2� max

n2[[0,N ]]

���zn+1/2
h,1

���
L2(⌦)

+ max
n2[[0,N ]]

k�µ uhk(L2(⌦))p

◆
(I.120)

and � =
C

�1/2
P + 1

2C
�1/2
K

cm
.

The result for SAV is the exact same with an absolute value | · | instead of the k·k
L2(⌦) norm on the z

quantities.

Proof
We first subtract the scheme I.118 to the truncation errors I.112:

8
>>><

>>>:

m
�
�2eu, u

⇤
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�
+ a ({eu}n✓ , u

⇤
h
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⇣
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`
⇣
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⇤
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⌘
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h
)� Ḡ1

�
un

h
, �µ uh, z

⇤
h,1

�
+ ✏n

h,z1(z
⇤
h,1) (I.121b)

Using u⇤
h
= �µ eu and z⇤

h,1 = µ1/2ez1 we obtain an energy identity with the errors:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

�1/2Ee = ✏n
h,u

(�µ eu) + ✏n
h,z1

⇣
µ1/2ez1

⌘
+Rn

1 +Rn

2 (I.122a)

En+1/2
e

=
1

2
em (�eu, �eu) +

1

2
a (µeu, µeu) +

1

2
`
⇣
en+1/2
z1 , en+1/2

z1

⌘
(I.122b)

Rn

1 = Ḡ1

⇣
uh(t

n), �µ eu, µ
1/2zh,1

⌘
� Ḡ1

⇣
un

h
, �µ eu, µ

1/2zh,1
⌘

(I.122c)

Rn

2 = �Ḡ1

⇣
uh(t

n), �µ uh, µ
1/2ez1

⌘
+ Ḡ1

⇣
un

h
, �µ uh, µ

1/2ez1
⌘

(I.122d)

Now using proposition 3.3 we can have:
8
>>><

>>>:

|Rn

1 | 6 Cg1 kenuk(L2(⌦))p k�µ euk(L2(⌦))p

���µ1/2zh,1
���
L2(⌦)

(I.123a)

|Rn

2 | 6 Cg1 kenuk(L2(⌦))p k�µ uhk(L2(⌦))p

���µ1/2ez1
���
L2(⌦)

(I.123b)
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and to estimate the error ken
u
k(L2(⌦))p with the error-energy we write:

��⇧Ken+1
u

��
m

6 k⇧Ken
u
k
m
+�t k⇧K�eukm (I.124)

6 k⇧Ken
u
k
m
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K

q
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e (I.125)

and
��⇧P e

n+1
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��
m

6 k⇧P e
n

u
k
m
+ 2 k⇧Pµeukm (I.126)

6 k⇧P e
n

u
k
m
+ 2�tC�1/2

P

q
2En+1/2

e (I.127)

which implies with telescopic sums that

cm ken
u
k(L2(⌦))p 6 ken

u
k
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u
k
m
+ k⇧P e
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u
k
m

6
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2
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u

��
m
+ 2cm�

p
2�t

n�1X

i=0

q
E i+1/2
e (I.128)

and we also assess in the following that the initial error e0
u
= 0.

Let’s sum up the bounds we use:
8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

���µ1/2zh,1
���
L2(⌦)

6 max
n2[[0,N ]]
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���
L2(⌦)
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◆
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k�µ uhk(L2(⌦))p 6 max
n2[[0,N ]]

k�µ uhk(L2(⌦))p := U̇max because of I.62b (I.129c)

k�µ euk(L2(⌦))p 6 �
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1 | 6 4�2Cg1�t Z1,max

✓q
En+1/2
e +

q
En�1/2
e

◆ n�1X
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◆ n�1X
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We now apply those bounds to I.122a we have:
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◆
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C
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q
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e

◆ n�1X
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q
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(I.130)

We can now simplify with
q

En+1/2
e +

q
En�1/2
e and sum from 1 to n:

q
En+1/2
e 6 �

p
2�t2C✏,uT +

�t2p
2
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| {z }
=A�t2

+C�t2
n�1X
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We can now apply the modified Gronwall lemma A.1.
q
En+1/2
e 6 A�t2 eC�t

2
n0(n0+1) 6 A�t2 eCT

2

(I.132)

and use this result in I.128 which gives:

cm ken
u
k(L2(⌦))p 6 ken

u
k
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6 2�
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2TA�t2 eCT
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(I.133)

and then finally
ken

u
k(L2(⌦))p 6 2� (2�C✏,u + C✏,z1)T

2�t2 eCT
2

(I.134)

3.5 Convergence for type 2 nonlinear terms
To prove convergence for a scheme with a nonlinear term of type 2 like F2(ru), we would proceed just like
before and write an energy on the errors:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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⇣
µ1/2ez2
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⌘
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⌘
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⇣
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⌘
+ Ḡ2

⇣
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h
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Unfortunately, proposition 3.4 gives
8
>>><

>>>:
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1 | 6 Cg2 kenuk(H1(⌦))p k�µ euk(H1(⌦))p

���µ1/2zh,2
���
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|Rn

2 | 6 Cg2 kenuk(H1(⌦))p k�µ uhk(H1(⌦))p

���µ1/2ez2
���
L2(⌦)

(I.136b)

with H1 norms which we are not able to control by the energy.
We could try three solutions to bound the errors:

• ken
u
k
H1 6 kµeukH1 + �t

2 k�eukH1 but the norm k�eukH1 does not appear in the energy.

• ken
u
k
H1 6

��en�1
u

��
H1 +�t

����en�1/2
u

���
H1

6
��e0

u

��
H1 +�t

P����ej�1/2
u

���
H1

but the norms
����ej�1/2

u

���
H1

do not
appear in the energy.

• ken
u
k
H1 6

��en�1
q

��
H1 +2

���µen�1/2
u

���
H1

6
��e0

u

��
H1 +2

P���µej�1/2
u

���
H1

which can be controlled by the energy
but the lack of �t in front of the sum makes it inconsistant with a continuous intergral and leads to a
less-than-quadratic result.

• Also the decomposition with the projectors ⇧K and ⇧P is not possible with H1 norms to the best of our
knowledge.

An inverse inequality assessing equivalence of norms in finite dimension k.k
H1 6 ch k.kL2 is sufficient to com-

plete a time convergence proof following the previous proof sketch. However it does not give proper space-time
convergence results since the constant ch diverges for h ! 0.

The numerical convergence results in the next part about the piano string seem to show that such a scheme
with type 2 nonlinear term does not space-time converge without extra assumptions.
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4 Phase formulation of quadratized schemes
As a reminder, the abstract problem I.1 is

@2
t
Mu� Div (Aru+rF2(ru)) +rF1(u) = f (I.137)

It can be reformulated as a phase formulation with an extra field p such that
⇢
p = @tu (I.138a)
M@tp� Div (Aru+rF2(ru)) +rF1(u) = f (I.138b)

The quadratization techniques still apply and can derive modified P-IEQ and P-SAV schemes based on I.138.

4.1 Phase P-IEQ numerical scheme
Weak semi-discrete formulation of the quadratized equations are given directly since the quadratization process
does not change at all.
p is sought in

�
H1(⌦)

�p and ph in Qh similarly to the fields u and uh.

Find (uh, ph) 2 Q2
h

and zh,i 2 Zh,i such that for all (u⇤
h
, p⇤

h
) 2 Q2

h
and all z⇤

h,i
2 Zh,i:
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>>>:
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⇤
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) = `(@tuh, u
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) (I.139a)

m(@tph, p
⇤
h
) + a(uh, p

⇤
h
) + Ḡ1(uh, p

⇤
h
, zh,1) + Ḡ2(uh, p

⇤
h
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h
) (I.139b)

`(@tzh,1, z
⇤
h,1) = Ḡ1(uh, ph, z

⇤
h,1) (I.139c)

`(@tzh,2, z
⇤
h,2) = Ḡ2(uh, ph, z

⇤
h,2) (I.139d)

Which leads to the fully-discrete scheme inspired from [Jiang et al., 2019] where all the variables Ph, Uh and
Zh,i are discretized on the same time grid tn

Numerical Scheme 4.1 (P-IEQ Time Scheme)
8
>>><

>>>:

µPh = �Uh (I.140a)

Mh�Ph +KhµUh + tG1(⇡Uh)µZh,1 +
tG2(⇡Uh)µZh,2 = Fn+1/2

h
(I.140b)

Lh,1�Zh,1 = G1(⇡Uh)µPh (I.140c)
Lh,2�Zh,2 = G2(⇡Uh)µPh (I.140d)

where ⇡Uh is any second order consistent extrapolation of Uh(tn+1/2). For example ⇡Uh = 1
2

�
3Un

h
� Un�1

h

�
.

Note that this scheme has the same computational complexity as I.27 as soon as ⇡Uh is explicit.

This I.140 P-IEQ scheme has the discrete energy conservation law

Theorem 4.1 (Discrete energy Identity of P-IEQ scheme)

�Eh = Fn+1/2
h

· µPh (I.141)

with
En

h
=

1

2
MhP

n

h
· Pn

h
+

1

2
KhU

n

h
· Un

h
+

1

2
Lh,1Z

n

h,1 · Zn

h,1 +
1

2
Lh,2Z

n

h,2 · Zn

h,2 (I.142)
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4.2 Phase P-SAV numerical scheme
Find (uh, ph) 2 Q2

h
and (zh,1, zh,2) 2 R2 such that for all (u⇤

h
, p⇤

h
) 2 Q2

h
:

8
>>><

>>>:

`(ph, u
⇤
h
) = `(@tuh, u

⇤
h
) (I.143a)

m(@tph, p
⇤
h
) + a(uh, p

⇤
h
) + zh,2Ḡ2(uh, p

⇤
h
) + zh,1Ḡ1(uh, p

⇤
h
) = f(p⇤

h
) (I.143b)

żh,1 = Ḡ1(uh, ph) (I.143c)
żh,2 = Ḡ2(uh, ph) (I.143d)

Which leads to the fully-discrete scheme inspired from [Jiang et al., 2019]

Numerical Scheme 4.2 (P-SAV Time Scheme)
8
>>><

>>>:

µPh = �Uh (I.144a)

Mh�Ph +KhµUh + µzh,1 G1(⇡Uh) + µzh,2 G2(⇡Uh) = Fn+1/2
h

(I.144b)
�zh,1 = G1(⇡Uh) · µPh (I.144c)
�zh,2 = G2(⇡Uh) · µPh (I.144d)

where ⇡Uh is any second order consistent extrapolation of Uh(tn+1/2). For example ⇡Uh = 1
2

�
3Un

h
� Un�1

h

�
.

Note that this scheme has the same computational complexity as I.44 as soon as ⇡Uh is explicit.

This I.144 P-SAV scheme has the discrete energy conservation law

Theorem 4.2 (Discrete energy Identity of P-SAV scheme)

�Eh = Fn+1/2
h

· µPh (I.145)

with
En

h
=

1

2
MhP

n

h
· Pn

h
+

1

2
KhU

n

h
· Un

h
+

1

2

�
zn
h,1

�2
+

1

2

�
zn
h,2

�2 (I.146)

Remark 4.1 With these schemes it is possible to derive H1 bound for the time discretization error eu for
nonlinear terms of type 1 [Jiang et al., 2019].
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Part II

Simulation of the nonlinear piano string
The string is the key element of the piano which is the source of all the vibrations. After those vibrations are
created they are transmitted to a soundboard and are radiated in the air.
In the perspective of creating artificial sounds with computer simulation and because of this particular role,
precise and fast numerical methods are required for solving the string equations.
[Chabassier and Joly, 2010], [Chabassier, 2012] and [Ducceschi and Bilbao, 2022][Ducceschi et al., 2022] use two
different approaches. One with Discrete Gradient scheme and quasi-Newton solver which can be really slow and
have trouble converging for highly nonlinear cases, and the other with quadratized scheme which are faster but
for which no real mathematical studies were carried out.
In the following we apply the theoretical results of I concerning SAV to the piano string and relate them to
numerical simulations. We also give some comparisons between the Discerte Gradient (GRAD) and the SAV
schemes.

1 Piano string model

A non-stiff non-damped piano string of length L can be modeled with the general equation given in [Chabassier, 2012]:
For x 2 [0, L] and t 2 [0, T ], q ⌘ q(x, t) 2 R2 verifies

M@2
t
q � @x (A@xq +rU(@xq)) = f(x, t) (II.1)

For the so-called Geometrically Exact Model (GEM) we have:

q =

✓
u
v

◆
, M =

✓
⇢S 0
0 ⇢S

◆
, A =

✓
ES 0
0 ES

◆
, U(u, v) = (ES � T0)

h
(1 + v)�

p
u2 + (1 + v)2

i
(II.2)

with the density ⇢, the section S, the Young modulus E and the tension at rest T0.
u and v stand for the transverse and longitudinal displacement of the string.

Note that adding an affine contribution to U does not change the equation II.1.

At t = 0 we consider the string at rest:

8x 2 [0, L],

(
q(x, t = 0) = 0

@tq(x, t = 0) = 0
(II.3)

and we set Dirichlet boundary conditions:

8t 2 [0, T ], q(0, t) = q(L, t) = 0 (II.4)

Theorem 1.1 (Classical Solution)
The Geometrically Exact Model II.1 with non-zero initial conditions with no source term and boundary
conditions II.4 has a unique solution q 2 C 2 (R⇥ R+).

Proof The proof is given in [Chabassier, 2012] using the theorem of [Ta-Tsien et al., 1994] for small enough
initial conditions and no source term.
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Proposition 1.1 (A-priori estimates)
Let q be a solution of II.1 with conditions II.3 and II.4 and let f 2 L1

�
[0, T ], L2

�
.

For all t 2 [0, T ] we have

kq̇(·, t)k
L2 6 1

⇢S

Z
t

0
kf(·, s)k

L2 ds (II.5)

|q(·, t)|
H1 6 1p

⇢ST0

Z
t

0
kf(·, s)k

L2 ds (II.6)

kq(·, t)k
L2 6 1

⇢S

Z
t

0
(t� s) kf(·, s)k

L2 ds (II.7)

Proof See [Chabassier, 2012] for details about the proof.

2 Properties of the nonlinear function

As mentioned in part I in remark 1.2, we can introduce a matrix ↵ =

✓
↵1 0
0 ↵2

◆
such that II.1 writes

M@2
t
q � @x (↵A@xq +rU↵(@xq)) = f(x, t) (II.8)

with
8p 2 R2, U↵(p) =

1

2
(I2 � ↵)Ap · p+ U(p) (II.9)

Proposition 2.1 (Special value of ↵)
↵⇤ = diag

�
T0
ES

, 1
�

is a particular value of ↵ which makes the quadratic terms of U↵ vanish around (0, 0).

Proof

U↵⇤(u, v) ⇠ 1

2

✓
ES � T0 0

0 0

◆✓
u
v

◆
·
✓
u
v

◆
(II.10)

+(T0 � ES)


1 +

1

2
(2v + v2 + u2)� 1

8
(2v + v2 + u2)2 � (1 + v)

�

⇠ 1

2
(ES � T0)u

2 + (T0 � ES)


1

2
(u2 + v2)� 1

2
v2 � 1

8
(v4 + u4 + 4v3 + 4vu2 + 2v2u2)

�
(II.11)

⇠ 1

8
(ES � T0)

⇥
v4 + u4 + 4v3 + 4vu2 + 2v2u2

⇤
(II.12)

Proposition 2.2 The function U↵ verifies

8p 2 R2, krU↵(p)k2 6 M↵ (1 + kpk2) (II.13)

with M↵ = ESmax
�
1�max(↵), 2T0

ES

�

Proof rU↵(u, v) = (IN � ↵)A

✓
u
v

◆
� (ES � T0)


1p

u2+(1+v)2

✓
u

1 + v

◆
�
✓
0
1

◆�

Which gives that
krU↵(p)k2 6 ES(1� ↵max) kpk2 + 2|ES � T0| 6 M↵(1 + kpk2)
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Proposition 2.3 The nonlinear function U↵ and its gradient rU↵ verify the Lipschitz assumptions 2.1.

Proof U↵ and rU↵ are not well-defined at point (0,�1) but are C1 everywhere else.
So they are Lipschitzian on the bounded domain Ir =

�
(x, y) 2 R2 | x2 + y2 < 1

 

3 Numerical schemes for the piano string
The results of part I apply to the piano string with F1 = 0 and F2 = U↵.

3.1 Invariant Energy Quadratization (IEQ)
The auxiliary variable is defined as

z(x, t) =
p
2U↵(@xq(x, t)) + c (II.14)

and the auxiliary function
8p 2 R2, g↵(p) =

1p
2U↵(p) + c

rU↵(p) (II.15)

The IEQ weak formulation of the piano string writes:
Seek q 2

�
H1

0 ([0, L])
�2 and z 2 L2([0, L]) such that for all q⇤ 2

�
H1

0 ([0, L])
�2 and all z⇤ 2 L2([0, L]):

8
>>><

>>>:

Z
L

0
@2
t
Mq · q⇤ +

Z
L

0
A@xq · @xq⇤ +

Z
L

0
zG↵(@xq) · @xq⇤ =

Z
L

0
f · q⇤ (II.16a)

Z
L

0
@tzz

⇤ =

Z
L

0
z⇤G↵(@xq) · @t@xq (II.16b)

Proposition 3.1 (Special value of ↵)

↵⇤ = diag
�

T0
ES

, 1
�

is the only value of ↵ for which rg↵⇤(0, 0) =

✓
0
0

◆
.

Proof
rg↵ =

r2U↵p
2U↵ + c

� rU↵
trU↵

p
2U↵ + c

3 (II.17)

Elementary algebraic calculations show that

rg↵(0, 0) =
r2U↵(0, 0)p

c
=

1p
c


(I2 � ↵)A� (ES � T0)

✓
1 0
0 0

◆�
(II.18)

which concludes the proof.

From proposition 3.3 we can give expressions of the Lipschitz constant of g↵ named Cg↵.

Cg↵ =
1

c� �h


CrU↵ sup

p2Jr,h

p
2U↵(p) + c+

CU↵p
c� �h

sup
p2Jr,h

krU↵(p)k2
�

(II.19)

�h = �2 inf
p2Ir,h

U↵(p) is the minimal value of the nonlinear function and c is chosen so that c� �h > 0.

It also depends on the Lipschitz constants CU↵ and CrU↵ of the nonlinear functions U↵ and rU↵ defined by
8
><

>:

CU↵ = sup
p2Ir,h

krU↵(p)k2 (II.20a)

CrU↵ = sup
p2Ir,h

������r2U↵(p)
������

2
= sup

p2Ir,h

⇢
�
r2U↵(p)

�
(II.20b)
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Figure 1: First component of function g↵ for ↵1 = 0 (left), ↵1 = ↵⇤
1 = T0

ES
(center) and ↵1 = 1 (right).

in accordance with assumption 2.1 and with ⇢(·) being the spectral radius.

The last proposition 3.1 shows that the nonlinear function g↵⇤ is flat around the origin (0, 0) which means that
the Lipschitz constant Cg↵ will tend to be smaller for this particular value ↵⇤.

Figure 2: Second component of function g↵ for ↵2 = 0.9 (left), ↵2 = ↵⇤
2 = 1 (center) and ↵2 = 1.1 (right).

Figure 3: Values on the Lipschitz constant Cg↵ with respect to the value of ↵.

The smallest possible value for Cg↵ is indeed obtained with ↵ = diag(↵1,↵2) = diag
�

T0
ES

, 1
�
= ↵⇤ as shown on

figure 3.
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The auxiliary constant c also has an influence on the value of the Lipschitz constant. For c = 0, g↵ is not even
continuous around (0, 0). The larger c gets, the smother g↵ becomes.

Figure 4: First component of function g↵ for c = 0 (left), c = 10�12 (center) and c = 1 (right).

Figure 5: Values on the Lipshitz constant Cg↵ with respect to the value of c.

Since the string vibrations tend to be small, using ↵⇤ and a large auxiliary constant c in the simulations should
make the convergence bounds more sharp in the theorem 3.7 and increase precision of the scheme.

Note that the figures of this section shows Lipschitz constants computed on a rectangular set centered on (0,0)
Ir,h = Jr,h. In practice, the solutions live in a more restricted domain so the Lipschitz constant may vary
from one simulation to another.
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3.2 Scalar Auxiliary Variable (SAV)
The auxiliary variable is defined as

z(t) =

s

2

Z
L

0
U↵(@xq(x, t))dx+ c (II.21)

and the auxiliary functions

8q 2
�
H1

0 ([0, L])
�2

, 8(x, t) 2 [0, L]⇥ [0, T ], g↵(q(x, t)) =
1q

2
R
⌦ U↵(@xq(s, t))ds+ c

rU↵(@xq(x, t)) (II.22)

8(q, q⇤) 2
�
H1

0 ([0, L])
�2 ⇥

�
H1

0 ([0, L])
�2

, Ḡ↵ (@xq, @xq
⇤) =

Z
L

0
g↵(q(x, t)) · @xq⇤(x)dx (II.23)

The SAV weak formulation of the piano string writes:
Seek q 2

�
H1

0 ([0, L])
�2 and z : [0, T ] �! R such that for all q⇤ 2

�
H1

0 ([0, L])
�2:

8
<

:

Z
L

0
@2
t
Mq · q⇤ +

Z
L

0
A@xq · @xq⇤ + zḠ↵(@xq, @xq

⇤) =

Z
L

0
f · q⇤ (II.24a)

@tz = Ḡ↵(@xq, @t@xq) (II.24b)

The SAV Lipschitz constant is a lot more complex to compute because it depends on the semi-discrete solution.
We do not show the plots of the previous section with SAV.
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4 Numerical results
For the following simulations we use a piano string whose physical parameters are

L (m) S (m2) ⇢ (kg/m3) T0 (N) E (Pa)
1.0 9.7993 · 10�7 7850 880 2.02 · 1011

It gives a 169 Hz fundamental transverse frequency (which is approximately the note E3) and 2536 Hz for the
longitudinal frequency.

We use a C1 source in space and time applied on the transverse direction and defined by

f(x, t) =

(
A e

1� 1

1�( x�x0
�x )2 e

1� 1

1�( t�t0
�t

)2 if (x, t) 2 [x0 � �x, x0 + �x]⇥ [t0 � �t, t0 + �t]

0 elsewhere

with A = 1000, t0 = 0.3ms, �t = 0.2ms, x0 = L/4 and �x = L/10, meaning that the source starts at t = 0.1ms
and ends at t = 0.5ms.

Figure 6: Source function for fixed time (left) and fixed space (right).

Until contrary mention a ✓ = 1/4 scheme is used which is unconditionally stable, along with fourth order finite
elements and the ↵ = ↵⇤ stabilization.

The schemes presented in part I have been implemented in the C++ Finite Elements solver MONTJOIE1.

Along with the IEQ and SAV schemes we also present some numerical results obtained with a discrete gradient
scheme (GRAD) solved with quasi-Newton iterations whose details can be found in [Chabassier, 2012].

The reference solution mentioned in this section is computed with the discrete gradient scheme (GRAD) with
2048 elements of order 4 with time step �t = 2.10�9s and with ’long double’ precision using MFPR2 multiple
precision library.

1https://www.math.u-bordeaux.fr/~durufle/montjoie/index.php
2https://www.mpfr.org
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4.1 Solutions of the schemes
Figure 7 shows converged SAV simulations of the considered piano string on a 20ms interval at point x = L/4.

Figure 7: Transverse and Longitudinal displacements of the string at x = L/4 computed with SAV.

Figure 8: Computation costs of the schemes with respect to accuracy on transverse component u.

Figure 8 shows some computation times and associated errors for 1ms long simulations and for some fixed ratio
between the time and space steps �t and �x which is

�t2⇢
�
M�1

h
Kh

�
= ⌘

IEQ is clearly not a good scheme to use in terms of efficiency even with a Woodbury inversion since its cost

RR n° 9516



40 Castera & Chabassier

increases very rapidly even for large errors.
Compared to the Discrete Gradient with quasi-Newton solver, SAV with Sherman-Morrison is 14 times faster in
average to reach a desired precision, but it has some convergence issues that we will investigate in the following
sections.

4.2 Energy preservation

The energy balance should be respected with a margin due to machine error on the residuals:

En+1/2
h

� En�1/2
h

Emax

� Fn

h
·
Un+1
h

� Un�1
h

2Emax

= " (II.26)

Figure 9: Energy conservation residuals " of IEQ and SAV schemes.

Both IEQ and SAV schemes show very good energy preservation as illustrated in figure 9.
The noisy part at the beginning of the simulation corresponds to application of the source term. When it stops
at t = 0.5ms the string oscillates freely and we clearly observe multiples of the machine error on the energy
balance’s residuals.

4.3 Time convergence

All plots are computed with T = 1 ms in the simulations and 10 elements of order 4.
In the following we call "Consecutive L1([0, T ];H1) error" the error computed between the solution with time
step �t uh,�t and the solution with time step 2�t uh,2�t:

e =

max
n2[[0,N ]]

���u2n
h,�t

� un

h,2�t

���
H1

max
n2[[0,N ]]

���u2n
h,�t

���
H1

(II.27)
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Figure 10: Time convergence of SAV with ’double’ (left) and ’long double’ (right) precision.

The right plot of figure 10 shows convergence curves of SAV scheme with consecutive errors with ’double’
precision. There is an asymptotic behavior for large time steps �t 2 [2 ⇥ 10�8, 5 ⇥ 10�6] with a quadratic
convergence rate. For small times steps �t < 2⇥ 10�8 we clearly notice a problem of convergence.
Running the code with a multiple precision library proves that this is an accumulation of numerical errors
[Butcher, 2016] and not a problem of convergence, see the right plot in Figure 10.

Figure 11: Time convergence of GRAD (left) and P-SAV (right) with ’double’ precision.

Other schemes like Discrete Gradient and P-SAV I.144 show less accumulation of rounding errors for small time
steps with ’double’ precision as shown in figure 11.
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4.4 Aliasing problems

As mentioned in section 4.1, even if the IEQ and SAV schemes are stable when the CFL is respected (because
of theorem 3.1), we observe that the solution can be very polluted and therefore exhibit a very large error with
respect to the reference solution.

Figure 12: Precise stable simulation. Figure 13: Non-precise stable simulation.

Figures 12 and 13 show two examples of stable simulations, but the one on the left is close to the real solution
whereas the one on the right is stable but completely wrong.

We show in the following that these aliasing issues occur when the CFL ratio ⌘ is too large, and the threshold
can be influenced by the stabilization parameter ↵.

4.5 Space-Time convergence

Because of the high computational cost of IEQ we present only SAV space-time convergence curves.

In the following we call "L1([0, T ], H1) error against reference" the error computed between a solution uh and
a reference solution u

h,ref:

e =

max
n2[[0,N ]]

���un

h,�t
� un

h,ref
���
H1

max
n2[[0,N ]]

���un

h,ref

���
H1

(II.28)

4.5.1 Unconditionally stable scheme

The unconditionally stable scheme with ✓ = 1/4 is used. It has no CFL restriction. The number

⌘ = �t2⇢
�
M�1

h
Kh

�
(II.29)

is used to choose the time step in relation with a given spatial discretization.
The following figures are computed with ’long double’ precision with T = 1 ms simulation duration.
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Figure 14: Space-Time convergence of SAV (left) and GRAD (right) schemes.

We observe that unlike the Discrete Gradient (GRAD), the SAV scheme does not always converge with respect
to space and time even if it is unconditionally stable. The red curve for ⌘ = 100 on the left of figure 14 is a
clear example.
However it seems to converge at order 2 for smaller values of ⌘, at least in this range of spatial discretizations.

We recall that no mathematical result of space-time convergence was obtained in section 3.5 for type 2 nonlinear
equations as the piano string. It is still an open question to know whether an extra condition must be fulfilled
for space-time convergence or if these schemes simply do not space-time converge at all.

4.5.2 Conditionally stable scheme

To conclude this section we show on figure 15 space-time convergence plots of conditionally stable schemes with
✓ < 1/4 for which the CFL condition (I.59) must be respected. In this case we denote

⌘✓ =

✓
1

4
� ✓

◆
�t2⇢

�
M�1

h
Kh

�
=

✓
1

4
� ✓

◆
⌘ (II.30)

the CFL ratio number that allows to choose the time step from a given spatial discretization.

Figure 15: Convergence of CFL-restricted SAV schemes.
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First notice that these schemes are stable up to the exact CFL
�
1
4 � ✓

�
�t2⇢

�
M�1

h
Kh

�
= ⌘✓ = 1 and as ex-

pected, any attempt to run them with ⌘✓ > 1 causes the simulations to diverge instantly.
However we clearly see convergence problems occurring on the left plot. On the right plot we ran the same
schemes but using the CFL restriction of the explicit scheme ✓ = 0, meaning that the time step used is the one
that verifies 1

4�t2⇢
�
M�1

h
Kh

�
= ⌘0 = 1. In this case, no more convergence issue is visible.

No clear explanations for these behaviors have been found yet.

4.6 Long time simulations
To verify the long-term precision of the schemes we ran T = 1s simulations with 10 elements of order 4.

Figure 16: SAV scheme for long time simulation.

SAV remains accurate for long simulations as shown on figure 16. Because of the long simulation time we only
distinguish the envelope of the signals which remains in correct range of values.

Figure 17: P-SAV scheme for long time simulation.

But P-SAV has a tendency to show aliasing problems after a certain time. Here on figure 17 it is good during
the first 100ms of simulation and becomes completely inaccurate after that. The range of values of the solution
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Figure 18: P-SAV scheme for long time simulation with damping.

is a lot too large for this computed case.
However, introducing some physical damping in the string seems to stabilize the scheme, as illustrated in figure
18.
Combined with the fact that P-SAV shows a lot less rounding errors for precise discretizations (see section 4.3)
makes it a good candidate for real-case physical simulations.
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4.7 Influence of the ↵-decomposition

As pointed out earlier, the ↵-decomposition II.8 has an influence on the value of the Lipschitz constant that
appears in the convergence estimate of theorem 3.7.

In this section we analyze its influence on the time precision of the SAV scheme, and we remind that this choice
has no influence on the complexity and computational cost of the scheme. This is why an appropriate choice is
to be done carefully.

4.7.1 Convergence constant estimation

To explore this effect, we computed time convergence consecutive errors and noticed that

��un

h,1 � un

h,2

��
L2 6

��un

h,1 � uh(t
n)
��
L2 +

��un

h,2 � uh(t
n)
��
L2 (II.31)

6 C↵�t21 + C↵�t22 (II.32)

6 5

4
C↵�t2 (II.33)

if the time steps are divided by 2 between two consecutive simulations.

We use 10 space elements of order 4. We compute 4 different time steps for the convergence curves to determine
the convergence constants with an affine regression of log(error) = log

�
5
4C↵

�
+ r log(�t).

We use either large time steps (10�5, 5⇥10�6, 2.5⇥10�6, 1.25⇥10�6) or small time steps (10�6, 5⇥10�7, 2.5⇥
10�7, 1.25⇥ 10�7).

With this methodology we can deduce the best value of ↵ to ensure the minimal time discretization error.

Figure 19: Influence of ↵ for large values of ↵.

Figure 19 shows the values of the time convergence constants for a wide range of values for ↵. There is a very
clear optimal visible close to ↵1 = 0 which is presented with a zoom on the right plot. Values of ↵2 between 0
and 1 are also the best choices. The following figure 20 focuses on these values.
Also notice that negative values of ↵ actually make the stiffness matrix and the energy negative which is not
suitable for a-priori stable simulations.
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Figure 20: Influence of ↵ for small time steps (left) and large time steps (right).

On the left hand side of figure 20 the times steps are smaller than 10�6 and no aliasing is visible. The best
value for ↵2 seems to be around 0.3 and around 1.5⇥ 10�3 for ↵1.
On the right hand side of figure 20 the time steps are larger that 10�6 and aliasing is visible with enormous
convergence constants for several values of ↵. Notice that the more precise the values are on the left, the more
aliased they are on the right with large time steps. For example the choice ↵2 = 1 is the worse choice in terms
of precision, but it is the best choice to avoid aliasing.

4.7.2 Lipschitz constant estimation

The Lipschitz constant are evaluated from the computed solutions of the previous section, with the expressions
given in proposition 3.4. They are displayed in figure 21 with ↵⇤ represented with the dotted vertical line.

Figure 21: Influence of ↵ on Lipschitz constants.

Figure 21 shows the computed Lipschitz constant corresponding to real simulations. On the left we see that
the Lipschitz constant increases when ↵2 is close to 0. On the right we normalized these plots the compare the
influence of ↵1.
The optimal value that makes the Lipschitz constant as small as possible is clearly ↵⇤.
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However we saw in the previous paragraph that the optimal value of the time convergence constant is not
necessarily ↵⇤.
Moreover, the values of the Lipschitz constant should be exponentially related to the convergence constant of 3.7,
which in our present case would give enormous numbers. This may suggest that the estimate of theorem 3.7 is not
sharp and that maybe the Lipschitz assumption is not necessary to complete the proof (see [Shen and Xu, 2018]
for a proof of space/time convergence without Lipschitz assumption for nonlinear equations of type 1).

4.7.3 Influence of the ✓-scheme

Figure 22: Influence of ↵ for different ✓-schemes.

Figure 23: Influence of ↵ for ✓ = 1/12 (left) and ✓ = 0 (right).

Figures 22 and 23 shows the time convergence constants for some other values of ✓. The optimal value with
respect to ↵ is changed. With ✓ = 1/12 we see that ↵2 = ↵⇤

2 = 1 has become the best choice when it was the
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worst one with ✓ = 1/4.
Figure 22 shows that ✓ = 1/12 seems to have the best precision associated with ↵ = ↵⇤. All the others ✓-schemes
have their own optimal choices for ↵.
For ✓ = 0 (explicit treatment of the linear part) the ↵-decomposition does no longer have any significant influ-
ence on the precision of the scheme.

Notice that the value of ↵ has a very significant influence on the time precision of the schemes for large ✓. It
can modify the precision by a factor 10. For smaller values of ✓ is becomes less and less significant.

4.8 Influence of the auxiliary constant c

The choice of a sufficiently large auxiliary constant is mandatory to ensure the good definition of the square
root of the auxiliary variable and auxiliary function. A non-suitable choice will cause the scheme to compute
NaN very rapidly.
This choice depends on the amplitude of the oscillations and of the source term. Large oscillations require a
larger auxiliary constant to offset the larger negative values of the nonlinear function.

Figure 24: Influence of the auxiliary constant c on the time convergence constant. ✓ = 1/4 (left), ✓ = 0 (right).

Following the same process as in section 4.7.1, figure 25 shows the relation between the auxiliary constant c and
the time convergence constant for ✓ = 1/4 on the left and ✓ = 0 on the right.
We notice that all values give similar results for time precision. Some values appears to be better than others
but not very significantly.

Note that unlike the value of ↵, unfortunate choices of the auxiliary constant c do not cause aliasing.
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As before with ↵, we can compute the Lipschitz constant with respect to the value of c, as displayed in figure
25.

Figure 25: Influence of the auxiliary constant c on the Lipschitz constant.

Once again the effect of the Lipschitz constant on the convergence constant is not visible. The left plot shows
an example of set Jr,h of values taken by the gradient of the fully-discrete solution on which the Lipschitz
constants are computed.

4.9 Choice of the parameters
In [Ducceschi and Bilbao, 2022, Ducceschi et al., 2022] the choice is made to use ↵ = ↵B =

�
T0
ES

, T0
ES

�
which

leads to a particular case of factorization of the nonlinear function:

U↵B (u, v) =
ES � T0

2

hp
u2 + (1 + v)2 � 1

i2
(II.34)

For the IEQ case [Ducceschi and Bilbao, 2022] it simplifies the auxiliary function and requires no auxiliary
constant:

g↵B (u, v) =
1p
2U↵B

rU↵B =

s
ES � T0

u2 + (1 + v)2

✓
u

1 + v

◆
(II.35)

However this simplification is not possible for SAV [Ducceschi et al., 2022] because of the integrals in the defi-
nition of the auxiliary function.

This value ↵B is a correct choice since the ✓ = 0 scheme is used (see figure 22). But the choice of ✓ = 0 may
not be optimal for precision.

For this specific application case to the piano string we recommend to use the SAV scheme with (✓,↵, c) =
(1/12,↵⇤, 104).
If it is used with damping, the P-SAV scheme should be preferred to avoid rounding errors.

For other application cases a similar study should be made, and the benefits of using unconditional schemes
or CFL-restricted ones must be evaluated. For example if the problem is very stiff maybe it is better to use
✓ = 1/4. Or if the use of Sherman-Morrison formula is not possible because of couplings to other systems,
the stiffness matrix must be inverted at every time step and it is probably interesting to use ✓ = 0 instead of
✓ = 1/12 is terms of computational cost.
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5 Conclusions and Prospects
In this report we have presented energy-quadratization techniques that enable us to write linearly implicit and
unconditionally stable numerical schemes from Hamiltionian systems of nonlinear wave equations. The Invari-
ant Energy Quadratization (IEQ) technique leads to a scheme of little computational interest compared to
discrete gradient methods leading to an iterative solution scheme, due to the large number of degrees of freedom
added by the method. The Scalar Auxiliary Variable (SAV) technique, on the other hand, greatly improves
performance over an iterative solution technique for a nonlinear problem.

Although very attractive, the mathematical properties of these quadratization methods have been little studied.
Proofs of space-time convergence can be found in the literature for type-1 nonlinearities, i.e. nonlinearities that
take the solution field as an argument, but no study to our knowledge gives results for type-2 nonlinear terms
that take the gradient of the solution field as an argument, as appears, for example, in the geometrically exact
piano string.

In the first part of this report, we therefore analyzed the stability and consistency properties of the schemes,
then gave an already known proof of convergence for finite differences, which we extended to finite elements
and ✓-schemas for type 1 nonlinearities. We then highlighted the blocking elements for a proof of space-time
convergence in the type 2 case. A proof of convergence in time has also been completed.

The second part is devoted to applications of the quadratized schemes to the piano string model, which exhibits
a type 2 nonlinearity.
We find that the quadratic rates of convergence in time agree well with those expected from the theoretical
results in Part 1.
We have also noted that the schemes present cases of space-time non-convergence linked to aliasing problems
for time steps that are too large, but that, in favorable cases with well-chosen discretization parameters, the
schemes still seem to show quadratic space-time convergence. They also show an accumulation of numerical
errors, characterized by a rise in errors on the time convergence curves.
The question of the space-time convergence of these schemes for a type-2 nonlinear equation remains open. One
approach would be to find an additional convergence condition in addition to the usual CFL stability condition
for ✓-schemes.

Finally, we studied the influence of discretization parameters on the scheme accuracy, in relation to the conver-
gence bounds obtained in the first part.
We found that the alpha-stabilization has a very strong impact on avoiding scheme aliasing, and that it has a
significant influence on the discretization error in time. We have put forward stabilization values that give the
optimal accuracy of the schemes. These values depend on the ✓-schema used. It should also be noted that the
stabilization values that give the most accurate results for small time steps are also those most likely to cause
aliasing for large time steps.
Although the convergence proofs presented in the first part make use of a Lipschitz-type regularity argument on
nonlinear functions, we have noticed that the simulated convergence constants do not show a correlation with
the Lipschitz constants as expected, suggesting that the proof could be improved.
Finally, the auxiliary constants used during quadratization appear to have very little influence on the accuracy
of the schemes.
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Appendices
A Discrete Gronwall Lemma

Lemma A.1 (Modified Discrete Gronwall inequality)
Let (wn)n2N be a non-negative sequence and two non-negative constants a 2 R+ and c 2 R+.
If

8n 2 N, wn 6 a+ c
n�1X

i=0

iX

j=0

wj (II.36)

then
8n 2 N, wn 6 a(1 + c)

n(n+1)
2 6 ae

n(n+1)
2 c (II.37)

Proof Let’s start with the proof of this following result by induction:

1 +
n�1X

i=0

iX

j=0

c(1 + c)
j(j+1)

2 6 (1 + c)
n(n+1)

2 (II.38)

It holds for n = 0 and n = 1, so let’s suppose that it is true for a specific n 2 N⇤.

1 +
nX

i=0

iX

j=0

c(1 + c)
j(j+1)

2 = 1 +
n�1X

i=0

iX

j=0

c(1 + c)
j(j+1)

2 +
nX

j=0

c(1 + c)
j(j+1)

2 (II.39)

6 (1 + c)
n(n+1)

2 + c
nX

j=0

(1 + c)
j(j+1)

2 because of the induction hypothesis(II.40)

6 (1 + c)
n(n+1)

2 + c(1 + c)
n(n+1)

2 (n+ 1) because c > 0 (II.41)

6 (1 + c)
n(n+1)

2 (1 + (n+ 1)c) (II.42)

6 (1 + c)
n(n+1)

2 (1 + c)n+1 (II.43)

= (1 + c)
(n+1)(n+2)

2 which concludes the induction. (II.44)

Now with this result we can prove the lemma by strong induction.
It is easy to check that II.37 is true for n = 0 and n = 1, so let’s suppose that II.37 holds up to rank n and let’s
prove it at rank n+ 1:

wn+1 6 a+ c
nX

i=0

iX

j=0

wj (II.45)

6 a+ c
nX

i=0

iX

j=0

a(1 + c)
j(j+1)

2 because of the induction hypothesis (II.46)

6 a

0

@1 +
nX

i=0

iX

j=0

c(1 + c)
j(j+1)

2

1

A (II.47)

6 a(1 + c)
(n+1)(n+2)

2 because of II.38 (II.48)

and the strong induction is completed.
The second inequality in II.37 is true because 1 + c 6 ec.
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